Year 2025,
Volume: 7 Issue: 1, 50 - 60, 31.03.2025
Suat İnce
,
Ismail Kunduracioglu
,
Bilal Bayram
,
Ishak Pacal
References
-
Abdmouleh, N., A. Echtioui, F. Kallel, and A. B. Hamida, 2022
Modified u-net architeture based ischemic stroke lesions segmentation.
In 2022 IEEE 21st International Conference on Sciences
and Techniques of Automatic Control and Computer Engineering
(STA), pp. 361–365.
-
Alkan, T., Y. Dokuz, A. Ecemi¸s, A. Bozda˘ g, and S. S. Durduran, 2023
Using machine learning algorithms for predicting real estate
values in tourism centers. Soft Computing 27: 2601–2613.
-
Alshawi, R., M. T. Hoque, M. M. Ferdaus, M. Abdelguerfi, K. Niles,
et al., 2023 Dual attention u-net with feature infusion: Pushing
the boundaries of multiclass defect segmentation. Unpublished .
-
Ansari, M. Y., Y. Yang, S. Balakrishnan, J. Abinahed, A. Al-Ansari,
et al., 2022 A lightweight neural network with multiscale feature
enhancement for liver ct segmentation. Scientific Reports 12:
14153.
-
Ashburner, J. and K. J. Friston, 2005 Unified segmentation. NeuroImage
26: 839–851.
-
Aslan, E., 2024 LSTM-ESA Hibrit Modeli ile MR Goruntulerinden
Beyin Tumorunun Siniflandirilmasi. Adiyaman Universitesi
Muhendislik Bilimleri Dergisi 11: 63–81.
-
Aslan, E. and Y. Ozupak, 2025 Detection of road extraction from
satellite images with deep learning method. Cluster Computing
28: 72.
-
Bal, A., M. Banerjee, P. Sharma, and M. Maitra, 2019 An efficient
wavelet and curvelet-based pet image denoising technique. Medical
& Biological Engineering & Computing 57: 2567–2598.
-
Bayram, B., I. Kunduracioglu, S. Ince, and I. Pacal, 2025 A systematic
review of deep learning in mri-based cerebral vascular
occlusion-based brain diseases. Neuroscience .
-
Burukanli, M. and N. Yumu¸sak, 2024 Tfradmcov: a robust transformer
encoder based model with adam optimizer algorithm for
covid-19 mutation prediction. Connection Science 36: 2365334.
-
Çiçek, Ö., A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
2016 3d u-net: Learning dense volumetric segmentation
from sparse annotation. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 424–432.
-
Celik, M., A. S. Dokuz, A. Ecemis, and E. Erdogmus, 2025 Discovering
and ranking urban social clusters out of streaming social
media datasets. Concurrency and Computation: Practice and
Experience 37: e8314.
-
Chen, G., Z. Li, J.Wang, J.Wang, S. Du, et al., 2023 An improved 3d
kiu-net for segmentation of liver tumor. Computers in Biology
and Medicine 160: 107006.
-
Chen, J., Y. Lu, Q. Yu, X. Luo, E. Adeli, et al., 2021 Transunet: Transformers
make strong encoders for medical image segmentation.
Unpublished .
-
Chen, L., P. Bentley, and D. Rueckert, 2017 Fully automatic acute
ischemic lesion segmentation in dwi using convolutional neural
networks. NeuroImage: Clinical 15: 633–643.
-
Clèrigues, A., S. Valverde, J. Bernal, J. Freixenet, A. Oliver, et al.,
2020 Acute and sub-acute stroke lesion segmentation from multimodal
mri. Computer Methods and Programs in Biomedicine
194: 105521.
-
Dice, L., 1945 Measures of the amount of ecologic homeostasis.
Science 113: 297–302.
-
Ding, Y., W. Zheng, J. Geng, Z. Qin, K.-K. R. Choo, et al., 2022
Mvfusfra: A multi-view dynamic fusion framework for multimodal
brain tumor segmentation. IEEE Journal of Biomedical
and Health Informatics 26: 1570–1581.
-
Dosovitskiy, A., L. Beyer, A. Kolesnikov, D.Weissenborn, X. Zhai,
et al., 2020 An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929 .
-
Edlow, B. L., S. Hurwitz, and J. A. Edlow, 2017 Diagnosis of dwinegative
acute ischemic stroke. Neurology 89: 256–262.
