Research Article
BibTex RIS Cite

Hydrometallurgy of lithium: Selective separation from geothermal brines using chitosan-lithium ion sieve composite

Year 2025, Volume: 7 Issue: 2, 140 - 153, 31.05.2025
https://doi.org/10.51435/turkjac.1629713

Abstract

This study investigates the selective recovery of lithium (Li) from geothermal brines using a chitosan-coated lithium manganese oxide composite (CTS/LMO). Geothermal brines from Germencik and Tuzla in Türkiye, characterized by distinct physicochemical properties, were used to evaluate adsorption performance. The Freundlich isotherm provided the best fit for the adsorption data, indicating heterogeneous and multilayer adsorption, with maximum adsorption capacities of 3.622 mg/g for Germencik and 3.556 mg/g for Tuzla derived from the Langmuir isotherm. Kinetic studies revealed that lithium adsorption followed a pseudo-first-order model for Germencik (R2 = 0.992) and a pseudo-second-order model for Tuzla (R2 = 0.914). The intraparticle diffusion model identified boundary layer diffusion as a significant rate-limiting step, with diffusion rate constants of 0.365 mg/g·h0.5 for Germencik and 0.588 mg/g·h0.5 for Tuzla. Mechanistic studies demonstrated ion exchange as the dominant adsorption mechanism, supported by adsorption energy values of 8.64 kJ/mol for Germencik and 9.13 kJ/mol for Tuzla. Optimal conditions yielded lithium recovery efficiencies of 95% for Germencik and 80% for Tuzla, with the differences attributed to variations in salinity and ionic composition. CTS/LMO effectively retained Li up to 241 BV with 69.03% efficiency, while desorption peaked at 43 mg/L at 9 BV, achieving 76% elution efficiency in column operation with a model solution. These findings demonstrate the potential of CTS/LMO as an efficient and sustainable adsorbent for Li recovery from geothermal brines, contributing to the growing demand for Li in renewable energy applications.

Ethical Statement

This study was financially supported by the Research Universities Support Program of the Higher Education Council of Türkiye (Grant No: 2022IYTE-2-0009).

Supporting Institution

Higher Education Council of Türkiye

Project Number

2022IYTE-2-0009

Thanks

This study was financially supported by the Research Universities Support Program of the Higher Education Council of Türkiye (Grant No: 2022IYTE-2-0009).

