Year 2023,
Volume: 16 Issue: 1, 304 - 333, 30.04.2023
Carlos Avila
,
Matias Navarro
,
Oscar Palmas
,
Didier Solis
Project Number
Becas Nacionales 807031, SNI 25997, SNI 16167, SNI SNI 38368; DGAPA-PAPIIT IN101322; FMAT-2023-0002, FMAT-PTA-2022
References
-
[1] Abe, K., Magid, M.: Relative nullity foliations and indefinite isometric immersions. Pacific J. Math. 142 (1), 1-20 (1986).
-
[2] Atindogbe, C., Harouna, M. M., Tossa, J.: Lightlike hypersurfaces in Lorentzian manifolds with constant screen principal curvatures. Afr. Diaspora
J. Math. 16 (2), 31-45 (2014).
-
[3] Bishop, R., Crittenden, R.: Geometry of manifolds. American Mathematical Society, Providence (2001).
-
[4] Bonnet, O.: Mémoire sur la théorie des surfaces applicables. J. Ec. Polyt. 92, 72-92 (1867).
-
[5] Atindogbe, C. Ezin, J. P., Tossa, J.: Reduction of the codimension for lightlike isotropic submanifolds. J. Geom. Phys. 42 (1-2), 1-11 (2002).
-
[6] Canevari, S., Tojeiro, Ruy.: Isometric immersions of space forms into Sp × R. Math. Nachr. 293 (7), 1259-1277 (2020).
-
[7] Chen, Q. and Xiang, C. R.: Isometric immersions into warped product spaces. Acta Math. Sin. (Engl. Ser.) 26 (12), 2269-2282 (2010).
-
[8] Dajczer, M.: Submanifolds and isometric immersions. Mathematics Lecture Series. Publish or Perish, Houston (1990).
-
[9] Dajczer, M., Onti, C. R., Vlachos, T.: Isometric immersions with flat normal bundle between space forms. Arch. Math. 116 (5), 577-583 (2021).
-
[10] Dajczer, M., Tojeiro, R.: Isometric immersions in codimension two of warped products into space forms. Illinois J. Math. 48, (3) 711-746 (2004).
-
[11] Dajczer, M., Tojeiro, R.: Submanifold theory: Beyond an introduction. Universitext. Springer, New York (2019).
-
[12] Daniel, B.: Isometric immersions into Sn × R and Hn × R and applications to minimal surfaces. Trans. Am. Math. Soc. 361 (12), 6255-6282
(2009).
-
[13] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of codimension two. Math. J. Toyama Univ. 15, 59-82 (1992).
-
[14] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and its Applications.
Kluwer Academic Publishers Group, Dordrecht (1996).
-
[15] Duggal, K. L., Sahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
-
[16] Eisenhart, L. P.: Riemannian geometry. Princeton University Press (1964).
-
[17] Graves, L. K.: Codimension one isometric immersions between Lorentz spaces. Trans. Am. Math. Soc. 252, 367-392 (1979).
-
[18] Greene, R. E.: Isometric embeddings of Riemannian and pseudo-Riemannian manifolds. American Mathematical Society, Providence
(1970).
-
[19] Gromov, M.: Isometric immersions of Riemannian manifolds. Elie Cartan et les Mathématiques d’Aujourd’hui, Astérisque. 129-133 (1985).
-
[20] Jacobowitz, H.: The Gauss-Codazzi equations. Tensor 39, 15-22 (1982).
-
[21] Kitamura, S.: The imbedding of spherically symmetric space times in a Riemannian 5-space of constant curvature. Tensor (N.S.) 16, 74-83 (1965).
-
[22] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Volume 1. Wiley Interscience (1996).
-
[23] Lawn, M. A., Ortega, M.: A fundamental theorem for hypersurfaces in semi-Riemannian warped products. J. Geom. Phys. 90, 55-70 (2015).
-
[24] Li, X. X., Zhang, T. Q.: Isometric immersions of higher codimension into the product Sk × Hn+p−k. Acta Math. Sin. (Engl. Ser.) 30 (12), 2146-2160
(2014).
-
[25] Lira, J. H., Tojeiro, R. Vitório, F.: A Bonnet theorem for isometric immersions into products of space forms. Arch. Math. 95 (5), 469-479 (2010).
-
[26] Magid, M. A.: Isometric immersions of Lorentz space with parallel second fundamental forms. Tsukaba J. Math. 8 (1), 31-54 (1984).
-
[27] O’Neill, B.: Semi-Riemannian geometry, with applications to relativity. Academic Press, London (1983).
-
[28] Poznjak, E. G., Sokolov, D. D.: Isometric immersions of Riemannian spaces in Euclidean spaces. J. Soviet Math. 14, 1407-1428 (1980).
-
[29] Spivak, M.: A comprehensive introduction to differential geometry. Vol. IV. Publish or Perish, Wilmington (1979).
-
[30] Tenenblat, K.: On isometric immersions of Riemannian manifolds. Bull. Braz. Math. Soc. 2 (2), 23-36 (1971).
-
[31] Tu, L.: Differential geometry: connections, curvature and characteristic classes. Springer-Verlag, New York (2017).