-
Everingham, M. and et al., 2010 The pascal visual object classes
(voc) challenge. International Journal of Computer Vision 88:
303–338.
-
Goel, A., A. K. Goel, and A. Kumar, 2023 The role of artificial neural
network and machine learning in utilizing spatial information.
Spatial Information Research 31: 275–285.
-
Hernandez Petzsche, M. R., E. de la Rosa, U. Hanning, R. Wiest,
W. Valenzuela, et al., 2022 Isles 2022: A multi-center magnetic
resonance imaging stroke lesion segmentation dataset. Scientific
Data 9: 762.
-
Hossain, M. S., J. M. Betts, and A. P. Paplinski, 2021 Dual focal
loss to address class imbalance in semantic segmentation. Neurocomputing
462: 69–87.
-
Huang, B., G. Tan, H. Dou, Z. Cui, Y. Song, et al., 2022 Mutual gain
adaptive network for segmenting brain stroke lesions. Applied
Soft Computing 129: 109568.
-
Jauch, E. C., J. L. Saver, H. P. Adams, A. Bruno, J. J. B. Connors,
et al., 2013 Guidelines for the early management of patients with
acute ischemic stroke. Stroke 44: 870–947.
-
Johnson, L., R. Newman-Norlund, A. Teghipco, C. Rorden,
L. Bonilha, et al., 2024 Progressive lesion necrosis is related to
increasing aphasia severity in chronic stroke. NeuroImage: Clinical
41: 103566.
-
Kamnitsas, K., C. Ledig, V. F. J. Newcombe, J. P. Simpson, A. D.
Kane, et al., 2017 Efficient multi-scale 3d cnn with fully connected
crf for accurate brain lesion segmentation. Medical Image
Analysis 36: 61–78.
-
Karani, N., E. Erdil, K. Chaitanya, and E. Konukoglu, 2021 Testtime
adaptable neural networks for robust medical image segmentation.
Medical Image Analysis 68: 101907.
-
Kench, S. and S. J. Cooper, 2021 Generating 3d structures from a 2d
slice with gan-based dimensionality expansion. Nature Machine
Intelligence .
-
Kilicarslan, S. and I. Pacal, 2023 Domates yapraklarıinda
hastalık tespiti için transfer ogrenme metotlarınn kullanılması.
Mühendislik Bilimleri ve Ara¸stırmaları Dergisi 5: 215–222.
-
Kim, Y.-C., J.-E. Lee, I. Yu, H.-N. Song, I.-Y. Baek, et al., 2019 Evaluation
of diffusion lesion volume measurements in acute ischemic
stroke using encoder-decoder convolutional network. Stroke 50:
1444–1451.
-
Kumar, A., P. Chauda, and A. Devrari, 2021 Machine learning
approach for brain tumor detection and segmentation. International
Journal of Organizational and Collective Intelligence 11:
68–84.
-
Kunduracioglu, I., 2024a Cnn models approaches for robust classification
of apple diseases. Computer and Decision Making: An
International Journal 1: 235–251.
-
Kunduracioglu, I., 2024b Utilizing resnet architectures for identification
of tomato diseases. Journal of Intelligent Decision Making
and Information Science 1: 104–119.
-
Kunduracioglu, I. and I. Pacal, 2024 Advancements in deep learning
for accurate classification of grape leaves and diagnosis of
grape diseases. Journal of Plant Diseases and Protection .
-
Lee, K.-Y., C.-C. Liu, D. Y.-T. Chen, C.-L.Weng, H.-W. Chiu, et al.,
2023 Automatic detection and vascular territory classification of
hyperacute staged ischemic stroke on diffusion weighted image
using convolutional neural networks. Scientific Reports 13: 404.
-
Li, T., X. An, Y. Di, C. Gui, Y. Yan, et al., 2024 Srsnet: Accurate segmentation of stroke lesions by a two-stage segmentation framework with asymmetry information. Expert Systems with
Applications 254: 124329.
-
Li, Z., D. Li, C. Xu, W. Wang, Q. Hong, et al., 2022 Tfcns: A cnntransformer
hybrid network for medical image segmentation. In Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), pp. 781–
792.
