Year 2024,
Volume: 7 Issue: 3, 126 - 133, 15.09.2024
Ching On Lo
,
Anthony Wai Keung Loh
References
-
A. Chattopadhyaya, S. Das, C. Pradhan and S. Sarkar: Characterization of C-symmetric Toeplitz operators for a class of conjugations in Hardy spaces, Linear Multilinear Algebra, 71 (2023), 2026–2048.
-
R. G. Douglas: Banach Algebra Techniques in Operator Theory, Graduate Texts in Mathematics, 2nd ed., Springer (1998).
-
M. T. Garayev, M. Gürdal: Remarks on the zero Toeplitz product problem in the Bergman and Hardy spaces, Turkish J. Math., 42 (2018), 1504–1508.
-
M. T. Garayev, M. Gürdal, S. Saltan and U. Yamancı: dist-formulas and Toeplitz operators, Ann. Funct. Anal., 6 (2015), 221–226.
-
S. R. Garcia, E. Prodan and M. Putinar: Mathematical and physical aspects of complex symmetric operators, J. Phys. A, 47 (2014), 54 pp.
-
S. R. Garcia, M. Putinar: Complex symmetric operators and applications, Trans. Amer. Math. Soc., 358 (2006), 1285–1315.
-
S. R. Garcia, M. Putinar: Complex symmetric operators and applications. II, Trans. Amer. Math. Soc., 359 (2007), 3913–3931.
-
S. R. Garcia, W. Wogen: Some new classes of complex symmetric operators, Trans. Amer. Math. Soc., 362 (2010), 6065–6077.
-
K. Guo, S. Zhu: A canonical decomposition of complex symmetric operators, J. Operator Theory, 72 (2014), 529–547.
-
M. Gürdal, F. Söhret: Some results for Toeplitz operators on the Bergman space, Appl. Math. Comput., 218 (2011), 789–793.
-
M. T. Karaev, M. Gürdal and U. Yamancı: Some results related with Berezin symbols and Toeplitz operators, Math. Inequal. Appl., 17 (2014), 1031–1045.
-
E. Ko and J. E. Lee: On complex symmetric Toeplitz operators, J. Math. Anal. Appl., 434 (2016), 20–34.
-
E. Ko, J. E. Lee and J. Lee: Conjugations and complex symmetric Toeplitz operators on the weighted Hardy space, Mediterr. J. Math., 18 (2021), Article ID: 125.
-
E. Ko, J. E. Lee and J. Lee: Complex symmetric Toeplitz operators on the weighted Bergman space, Complex Var. Elliptic Equ., 67 (2022), 1393–1408.
-
A. Li, Y. Liu and Y. Chen: Complex symmetric Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl., 487 (2020), 123998.
-
R. Li, Y. Yang and Y. Lu: A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces, J. Math. Anal. Appl., 489 (2020), 124173.
-
C. O. Lo, A.W. K. Loh: Complex symmetric Toeplitz operators on Hilbert spaces of analytic functions, Mediterr. J. Math., 20 (2023), Article ID: 175.
-
K. Zhu: Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, 138, Amer. Math. Soc., Providence (2007).
C-symmetric Toeplitz operators on Hardy spaces
Year 2024,
Volume: 7 Issue: 3, 126 - 133, 15.09.2024
Ching On Lo
,
Anthony Wai Keung Loh
Abstract
We characterize all the Toeplitz operators that are complex symmetric with respect to a class of conjugations induced by a permutation. Our results provide an affirmative answer to a conjecture from a paper of Chattopadhyay et al. (2023) [1].
References
-
A. Chattopadhyaya, S. Das, C. Pradhan and S. Sarkar: Characterization of C-symmetric Toeplitz operators for a class of conjugations in Hardy spaces, Linear Multilinear Algebra, 71 (2023), 2026–2048.
-
R. G. Douglas: Banach Algebra Techniques in Operator Theory, Graduate Texts in Mathematics, 2nd ed., Springer (1998).
-
M. T. Garayev, M. Gürdal: Remarks on the zero Toeplitz product problem in the Bergman and Hardy spaces, Turkish J. Math., 42 (2018), 1504–1508.
-
M. T. Garayev, M. Gürdal, S. Saltan and U. Yamancı: dist-formulas and Toeplitz operators, Ann. Funct. Anal., 6 (2015), 221–226.
-
S. R. Garcia, E. Prodan and M. Putinar: Mathematical and physical aspects of complex symmetric operators, J. Phys. A, 47 (2014), 54 pp.
-
S. R. Garcia, M. Putinar: Complex symmetric operators and applications, Trans. Amer. Math. Soc., 358 (2006), 1285–1315.
-
S. R. Garcia, M. Putinar: Complex symmetric operators and applications. II, Trans. Amer. Math. Soc., 359 (2007), 3913–3931.
-
S. R. Garcia, W. Wogen: Some new classes of complex symmetric operators, Trans. Amer. Math. Soc., 362 (2010), 6065–6077.
-
K. Guo, S. Zhu: A canonical decomposition of complex symmetric operators, J. Operator Theory, 72 (2014), 529–547.
-
M. Gürdal, F. Söhret: Some results for Toeplitz operators on the Bergman space, Appl. Math. Comput., 218 (2011), 789–793.
-
M. T. Karaev, M. Gürdal and U. Yamancı: Some results related with Berezin symbols and Toeplitz operators, Math. Inequal. Appl., 17 (2014), 1031–1045.
-
E. Ko and J. E. Lee: On complex symmetric Toeplitz operators, J. Math. Anal. Appl., 434 (2016), 20–34.
-
E. Ko, J. E. Lee and J. Lee: Conjugations and complex symmetric Toeplitz operators on the weighted Hardy space, Mediterr. J. Math., 18 (2021), Article ID: 125.
-
E. Ko, J. E. Lee and J. Lee: Complex symmetric Toeplitz operators on the weighted Bergman space, Complex Var. Elliptic Equ., 67 (2022), 1393–1408.
-
A. Li, Y. Liu and Y. Chen: Complex symmetric Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl., 487 (2020), 123998.
-
R. Li, Y. Yang and Y. Lu: A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces, J. Math. Anal. Appl., 489 (2020), 124173.
-
C. O. Lo, A.W. K. Loh: Complex symmetric Toeplitz operators on Hilbert spaces of analytic functions, Mediterr. J. Math., 20 (2023), Article ID: 175.
-
K. Zhu: Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, 138, Amer. Math. Soc., Providence (2007).