On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index
Year 2023,
Volume: 16 Issue: 1, 304 - 333, 30.04.2023
Carlos Avila
,
Matias Navarro
,
Oscar Palmas
,
Didier Solis
Abstract
A null manifold is a differentiable manifold M endowed with a degenerate metric tensor g. In this work we provide sufficient conditions for a null manifold to be isometrically immersed as a hypersurface into a simple connected semi-Riemannian manifold of constant sectional curvature c and index q
Supporting Institution
Conacyt, UNAM, UADY
Project Number
Becas Nacionales 807031, SNI 25997, SNI 16167, SNI SNI 38368; DGAPA-PAPIIT IN101322; FMAT-2023-0002, FMAT-PTA-2022
Thanks
Conacyt, UNAM, UADY
References
-
[1] Abe, K., Magid, M.: Relative nullity foliations and indefinite isometric immersions. Pacific J. Math. 142 (1), 1-20 (1986).
-
[2] Atindogbe, C., Harouna, M. M., Tossa, J.: Lightlike hypersurfaces in Lorentzian manifolds with constant screen principal curvatures. Afr. Diaspora
J. Math. 16 (2), 31-45 (2014).
-
[3] Bishop, R., Crittenden, R.: Geometry of manifolds. American Mathematical Society, Providence (2001).
-
[4] Bonnet, O.: Mémoire sur la théorie des surfaces applicables. J. Ec. Polyt. 92, 72-92 (1867).
-
[5] Atindogbe, C. Ezin, J. P., Tossa, J.: Reduction of the codimension for lightlike isotropic submanifolds. J. Geom. Phys. 42 (1-2), 1-11 (2002).
-
[6] Canevari, S., Tojeiro, Ruy.: Isometric immersions of space forms into Sp × R. Math. Nachr. 293 (7), 1259-1277 (2020).
-
[7] Chen, Q. and Xiang, C. R.: Isometric immersions into warped product spaces. Acta Math. Sin. (Engl. Ser.) 26 (12), 2269-2282 (2010).
-
[8] Dajczer, M.: Submanifolds and isometric immersions. Mathematics Lecture Series. Publish or Perish, Houston (1990).
-
[9] Dajczer, M., Onti, C. R., Vlachos, T.: Isometric immersions with flat normal bundle between space forms. Arch. Math. 116 (5), 577-583 (2021).
-
[10] Dajczer, M., Tojeiro, R.: Isometric immersions in codimension two of warped products into space forms. Illinois J. Math. 48, (3) 711-746 (2004).
-
[11] Dajczer, M., Tojeiro, R.: Submanifold theory: Beyond an introduction. Universitext. Springer, New York (2019).
-
[12] Daniel, B.: Isometric immersions into Sn × R and Hn × R and applications to minimal surfaces. Trans. Am. Math. Soc. 361 (12), 6255-6282
(2009).
-
[13] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of codimension two. Math. J. Toyama Univ. 15, 59-82 (1992).
-
[14] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and its Applications.
Kluwer Academic Publishers Group, Dordrecht (1996).
-
[15] Duggal, K. L., Sahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
-
[16] Eisenhart, L. P.: Riemannian geometry. Princeton University Press (1964).
-
[17] Graves, L. K.: Codimension one isometric immersions between Lorentz spaces. Trans. Am. Math. Soc. 252, 367-392 (1979).
-
[18] Greene, R. E.: Isometric embeddings of Riemannian and pseudo-Riemannian manifolds. American Mathematical Society, Providence
(1970).
-
[19] Gromov, M.: Isometric immersions of Riemannian manifolds. Elie Cartan et les Mathématiques d’Aujourd’hui, Astérisque. 129-133 (1985).
-
[20] Jacobowitz, H.: The Gauss-Codazzi equations. Tensor 39, 15-22 (1982).
-
[21] Kitamura, S.: The imbedding of spherically symmetric space times in a Riemannian 5-space of constant curvature. Tensor (N.S.) 16, 74-83 (1965).
-
[22] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Volume 1. Wiley Interscience (1996).
-
[23] Lawn, M. A., Ortega, M.: A fundamental theorem for hypersurfaces in semi-Riemannian warped products. J. Geom. Phys. 90, 55-70 (2015).
-
[24] Li, X. X., Zhang, T. Q.: Isometric immersions of higher codimension into the product Sk × Hn+p−k. Acta Math. Sin. (Engl. Ser.) 30 (12), 2146-2160
(2014).
-
[25] Lira, J. H., Tojeiro, R. Vitório, F.: A Bonnet theorem for isometric immersions into products of space forms. Arch. Math. 95 (5), 469-479 (2010).
-
[26] Magid, M. A.: Isometric immersions of Lorentz space with parallel second fundamental forms. Tsukaba J. Math. 8 (1), 31-54 (1984).
-
[27] O’Neill, B.: Semi-Riemannian geometry, with applications to relativity. Academic Press, London (1983).
-
[28] Poznjak, E. G., Sokolov, D. D.: Isometric immersions of Riemannian spaces in Euclidean spaces. J. Soviet Math. 14, 1407-1428 (1980).
-
[29] Spivak, M.: A comprehensive introduction to differential geometry. Vol. IV. Publish or Perish, Wilmington (1979).
-
[30] Tenenblat, K.: On isometric immersions of Riemannian manifolds. Bull. Braz. Math. Soc. 2 (2), 23-36 (1971).
-
[31] Tu, L.: Differential geometry: connections, curvature and characteristic classes. Springer-Verlag, New York (2017).