-
Liu, Y., W. Cui, Q. Ha, X. Xiong, X. Zeng, et al., 2021 Knowledge
transfer between brain lesion segmentation tasks with increased
model capacity. Computerized Medical Imaging and Graphics
88: 101842.
-
Maier, O., B. H. Menze, J. von der Gablentz, L. Häni, M. P. Heinrich,
et al., 2017 Isles 2015 - a public evaluation benchmark for ischemic
stroke lesion segmentation from multispectral mri. Medical
Image Analysis 35: 250–269.
-
Moon, H. S., L. Heffron, A. Mahzarnia, B. Obeng-Gyasi, M. Holbrook,
et al., 2022 Automated multimodal segmentation of acute
ischemic stroke lesions on clinical mr images. Magnetic Resonance
Imaging 92: 45–57.
-
Nielsen, A., M. B. Hansen, A. Tietze, and K. Mouridsen, 2018
Prediction of tissue outcome and assessment of treatment effect
in acute ischemic stroke using deep learning. Stroke 49: 1394–
1401.
-
Oktay, O., J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, et al.,
2018 Attention u-net: Learning where to look for the pancreas.
Medical Image Analysis 53: 197–207.
-
Ozdemir, B. and I. Pacal, 2025 An innovative deep learning framework
for skin cancer detection employing convnextv2 and focal
self-attention mechanisms. Results in Engineering 25: 103692.
-
Pacal, I., 2025 Investigating deep learning approaches for cervical
cancer diagnosis: a focus on modern image-based models.
European Journal of Gynaecological Oncology 46: 125–141.
-
Pacal, I., I. Kunduracioglu, M. H. Alma, M. Deveci, S. Kadry, et al.,
2024 A systematic review of deep learning techniques for plant
diseases. Artificial Intelligence Review 57: 304.
-
Paçal, I. and I. Kunduracıo˘ glu, 2024 Data-efficient vision transformer
models for robust classification of sugarcane. Journal of
Soft Computing and Decision Analytics 2: 258–271.
-
Ronneberger, O., P. Fischer, and T. Brox, 2015 U-net: Convolutional
networks for biomedical image segmentation. In Proceedings
of the International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pp. 234–241.
-
Roth, G. A., D. Abate, K. H. Abate, S. M. Abay, C. Abbafati, et al.,
2018 Global, regional, and national age-sex-specific mortality for
282 causes of death in 195 countries and territories, 1980-2017: a
systematic analysis for the global burden of disease study 2017.
The Lancet 392: 1736–1788.
-
Sacco, R. L., S. E. Kasner, J. P. Broderick, L. R. Caplan, J. J. B.
Connors, et al., 2013 An updated definition of stroke for the 21st
century. Stroke 44: 2064–2089.
-
Salvi, M., U. R. Acharya, F. Molinari, and K. M. Meiburger, 2021
The impact of pre- and post-image processing techniques on
deep learning frameworks: A comprehensive review for digital
pathology image analysis. Computers in Biology and Medicine
128: 104129.
-
Sarvamangala, D. R. and R. V. Kulkarni, 2022 Convolutional neural
networks in medical image understanding: a survey. Evolutionary
Intelligence 15: 1–22.
-
Saver, J. L., 2006 Time is brainâ˘Aˇ Tquantified. Stroke 37: 263–266.
-
Schlemper, J., O. Oktay, M. Schaap, M. Heinrich, B. Kainz, et al.,
2019 Attention gated networks: Learning to leverage salient
regions in medical images. Medical Image Analysis 53: 197–207.
-
The GBD, . L. R. O. S. C., 2018 Global, regional, and country-specific
lifetime risks of stroke, 1990 and 2016. New England Journal of
Medicine 379: 2429–2437.
-
Tomita, N., S. Jiang, M. E. Maeder, and S. Hassanpour, 2020 Automatic
post-stroke lesion segmentation on mr images using 3d
residual convolutional neural network. NeuroImage: Clinical
27: 102276.
-
Tursynova, A. and B. Omarov, 2021 3d u-net for brain stroke lesion
segmentation on isles 2018 dataset. In 2021 16th International
Conference on Electronics Computer and Computation (ICECCO), pp.
1–4.
-
van Rijsbergen, C. J., 1979 Information Retrieval. Butterworth.