References

  • N. Bolan, S.A. Hoang, M. Tanveer, L. Wang, S. Bolan, P. Sooriyakumar, B. Robinson, H. Wijesekara, M. Wijesooriya, S. Keerthanan, From mine to mind and mobiles–Lithium contamination and its risk management, Environ Pollut, 290 (2021) 118067.
  • D. Chandrasekharam, M.F. Şener, Y.K. Recepoğlu, T. Isık, M.M. Demir, A. Baba, Lithium: An energy transition element, its role in the future energy demand and carbon emissions mitigation strategy, Geothermics 119 (2024) 102959.
  • G. Calvo, A. Valero, A. Valero, Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources, Resour Conserv Recycl 125 (2017) 208–217.
  • Y.K. Recepoğlu, Optimized Lithium (I) Recovery from Geothermal Brine of Germencik, Türkiye, Utilizing an Aminomethyl phosphonic Acid Chelating Resin, Solvent Extr Ion Exch, (2024) 1–22.
  • P. Christmann, E. Gloaguen, J.-F. Labbé, J. Melleton, P. Piantone, Global lithium resources and sustainability issues, in: Lithium Process Chemistry, Elsevier, 2015: pp. 1–40.
  • R. Millot, A. Hegan, P. Négrel, Geothermal waters from the Taupo volcanic zone, New Zealand: Li, B and Sr isotopes characterization, Appl Geochem, 27 (2012) 677–688.
  • Z. Qin, L. He, J. Duo, M. Li, Y. Li, Q. Du, G. Zhang, G. Wu, G. Liu, Origin and evolution of Li-rich geothermal waters from the Kawu geothermal system, Himalayas: based on hydrochemistry and HO, Li isotopes, Int Geol Rev 66 (2024) 1519–1534.
  • B. Sanjuan, B. Gourcerol, R. Millot, D. Rettenmaier, E. Jeandel, A. Rombaut, Lithium-rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources, Geothermics 101 (2022) 102385.
  • J. Li, X. Wang, C. Ruan, G. Sagoe, J. Li, Enrichment mechanisms of lithium for the geothermal springs in the southern Tibet, China, J Hydrol (Amst) 612 (2022) 128022.
  • A. Gökgöz, G. Tarcan, Mineral equilibria and geothermometry of the Dalaman–Köyceğiz thermal springs, southern Turkey, Appl Geochem, 21 (2006) 253–268.
  • A. Vengosh, C. Helvacı, İ.H. Karamanderesi, Geochemical constraints for the origin of thermal waters from western Turkey, Appl Geochem, 17 (2002) 163–183.
  • S. Pasvanoğlu, Geochemistry and conceptual model of thermal waters from Erciş-Zilan Valley, Eastern Turkey, Geothermics 86 (2020) 101803.
  • E.H. Temizel, F. Gültekin, A.F. Ersoy, R.K. Gülbay, Multi-isotopic (O, H, C, S, Sr, B, Li) characterization of waters in a low-enthalpy geothermal system in Havza (Samsun), Turkey, Geothermics 97 (2021) 102240.
  • S. S. Rangarajan, S.P. Sunddararaj, A.V. V Sudhakar, C.K. Shiva, U. Subramaniam, E.R. Collins, T. Senjyu, Lithium-ion batteries—The crux of electric vehicles with opportunities and challenges, Clean Technol, 4 (2022) 908–930.
  • Y. Miao, P. Hynan, A. Von Jouanne, A. Yokochi, Current Li-ion battery technologies in electric vehicles and opportunities for advancements, Energies (Basel) 12 (2019) 1074.
  • Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: current status and future perspectives, Electrochem Energy Rev, 2 (2019) 1–28.
  • A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Lithium recovery from brine: Recent developments and challenges, Desalination 528 (2022) 115611.
  • S. Sahu, A. Mohanty, N. Devi, Application of various extractants for liquid-liquid extraction of lithium, Mater Today Proc 76 (2023) 190–193.
  • J. Zhu, A. Asadi, D. Kang, J.C.-Y. Jung, P.-Y.A. Chuang, P.-C. Sui, Bipolar membranes electrodialysis of lithium sulfate solutions from hydrometallurgical recycling of spent lithium-ion batteries, Sep Purif Technol 354 (2025) 128715.
  • X. Chen, X. Ruan, S.E. Kentish, G.K. Li, T. Xu, G.Q. Chen, Production of lithium hydroxide by electrodialysis with bipolar membranes, Sep Purif Technol 274 (2021) 119026.
  • B. Swain, Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review, J Chem Technol Biotechnol, 91 (2016) 2549–2562.
  • M.R. Mojid, K.J. Lee, J. You, A review on advances in direct lithium extraction from continental brines: Ion-sieve adsorption and electrochemical methods for varied Mg/Li ratios, Sustain Mater Technol, (2024) e00923.
  • S. Ye, C. Yang, Y. Sun, C. Guo, J. Wang, Y. Chen, C. Zhong, T. Qiu, Application and Mechanism of Lithium-ion Sieves in the Recovery of Lithium-Containing Wastewater: a Review, Water Air Soil Pollut 235 (2024) 272.
  • S. Chen, Z. Chen, Z. Wei, J. Hu, Y. Guo, T. Deng, Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water, Chem Eng J, 410 (2021) 128320.
  • X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, M. Fan, Extraction of lithium with functionalized lithium ion-sieves, Prog Mater Sci 84 (2016) 276–313.
  • Y. Orooji, Z. Nezafat, M. Nasrollahzadeh, N. Shafiei, M. Afsari, K. Pakzad, A. Razmjou, Recent advances in nanomaterial development for lithium ion-sieving technologies, Desalination 529 (2022) 115624.