Verclytte, S., R. Gnanih, S. Verdun, T. Feiweier, B. Clifford, et al.,
2023 Ultrafast mri using deep learning echoplanar imaging for a
comprehensive assessment of acute ischemic stroke. European
Radiology 33: 3715–3725.
-
Wang, G., T. Song, Q. Dong, M. Cui, N. Huang, et al., 2020 Automatic
ischemic stroke lesion segmentation from computed
tomography perfusion images by image synthesis and attentionbased
deep neural networks. Medical Image Analysis 65: 101787.
-
Wang, Z., B. Wang, C. Zhang, and Y. Liu, 2023 Defense against
adversarial patch attacks for aerial image semantic segmentation
by robust feature extraction. Remote Sensing 15: 1690.
-
Wong, K. K., J. S. Cummock, G. Li, R. Ghosh, P. Xu, et al., 2022
Automatic segmentation in acute ischemic stroke: Prognostic
significance of topological stroke volumes on stroke outcome.
Stroke 53: 2896–2905.
-
Woo, S., J. Park, J.-Y. Lee, and I. S. Kweon, 2018 Cbam: Convolutional
block attention module. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 3–19.
-
Wu, Z., X. Zhang, F. Li, S. Wang, L. Huang, et al., 2023 W-net: A
boundary-enhanced segmentation network for stroke lesions.
Expert Systems with Applications 230: 120637.
-
Wu, Z., X. Zhang, F. Li, S.Wang, and J. Li, 2024 A feature-enhanced
network for stroke lesion segmentation from brain mri images.
Computers in Biology and Medicine 174: 108326.
-
Xiao, X., S. Lian, Z. Luo, and S. Li, 2018 Weighted res-unet for
high-quality retina vessel segmentation. In 2018 9th International
Conference on Information Technology in Medicine and Education
(ITME), pp. 327–331.
-
Xie, Y., J. Zhang, C. Shen, and Y. Xia, 2021 Cotr: Efficiently bridging
cnn and transformer for 3d medical image segmentation. In Proceedings
of the International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), pp. 171–180.
-
Yalçın, S. and H. Vural, 2022 Brain stroke classification and segmentation
using encoder-decoder based deep convolutional neural
networks. Computers in Biology and Medicine 149: 105941.
-
Yang, H., W. Huang, K. Qi, C. Li, X. Liu, et al., 2019 Clci-net:
Cross-level fusion and context inference networks for lesion
segmentation of chronic stroke. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 266–274.
-
Yuan, F., Z. Zhang, and Z. Fang, 2023 An effective cnn and transformer
complementary network for medical image segmentation.
Pattern Recognition 136: 109228.
-
Zhang, L., R. Song, Y. Wang, C. Zhu, J. Liu, et al., 2020 Ischemic
stroke lesion segmentation using multi-plane information fusion.
IEEE Access 8: 45715–45725.
-
Zhang, Y. Q., A. F. Liu, F. Y. Man, Y. Y. Zhang, C. Li, et al., 2022 Mri
radiomic features-based machine learning approach to classify
ischemic stroke onset time. Journal of Neurology pp. 1–11.
-
Zhao, B., S. Ding, H. Wu, G. Liu, C. Cao, et al., 2019 Automatic
acute ischemic stroke lesion segmentation using semisupervised
learning. Neurocomputing .
-
Zhou, Z., M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang,
2018 Unet++: A nested u-net architecture for medical image segmentation.
In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 3–11.
-
Zhou, Z., M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, 2020
Unet++: Redesigning skip connections to exploit multiscale
features in image segmentation. IEEE Transactions on Medical
Imaging 39: 1856–1867.
-
Zhuang, X. and J. Shen, 2016 Multi-scale patch and multi-modality
atlases for whole heart segmentation of mri. Medical Image
Analysis 31: 77–87.
U-Net-Based Models for Precise Brain Stroke Segmentation
Year 2025,
Volume: 7 Issue: 1, 50 - 60, 31.03.2025
Suat İnce
,
Ismail Kunduracioglu
,
Bilal Bayram
,
Ishak Pacal
Abstract
Ischemic stroke, a widespread neurological condition with a substantial mortality rate, necessitates accurate delineation of affected regions to enable proper evaluation of patient outcomes. However, such precision is complicated by factors like variable lesion sizes, noise interference, and the overlapping intensity characteristics of different tissue structures. This research addresses these issues by focusing on the segmentation of Diffusion Weighted Imaging (DWI) scans from the ISLES 2022 dataset and conducting a comparative assessment of three advanced deep learning models: the U-Net framework, its U-Net++ extension, and the Attention U-Net. Applying consistent evaluation criteria specifically, Intersection over Union (IoU), Dice Similarity Coefficient (DSC), and recall the Attention U-Net emerged as the superior choice, establishing record high values for IoU (0.8223) and DSC (0.9021). Although U-Net achieved commendable recall, its performance lagged behind that of U-Net++ in other critical measures. These findings underscore the value of integrating attention mechanisms to achieve more precise segmentation. Moreover, they highlight that the Attention U-Net model is a reliable candidate for medical imaging tasks where both accuracy and efficiency hold paramount importance, while U Net and U Net++ may still prove suitable in certain niche scenarios.
References
-
Abdmouleh, N., A. Echtioui, F. Kallel, and A. B. Hamida, 2022
Modified u-net architeture based ischemic stroke lesions segmentation.
In 2022 IEEE 21st International Conference on Sciences
and Techniques of Automatic Control and Computer Engineering
(STA), pp. 361–365.
-
Alkan, T., Y. Dokuz, A. Ecemi¸s, A. Bozda˘ g, and S. S. Durduran, 2023
Using machine learning algorithms for predicting real estate
values in tourism centers. Soft Computing 27: 2601–2613.
-
Alshawi, R., M. T. Hoque, M. M. Ferdaus, M. Abdelguerfi, K. Niles,
et al., 2023 Dual attention u-net with feature infusion: Pushing
the boundaries of multiclass defect segmentation. Unpublished .
-
Ansari, M. Y., Y. Yang, S. Balakrishnan, J. Abinahed, A. Al-Ansari,
et al., 2022 A lightweight neural network with multiscale feature
enhancement for liver ct segmentation. Scientific Reports 12:
14153.
-
Ashburner, J. and K. J. Friston, 2005 Unified segmentation. NeuroImage
26: 839–851.
-
Aslan, E., 2024 LSTM-ESA Hibrit Modeli ile MR Goruntulerinden
Beyin Tumorunun Siniflandirilmasi. Adiyaman Universitesi
Muhendislik Bilimleri Dergisi 11: 63–81.
-
Aslan, E. and Y. Ozupak, 2025 Detection of road extraction from
satellite images with deep learning method. Cluster Computing
28: 72.
-
Bal, A., M. Banerjee, P. Sharma, and M. Maitra, 2019 An efficient
wavelet and curvelet-based pet image denoising technique. Medical
& Biological Engineering & Computing 57: 2567–2598.
-
Bayram, B., I. Kunduracioglu, S. Ince, and I. Pacal, 2025 A systematic
review of deep learning in mri-based cerebral vascular
occlusion-based brain diseases. Neuroscience .
-
Burukanli, M. and N. Yumu¸sak, 2024 Tfradmcov: a robust transformer
encoder based model with adam optimizer algorithm for
covid-19 mutation prediction. Connection Science 36: 2365334.
-
Çiçek, Ö., A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
2016 3d u-net: Learning dense volumetric segmentation
from sparse annotation. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 424–432.
-
Celik, M., A. S. Dokuz, A. Ecemis, and E. Erdogmus, 2025 Discovering
and ranking urban social clusters out of streaming social
media datasets. Concurrency and Computation: Practice and
Experience 37: e8314.
-
Chen, G., Z. Li, J.Wang, J.Wang, S. Du, et al., 2023 An improved 3d
kiu-net for segmentation of liver tumor. Computers in Biology
and Medicine 160: 107006.
-
Chen, J., Y. Lu, Q. Yu, X. Luo, E. Adeli, et al., 2021 Transunet: Transformers
make strong encoders for medical image segmentation.
Unpublished .
-
Chen, L., P. Bentley, and D. Rueckert, 2017 Fully automatic acute
ischemic lesion segmentation in dwi using convolutional neural
networks. NeuroImage: Clinical 15: 633–643.
-
Clèrigues, A., S. Valverde, J. Bernal, J. Freixenet, A. Oliver, et al.,
2020 Acute and sub-acute stroke lesion segmentation from multimodal
mri. Computer Methods and Programs in Biomedicine
194: 105521.
-
Dice, L., 1945 Measures of the amount of ecologic homeostasis.