  • J. Xiao, X. Nie, S. Sun, X. Song, P. Li, J. Yu, Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model, Adv Powder Technol, 26 (2015) 589–594.
  • J.-L. Xiao, S.-Y. Sun, J. Wang, P. Li, J.-G. Yu, Synthesis and adsorption properties of Li1. 6Mn1. 6O4 spinel, Ind Eng Chem Res 52 (2013) 11967–11973.
  • Q.-H. Zhang, S. Sun, S. Li, H. Jiang, J.-G. Yu, Adsorption of lithium ions on novel nanocrystal MnO2, Chem Eng Sci 62 (2007) 4869–4874.
  • Y.K. Recepoğlu, N. Kabay, İ. Yılmaz-Ipek, M. Arda, K. Yoshizuka, S. Nishihama, M. Yüksel, Equilibrium and Kinetic Studies on Lithium Adsorption from Geothermal Water by λ-MnO2, Solvent Extr Ion Exch, 35 (2017) 221–231.
  • Y.K. Recepoğlu, N. Kabay, K. Yoshizuka, S. Nishihama, İ. Yılmaz-Ipek, M. Arda, M. Yüksel, Effect of Operational Conditions on Separation of Lithium from Geothermal Water by λ-MnO2 Using Ion Exchange–Membrane Filtration Hybrid Process, Solvent Extr Ion Exch, 36 (2018) 499–512.
  • Y.K. Recepoğlu, N. Kabay, İ. Yılmaz-Ipek, M. Arda, M. Yüksel, K. Yoshizuka, S. Nishihama, Elimination of boron and lithium coexisting in geothermal water by adsorption-membrane filtration hybrid process, Sep Sci Technol, (Philadelphia) 53 (2018) 856–862.
  • G.M. Nisola, L.A. Limjuco, E.L. Vivas, C.P. Lawagon, M.J. Park, H.K. Shon, N. Mittal, I.W. Nah, H. Kim, W.-J. Chung, Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation, Chem Eng J, 280 (2015) 536–548.
  • S. Wei, Y. Wei, T. Chen, C. Liu, Y. Tang, Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water, Chem Eng J, 379 (2020) 122407.
  • G. Zhang, C. Hai, Y. Zhou, J. Zhang, Y. Liu, J. Zeng, Y. Shen, X. Li, Y. Sun, Z. Wu, Synthesis and performance estimation of a granulated PVC/PAN-lithium ion-sieve for Li+ recovery from brine, Sep Purif Technol 305 (2023) 122431.
  • J.-L. Xiao, S.-Y. Sun, X. Song, P. Li, J.-G. Yu, Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve, Chem Eng J, 279 (2015) 659–666.
  • I.A. Udoetok, A.H. Karoyo, E.E. Ubuo, E.D. Asuquo, Granulation of Lithium-Ion Sieves Using Biopolymers: A Review, Polymers (Basel) 16 (2024) 1520.
  • Y.K. Recepoğlu, B. Arabacı, A. Kahvecioğlu, A. Yüksel, Granulation of hydrometallurgically synthesized spinel lithium manganese oxide using cross-linked chitosan for lithium adsorption from water, J Chromatogr A (2024) 464712.
  • I. Langmuir, The constitution and fundamental properties of solids and liquids. Part II.-Liquids, J Franklin Inst 184 (1917) 721.
  • I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids., J Am Chem Soc 38 (1916) 2221–2295.
  • H. Freundlich, Über die adsorption in lösungen, Z Phys Chem, 57 (1907) 385–470.
  • C. Nguyen, D.D. Do, The Dubinin–Radushkevich equation and the underlying microscopic adsorption description, Carbon, 39 (2001) 1327–1336.
  • E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Clean Eng Technol 1 (2020) 100032.
  • Y.-S. Ho, Review of second-order models for adsorption systems, J Hazard Mater 136 (2006) 681–689.
  • Y.-S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods, Water Res 40 (2006) 119–125.
  • W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J Sanit Eng Div ASCE, 89 (1963) 31–60.
  • Y.K. Recepoğlu, A. Yüksel, Cross-Linked Phosphorylated Cellulose as a Potential Sorbent for Lithium Extraction from Water: Dynamic Column Studies and Modeling, ACS Omega 7 (2022) 38957–38968.
  • H. Jiang, Y. Yang, J. Yu, Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns, Sep Purif Technol 241 (2020) 116682.
  • C. Geankoplis, Transport processes and separation process principles (includes unit operations), Prentice Hall Press, 2003.
  • B. Sever, E. Altıok, Y. Abdullahi Jarma, K. Bostancı, N. Kabay, M. Arda, S. Nishihama, K. Yoshizuka, Lithium Recovery from Reverse Osmosis Concentrate of Geothermal Water by Spinel Type λ-MnO2-Batch Tests, Solvent Extr Ion Exch (2025) 1–20.
  • H. Patel, Fixed-bed column adsorption study: a comprehensive review, Appl Water Sci 9 (2019) 45.
  • S. Toprak, Ç. Öncel, S. Yılmaz, A. Baba, G.A. Koç, M.M. Demir, Lithium extraction from geothermal brine using γ-MnO2: A case study for Tuzla geothermal power plant, Heliyon 10 (2024).
  • R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4, Ind Eng Chem Res 40 (2001) 2054–2058.
  • K.S. Chung, M.A. Kim, H. Lee, Y.J. Suh, D.S. Kil, B.C. Dave, J.C. Lee, Preparation of ion-sieve type (H)[M0. 5Mn1. 5] O4 (M= Mg, Zn) and their lithium adsorption properties in seawater, Solid State Phenom 124 (2007) 739–742.
  • S.-Y. Sun, J.-L. Xiao, J. Wang, X. Song, J.-G. Yu, Synthesis and adsorption properties of Li1. 6Mn1. 6O4 by a combination of redox precipitation and solid-phase reaction, Ind Eng Chem Res 53 (2014) 15517–15521.
  • G. Cao, X. Yang, Z. Yin, Y. Lei, H. Wang, J. Li, Synthesis, adsorption properties and stability of Cr-doped lithium ion sieve in salt lake brine, Bull Chem Soc Jpn 92 (2019) 1205–1210.