Science 113: 297–302.
-
Ding, Y., W. Zheng, J. Geng, Z. Qin, K.-K. R. Choo, et al., 2022
Mvfusfra: A multi-view dynamic fusion framework for multimodal
brain tumor segmentation. IEEE Journal of Biomedical
and Health Informatics 26: 1570–1581.
-
Dosovitskiy, A., L. Beyer, A. Kolesnikov, D.Weissenborn, X. Zhai,
et al., 2020 An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929 .
-
Edlow, B. L., S. Hurwitz, and J. A. Edlow, 2017 Diagnosis of dwinegative
acute ischemic stroke. Neurology 89: 256–262.
-
Everingham, M. and et al., 2010 The pascal visual object classes
(voc) challenge. International Journal of Computer Vision 88:
303–338.
-
Goel, A., A. K. Goel, and A. Kumar, 2023 The role of artificial neural
network and machine learning in utilizing spatial information.
Spatial Information Research 31: 275–285.
-
Hernandez Petzsche, M. R., E. de la Rosa, U. Hanning, R. Wiest,
W. Valenzuela, et al., 2022 Isles 2022: A multi-center magnetic
resonance imaging stroke lesion segmentation dataset. Scientific
Data 9: 762.
-
Hossain, M. S., J. M. Betts, and A. P. Paplinski, 2021 Dual focal
loss to address class imbalance in semantic segmentation. Neurocomputing
462: 69–87.
-
Huang, B., G. Tan, H. Dou, Z. Cui, Y. Song, et al., 2022 Mutual gain
adaptive network for segmenting brain stroke lesions. Applied
Soft Computing 129: 109568.
-
Jauch, E. C., J. L. Saver, H. P. Adams, A. Bruno, J. J. B. Connors,
et al., 2013 Guidelines for the early management of patients with
acute ischemic stroke. Stroke 44: 870–947.
-
Johnson, L., R. Newman-Norlund, A. Teghipco, C. Rorden,
L. Bonilha, et al., 2024 Progressive lesion necrosis is related to
increasing aphasia severity in chronic stroke. NeuroImage: Clinical
41: 103566.
-
Kamnitsas, K., C. Ledig, V. F. J. Newcombe, J. P. Simpson, A. D.
Kane, et al., 2017 Efficient multi-scale 3d cnn with fully connected
crf for accurate brain lesion segmentation. Medical Image
Analysis 36: 61–78.
-
Karani, N., E. Erdil, K. Chaitanya, and E. Konukoglu, 2021 Testtime
adaptable neural networks for robust medical image segmentation.
Medical Image Analysis 68: 101907.
-
Kench, S. and S. J. Cooper, 2021 Generating 3d structures from a 2d
slice with gan-based dimensionality expansion. Nature Machine
Intelligence .
-
Kilicarslan, S. and I. Pacal, 2023 Domates yapraklarıinda
hastalık tespiti için transfer ogrenme metotlarınn kullanılması.
Mühendislik Bilimleri ve Ara¸stırmaları Dergisi 5: 215–222.
-
Kim, Y.-C., J.-E. Lee, I. Yu, H.-N. Song, I.-Y. Baek, et al., 2019 Evaluation
of diffusion lesion volume measurements in acute ischemic
stroke using encoder-decoder convolutional network. Stroke 50:
1444–1451.
-
Kumar, A., P. Chauda, and A. Devrari, 2021 Machine learning
approach for brain tumor detection and segmentation. International
Journal of Organizational and Collective Intelligence 11:
68–84.
-
Kunduracioglu, I., 2024a Cnn models approaches for robust classification
of apple diseases. Computer and Decision Making: An
International Journal 1: 235–251.
-
Kunduracioglu, I., 2024b Utilizing resnet architectures for identification
of tomato diseases. Journal of Intelligent Decision Making
and Information Science 1: 104–119.
-
Kunduracioglu, I. and I. Pacal, 2024 Advancements in deep learning
for accurate classification of grape leaves and diagnosis of
grape diseases. Journal of Plant Diseases and Protection .
-
Lee, K.-Y., C.-C. Liu, D. Y.-T. Chen, C.-L.Weng, H.-W. Chiu, et al.,
2023 Automatic detection and vascular territory classification of
hyperacute staged ischemic stroke on diffusion weighted image
using convolutional neural networks. Scientific Reports 13: 404.
-
Li, T., X. An, Y. Di, C. Gui, Y. Yan, et al., 2024 Srsnet: Accurate segmentation of stroke lesions by a two-stage segmentation framework with asymmetry information. Expert Systems with
Applications 254: 124329.
-
Li, Z., D. Li, C. Xu, W. Wang, Q. Hong, et al., 2022 Tfcns: A cnntransformer
hybrid network for medical image segmentation. In Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), pp. 781–
792.
-
Liu, Y., W. Cui, Q. Ha, X. Xiong, X. Zeng, et al., 2021 Knowledge
transfer between brain lesion segmentation tasks with increased
model capacity. Computerized Medical Imaging and Graphics
88: 101842.
-
Maier, O., B. H. Menze, J. von der Gablentz, L. Häni, M. P. Heinrich,
et al., 2017 Isles 2015 - a public evaluation benchmark for ischemic
stroke lesion segmentation from multispectral mri. Medical
Image Analysis 35: 250–269.
-
Moon, H. S., L. Heffron, A. Mahzarnia, B. Obeng-Gyasi, M. Holbrook,
et al., 2022 Automated multimodal segmentation of acute
ischemic stroke lesions on clinical mr images. Magnetic Resonance
Imaging 92: 45–57.
-
Nielsen, A., M. B. Hansen, A. Tietze, and K. Mouridsen, 2018
Prediction of tissue outcome and assessment of treatment effect
in acute ischemic stroke using deep learning. Stroke 49: 1394–
1401.
-
Oktay, O., J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, et al.,
2018 Attention u-net: Learning where to look for the pancreas.
Medical Image Analysis 53: 197–207.
-
Ozdemir, B. and I. Pacal, 2025 An innovative deep learning framework
for skin cancer detection employing convnextv2 and focal
self-attention mechanisms. Results in Engineering 25: 103692.
-
Pacal, I., 2025 Investigating deep learning approaches for cervical
cancer diagnosis: a focus on modern image-based models.
European Journal of Gynaecological Oncology 46: 125–141.
-
Pacal, I., I. Kunduracioglu, M. H. Alma, M. Deveci, S. Kadry, et al.,
2024 A systematic review of deep learning techniques for plant
diseases. Artificial Intelligence Review 57: 304.
-
Paçal, I. and I. Kunduracıo˘ glu, 2024 Data-efficient vision transformer
models for robust classification of sugarcane. Journal of
Soft Computing and Decision Analytics 2: 258–271.
-
Ronneberger, O., P. Fischer, and T. Brox, 2015 U-net: Convolutional
networks for biomedical image segmentation. In Proceedings
of the International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pp. 234–241.
-
Roth, G. A., D. Abate, K. H. Abate, S. M. Abay, C. Abbafati, et al.,
2018 Global, regional, and national age-sex-specific mortality for
282 causes of death in 195 countries and territories, 1980-2017: a
systematic analysis for the global burden of disease study 2017.
The Lancet 392: 1736–1788.
-
Sacco, R. L., S. E. Kasner, J. P. Broderick, L. R. Caplan, J. J. B.
Connors, et al., 2013 An updated definition of stroke for the 21st
century. Stroke 44: 2064–2089.
-
Salvi, M., U. R. Acharya, F. Molinari, and K. M. Meiburger, 2021
The impact of pre- and post-image processing techniques on
deep learning frameworks: A comprehensive review for digital
pathology image analysis. Computers in Biology and Medicine
128: 104129.
-
Sarvamangala, D. R. and R. V. Kulkarni, 2022 Convolutional neural
networks in medical image understanding: a survey. Evolutionary
Intelligence 15: 1–22.
-
Saver, J. L., 2006 Time is brainâ˘Aˇ Tquantified. Stroke 37: 263–266.
-
Schlemper, J., O. Oktay, M. Schaap, M. Heinrich, B. Kainz, et al.,
2019 Attention gated networks: Learning to leverage salient
regions in medical images. Medical Image Analysis 53: 197–207.
-
The GBD, . L. R. O. S. C., 2018 Global, regional, and country-specific
lifetime risks of stroke, 1990 and 2016. New England Journal of
Medicine 379: 2429–2437.