Lityumun hidrometalurjisi: Kitosan-lityum iyon elek kompoziti kullanılarak jeotermal tuzlu sulardan seçici ayırma

Year 2025, Volume: 7 Issue: 2, 140 - 153, 31.05.2025
https://doi.org/10.51435/turkjac.1629713

Abstract

Bu çalışmada, kitosan kaplı lityum manganez oksit kompoziti (CTS/LMO) kullanılarak jeotermal tuzlu sulardan lityumun (Li) seçici olarak geri kazanılması araştırılmıştır. Türkiye'deki Germencik ve Tuzla'dan elde edilen ve farklı fizikokimyasal özelliklerle karakterize edilen jeotermal tuzlu sular, adsorpsiyon performansını değerlendirmek için kullanılmıştır. Freundlich izotermi, adsorpsiyon verileri için en iyi uyumu sağlayarak heterojen ve çok katmanlı adsorpsiyonu göstermektedir ve Langmuir izoterminden elde edilen Germencik için maksimum adsorpsiyon kapasiteleri 3.622 mg/g ve Tuzla için 3.556 mg/g'dır. Kinetik çalışmalar, lityum adsorpsiyonunun Germencik için psödo-birinci dereceden bir model (R2 = 0.992) ve Tuzla için psödo-ikinci dereceden bir model (R2 = 0.914) izlediğini ortaya koymuştur. Parçacık içi difüzyon modeli, sınır tabakası difüzyonunu önemli bir hız sınırlayıcı adım olarak tanımlanmıştır ve Germencik için 0,365 mg/g·h0,5 ve Tuzla için 0,588 mg/g·h0,5 difüzyon hız sabitleri elde edildi. Mekanistik çalışmalar, iyon değişiminin baskın adsorpsiyon mekanizması olduğunu göstermiştir ve Germencik için 8,64 kJ/mol ve Tuzla için 9,13 kJ/mol adsorpsiyon enerji değerleri ile desteklenmiştir. Optimal koşullar, Germencik için %95 ve Tuzla için %80 lityum geri kazanım verimliliği sağlamıştır. Farklılıkların tuzluluk ve iyonik bileşimdeki değişikliklerden kaynaklandığı düşünülmektedir.. CTS/LMO, Li'yi %69,03 verimlilikle 241 BV'ye kadar etkili bir şekilde tutarken, desorpsiyon 9 BV'de 43 mg/L'de zirveye ve bir model çözeltiyle kolon çalışmasında da %76 elüsyon verimliliğine ulaşmıştır. Bu bulgular, CTS/LMO'nun jeotermal tuzlu sulardan Li geri kazanımı için etkili ve sürdürülebilir bir adsorban olarak potansiyelini ortaya koyarak, yenilenebilir enerji uygulamalarında Li'ye olan talebin artmasına katkıda bulunmaktadır.

Project Number

2022IYTE-2-0009

References

  • N. Bolan, S.A. Hoang, M. Tanveer, L. Wang, S. Bolan, P. Sooriyakumar, B. Robinson, H. Wijesekara, M. Wijesooriya, S. Keerthanan, From mine to mind and mobiles–Lithium contamination and its risk management, Environ Pollut, 290 (2021) 118067.
  • D. Chandrasekharam, M.F. Şener, Y.K. Recepoğlu, T. Isık, M.M. Demir, A. Baba, Lithium: An energy transition element, its role in the future energy demand and carbon emissions mitigation strategy, Geothermics 119 (2024) 102959.
  • G. Calvo, A. Valero, A. Valero, Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources, Resour Conserv Recycl 125 (2017) 208–217.
  • Y.K. Recepoğlu, Optimized Lithium (I) Recovery from Geothermal Brine of Germencik, Türkiye, Utilizing an Aminomethyl phosphonic Acid Chelating Resin, Solvent Extr Ion Exch, (2024) 1–22.
  • P. Christmann, E. Gloaguen, J.-F. Labbé, J. Melleton, P. Piantone, Global lithium resources and sustainability issues, in: Lithium Process Chemistry, Elsevier, 2015: pp. 1–40.
  • R. Millot, A. Hegan, P. Négrel, Geothermal waters from the Taupo volcanic zone, New Zealand: Li, B and Sr isotopes characterization, Appl Geochem, 27 (2012) 677–688.
  • Z. Qin, L. He, J. Duo, M. Li, Y. Li, Q. Du, G. Zhang, G. Wu, G. Liu, Origin and evolution of Li-rich geothermal waters from the Kawu geothermal system, Himalayas: based on hydrochemistry and HO, Li isotopes, Int Geol Rev 66 (2024) 1519–1534.
  • B. Sanjuan, B. Gourcerol, R. Millot, D. Rettenmaier, E. Jeandel, A. Rombaut, Lithium-rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources, Geothermics 101 (2022) 102385.
  • J. Li, X. Wang, C. Ruan, G. Sagoe, J. Li, Enrichment mechanisms of lithium for the geothermal springs in the southern Tibet, China, J Hydrol (Amst) 612 (2022) 128022.
  • A. Gökgöz, G. Tarcan, Mineral equilibria and geothermometry of the Dalaman–Köyceğiz thermal springs, southern Turkey, Appl Geochem, 21 (2006) 253–268.
  • A. Vengosh, C. Helvacı, İ.H. Karamanderesi, Geochemical constraints for the origin of thermal waters from western Turkey, Appl Geochem, 17 (2002) 163–183.
  • S. Pasvanoğlu, Geochemistry and conceptual model of thermal waters from Erciş-Zilan Valley, Eastern Turkey, Geothermics 86 (2020) 101803.
  • E.H. Temizel, F. Gültekin, A.F. Ersoy, R.K. Gülbay, Multi-isotopic (O, H, C, S, Sr, B, Li) characterization of waters in a low-enthalpy geothermal system in Havza (Samsun), Turkey, Geothermics 97 (2021) 102240.
  • S. S. Rangarajan, S.P. Sunddararaj, A.V. V Sudhakar, C.K. Shiva, U. Subramaniam, E.R. Collins, T. Senjyu, Lithium-ion batteries—The crux of electric vehicles with opportunities and challenges, Clean Technol, 4 (2022) 908–930.
  • Y. Miao, P. Hynan, A. Von Jouanne, A. Yokochi, Current Li-ion battery technologies in electric vehicles and opportunities for advancements, Energies (Basel) 12 (2019) 1074.
  • Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: current status and future perspectives, Electrochem Energy Rev, 2 (2019) 1–28.
  • A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Lithium recovery from brine: Recent developments and challenges, Desalination 528 (2022) 115611.