-
Tomita, N., S. Jiang, M. E. Maeder, and S. Hassanpour, 2020 Automatic
post-stroke lesion segmentation on mr images using 3d
residual convolutional neural network. NeuroImage: Clinical
27: 102276.
-
Tursynova, A. and B. Omarov, 2021 3d u-net for brain stroke lesion
segmentation on isles 2018 dataset. In 2021 16th International
Conference on Electronics Computer and Computation (ICECCO), pp.
1–4.
-
van Rijsbergen, C. J., 1979 Information Retrieval. Butterworth.
Verclytte, S., R. Gnanih, S. Verdun, T. Feiweier, B. Clifford, et al.,
2023 Ultrafast mri using deep learning echoplanar imaging for a
comprehensive assessment of acute ischemic stroke. European
Radiology 33: 3715–3725.
-
Wang, G., T. Song, Q. Dong, M. Cui, N. Huang, et al., 2020 Automatic
ischemic stroke lesion segmentation from computed
tomography perfusion images by image synthesis and attentionbased
deep neural networks. Medical Image Analysis 65: 101787.
-
Wang, Z., B. Wang, C. Zhang, and Y. Liu, 2023 Defense against
adversarial patch attacks for aerial image semantic segmentation
by robust feature extraction. Remote Sensing 15: 1690.
-
Wong, K. K., J. S. Cummock, G. Li, R. Ghosh, P. Xu, et al., 2022
Automatic segmentation in acute ischemic stroke: Prognostic
significance of topological stroke volumes on stroke outcome.
Stroke 53: 2896–2905.
-
Woo, S., J. Park, J.-Y. Lee, and I. S. Kweon, 2018 Cbam: Convolutional
block attention module. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 3–19.
-
Wu, Z., X. Zhang, F. Li, S. Wang, L. Huang, et al., 2023 W-net: A
boundary-enhanced segmentation network for stroke lesions.
Expert Systems with Applications 230: 120637.
-
Wu, Z., X. Zhang, F. Li, S.Wang, and J. Li, 2024 A feature-enhanced
network for stroke lesion segmentation from brain mri images.
Computers in Biology and Medicine 174: 108326.
-
Xiao, X., S. Lian, Z. Luo, and S. Li, 2018 Weighted res-unet for
high-quality retina vessel segmentation. In 2018 9th International
Conference on Information Technology in Medicine and Education
(ITME), pp. 327–331.
-
Xie, Y., J. Zhang, C. Shen, and Y. Xia, 2021 Cotr: Efficiently bridging
cnn and transformer for 3d medical image segmentation. In Proceedings
of the International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), pp. 171–180.
-
Yalçın, S. and H. Vural, 2022 Brain stroke classification and segmentation
using encoder-decoder based deep convolutional neural
networks. Computers in Biology and Medicine 149: 105941.
-
Yang, H., W. Huang, K. Qi, C. Li, X. Liu, et al., 2019 Clci-net:
Cross-level fusion and context inference networks for lesion
segmentation of chronic stroke. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 266–274.
-
Yuan, F., Z. Zhang, and Z. Fang, 2023 An effective cnn and transformer
complementary network for medical image segmentation.
Pattern Recognition 136: 109228.
-
Zhang, L., R. Song, Y. Wang, C. Zhu, J. Liu, et al., 2020 Ischemic
stroke lesion segmentation using multi-plane information fusion.
IEEE Access 8: 45715–45725.
-
Zhang, Y. Q., A. F. Liu, F. Y. Man, Y. Y. Zhang, C. Li, et al., 2022 Mri
radiomic features-based machine learning approach to classify
ischemic stroke onset time. Journal of Neurology pp. 1–11.
-
Zhao, B., S. Ding, H. Wu, G. Liu, C. Cao, et al., 2019 Automatic
acute ischemic stroke lesion segmentation using semisupervised
learning. Neurocomputing .
-
Zhou, Z., M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang,
2018 Unet++: A nested u-net architecture for medical image segmentation.
In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 3–11.
-
Zhou, Z., M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, 2020
Unet++: Redesigning skip connections to exploit multiscale
features in image segmentation. IEEE Transactions on Medical
Imaging 39: 1856–1867.
-
Zhuang, X. and J. Shen, 2016 Multi-scale patch and multi-modality
atlases for whole heart segmentation of mri. Medical Image
Analysis 31: 77–87.