  • S. Sahu, A. Mohanty, N. Devi, Application of various extractants for liquid-liquid extraction of lithium, Mater Today Proc 76 (2023) 190–193.
  • J. Zhu, A. Asadi, D. Kang, J.C.-Y. Jung, P.-Y.A. Chuang, P.-C. Sui, Bipolar membranes electrodialysis of lithium sulfate solutions from hydrometallurgical recycling of spent lithium-ion batteries, Sep Purif Technol 354 (2025) 128715.
  • X. Chen, X. Ruan, S.E. Kentish, G.K. Li, T. Xu, G.Q. Chen, Production of lithium hydroxide by electrodialysis with bipolar membranes, Sep Purif Technol 274 (2021) 119026.
  • B. Swain, Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review, J Chem Technol Biotechnol, 91 (2016) 2549–2562.
  • M.R. Mojid, K.J. Lee, J. You, A review on advances in direct lithium extraction from continental brines: Ion-sieve adsorption and electrochemical methods for varied Mg/Li ratios, Sustain Mater Technol, (2024) e00923.
  • S. Ye, C. Yang, Y. Sun, C. Guo, J. Wang, Y. Chen, C. Zhong, T. Qiu, Application and Mechanism of Lithium-ion Sieves in the Recovery of Lithium-Containing Wastewater: a Review, Water Air Soil Pollut 235 (2024) 272.
  • S. Chen, Z. Chen, Z. Wei, J. Hu, Y. Guo, T. Deng, Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water, Chem Eng J, 410 (2021) 128320.
  • X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, M. Fan, Extraction of lithium with functionalized lithium ion-sieves, Prog Mater Sci 84 (2016) 276–313.
  • Y. Orooji, Z. Nezafat, M. Nasrollahzadeh, N. Shafiei, M. Afsari, K. Pakzad, A. Razmjou, Recent advances in nanomaterial development for lithium ion-sieving technologies, Desalination 529 (2022) 115624.
  • J. Xiao, X. Nie, S. Sun, X. Song, P. Li, J. Yu, Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model, Adv Powder Technol, 26 (2015) 589–594.
  • J.-L. Xiao, S.-Y. Sun, J. Wang, P. Li, J.-G. Yu, Synthesis and adsorption properties of Li1. 6Mn1. 6O4 spinel, Ind Eng Chem Res 52 (2013) 11967–11973.
  • Q.-H. Zhang, S. Sun, S. Li, H. Jiang, J.-G. Yu, Adsorption of lithium ions on novel nanocrystal MnO2, Chem Eng Sci 62 (2007) 4869–4874.
  • Y.K. Recepoğlu, N. Kabay, İ. Yılmaz-Ipek, M. Arda, K. Yoshizuka, S. Nishihama, M. Yüksel, Equilibrium and Kinetic Studies on Lithium Adsorption from Geothermal Water by λ-MnO2, Solvent Extr Ion Exch, 35 (2017) 221–231.
  • Y.K. Recepoğlu, N. Kabay, K. Yoshizuka, S. Nishihama, İ. Yılmaz-Ipek, M. Arda, M. Yüksel, Effect of Operational Conditions on Separation of Lithium from Geothermal Water by λ-MnO2 Using Ion Exchange–Membrane Filtration Hybrid Process, Solvent Extr Ion Exch, 36 (2018) 499–512.
  • Y.K. Recepoğlu, N. Kabay, İ. Yılmaz-Ipek, M. Arda, M. Yüksel, K. Yoshizuka, S. Nishihama, Elimination of boron and lithium coexisting in geothermal water by adsorption-membrane filtration hybrid process, Sep Sci Technol, (Philadelphia) 53 (2018) 856–862.
  • G.M. Nisola, L.A. Limjuco, E.L. Vivas, C.P. Lawagon, M.J. Park, H.K. Shon, N. Mittal, I.W. Nah, H. Kim, W.-J. Chung, Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation, Chem Eng J, 280 (2015) 536–548.
  • S. Wei, Y. Wei, T. Chen, C. Liu, Y. Tang, Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water, Chem Eng J, 379 (2020) 122407.
  • G. Zhang, C. Hai, Y. Zhou, J. Zhang, Y. Liu, J. Zeng, Y. Shen, X. Li, Y. Sun, Z. Wu, Synthesis and performance estimation of a granulated PVC/PAN-lithium ion-sieve for Li+ recovery from brine, Sep Purif Technol 305 (2023) 122431.
  • J.-L. Xiao, S.-Y. Sun, X. Song, P. Li, J.-G. Yu, Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve, Chem Eng J, 279 (2015) 659–666.
  • I.A. Udoetok, A.H. Karoyo, E.E. Ubuo, E.D. Asuquo, Granulation of Lithium-Ion Sieves Using Biopolymers: A Review, Polymers (Basel) 16 (2024) 1520.
  • Y.K. Recepoğlu, B. Arabacı, A. Kahvecioğlu, A. Yüksel, Granulation of hydrometallurgically synthesized spinel lithium manganese oxide using cross-linked chitosan for lithium adsorption from water, J Chromatogr A (2024) 464712.
  • I. Langmuir, The constitution and fundamental properties of solids and liquids. Part II.-Liquids, J Franklin Inst 184 (1917) 721.
  • I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids., J Am Chem Soc 38 (1916) 2221–2295.
  • H. Freundlich, Über die adsorption in lösungen, Z Phys Chem, 57 (1907) 385–470.
  • C. Nguyen, D.D. Do, The Dubinin–Radushkevich equation and the underlying microscopic adsorption description, Carbon, 39 (2001) 1327–1336.
  • E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Clean Eng Technol 1 (2020) 100032.
  • Y.-S. Ho, Review of second-order models for adsorption systems, J Hazard Mater 136 (2006) 681–689.
  • Y.-S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods, Water Res 40 (2006) 119–125.
  • W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J Sanit Eng Div ASCE, 89 (1963) 31–60.
  • Y.K. Recepoğlu, A. Yüksel, Cross-Linked Phosphorylated Cellulose as a Potential Sorbent for Lithium Extraction from Water: Dynamic Column Studies and Modeling, ACS Omega 7 (2022) 38957–38968.
  • H. Jiang, Y. Yang, J. Yu, Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns, Sep Purif Technol 241 (2020) 116682.
  • C. Geankoplis, Transport processes and separation process principles (includes unit operations), Prentice Hall Press, 2003.
  • B. Sever, E. Altıok, Y. Abdullahi Jarma, K. Bostancı, N. Kabay, M. Arda, S. Nishihama, K. Yoshizuka, Lithium Recovery from Reverse Osmosis Concentrate of Geothermal Water by Spinel Type λ-MnO2-Batch Tests, Solvent Extr Ion Exch (2025) 1–20.
  • H. Patel, Fixed-bed column adsorption study: a comprehensive review, Appl Water Sci 9 (2019) 45.
  • S. Toprak, Ç. Öncel, S. Yılmaz, A. Baba, G.A. Koç, M.M. Demir, Lithium extraction from geothermal brine using γ-MnO2: A case study for Tuzla geothermal power plant, Heliyon 10 (2024).
  • R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4, Ind Eng Chem Res 40 (2001) 2054–2058.
  • K.S. Chung, M.A. Kim, H. Lee, Y.J. Suh, D.S. Kil, B.C. Dave, J.C. Lee, Preparation of ion-sieve type (H)[M0. 5Mn1. 5] O4 (M= Mg, Zn) and their lithium adsorption properties in seawater, Solid State Phenom 124 (2007) 739–742.
  • S.-Y. Sun, J.-L. Xiao, J. Wang, X. Song, J.-G. Yu, Synthesis and adsorption properties of Li1. 6Mn1. 6O4 by a combination of redox precipitation and solid-phase reaction, Ind Eng Chem Res 53 (2014) 15517–15521.
  • G. Cao, X. Yang, Z. Yin, Y. Lei, H. Wang, J. Li, Synthesis, adsorption properties and stability of Cr-doped lithium ion sieve in salt lake brine, Bull Chem Soc Jpn 92 (2019) 1205–1210.
There are 56 citations in total.

Details

Primary Language English
Subjects Separation Science
Journal Section Research Articles
Authors

Yaşar Kemal Recepoğlu 0000-0001-6646-0358

Aslı Yüksel Özşen 0000-0002-9273-2078

Project Number 2022IYTE-2-0009
Publication Date May 31, 2025
Submission Date January 30, 2025
Acceptance Date March 23, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Recepoğlu, Y. K., & Yüksel Özşen, A. (2025). Hydrometallurgy of lithium: Selective separation from geothermal brines using chitosan-lithium ion sieve composite. Turkish Journal of Analytical Chemistry, 7(2), 140-153. https://doi.org/10.51435/turkjac.1629713
AMA Recepoğlu YK, Yüksel Özşen A. Hydrometallurgy of lithium: Selective separation from geothermal brines using chitosan-lithium ion sieve composite. TurkJAC. May 2025;7(2):140-153. doi:10.51435/turkjac.1629713
Chicago Recepoğlu, Yaşar Kemal, and Aslı Yüksel Özşen. “Hydrometallurgy of Lithium: Selective Separation from Geothermal Brines Using Chitosan-Lithium Ion Sieve Composite”. Turkish Journal of Analytical Chemistry 7, no. 2 (May 2025): 140-53. https://doi.org/10.51435/turkjac.1629713.
EndNote Recepoğlu YK, Yüksel Özşen A (May 1, 2025) Hydrometallurgy of lithium: Selective separation from geothermal brines using chitosan-lithium ion sieve composite. Turkish Journal of Analytical Chemistry 7 2 140–153.
IEEE Y. K. Recepoğlu and A. Yüksel Özşen, “Hydrometallurgy of lithium: Selective separation from geothermal brines using chitosan-lithium ion sieve composite”, TurkJAC, vol. 7, no. 2, pp. 140–153, 2025, doi: 10.51435/turkjac.1629713.
ISNAD Recepoğlu, Yaşar Kemal - Yüksel Özşen, Aslı. “Hydrometallurgy of Lithium: Selective Separation from Geothermal Brines Using Chitosan-Lithium Ion Sieve Composite”. Turkish Journal of Analytical Chemistry 7/2 (May2025), 140-153. https://doi.org/10.51435/turkjac.1629713.
JAMA Recepoğlu YK, Yüksel Özşen A. Hydrometallurgy of lithium: Selective separation from geothermal brines using chitosan-lithium ion sieve composite. TurkJAC. 2025;7:140–153.
MLA Recepoğlu, Yaşar Kemal and Aslı Yüksel Özşen. “Hydrometallurgy of Lithium: Selective Separation from Geothermal Brines Using Chitosan-Lithium Ion Sieve Composite”. Turkish Journal of Analytical Chemistry, vol. 7, no. 2, 2025, pp. 140-53, doi:10.51435/turkjac.1629713.
Vancouver Recepoğlu YK, Yüksel Özşen A. Hydrometallurgy of lithium: Selective separation from geothermal brines using chitosan-lithium ion sieve composite. TurkJAC. 2025;7(2):140-53.