Clinical Research
BibTex RIS Cite

Saf Buzlu Cam ve Subsolid Nodüllerin Kanser Riskinin Değerlendirilmesinde Malignite Risk Skorlarının Rolü

Year 2025, Volume: 35 Issue: 3, 535 - 543, 30.06.2025
https://doi.org/10.54005/geneltip.1665515

Abstract

Amaç: Bu çalışmanın amacı, soliter pulmoner nodüllerin (SPN) malignite risklerini belirlemede kullanılan risk skorlarının, pür buzlu cam (pGGNs) ve kısmi-solid nodüllerde (PSNs) etkinliğini değerlendirmek.
Gereç ve Yöntemler: Ocak 2021 ile Haziran 2024 tarihleri arasında SPN nedeniyle uniportal video torakoskopik segmentektomi uygulanan 75 hasta retrospektif olarak incelendi. pGGNs ve PSNs nedeniyle segmentektomi uygulanan 32 hasta çalışmaya dahil edildi. Demografik verileri, tütün kullanımları, nodul özellikleri ve uygulanan cerrahi tedaviye ait veriler kayıt edildi. Nodullerin risk skorları Mayo Clinic, Brock, Bayesian ve Herder Modelleri kullanılarak ayrı ayrı belirlendi. Histopatolojik sonuçlarla karşılaştırıldı.
Bulgular: Çalışmaya dahil edilen hastaların yaş ortalaması 62,89±10,53(35-80) ve erkek kadın oranı 17/15 idi. Sigara kullanım oranı %50’di. Malignite özgeçmişi 8 hastada, akciğer kanseri soygeçmişi 3 hastada mevcuttu. İmmun-yanıtlı hastalık oranı %43,8 idi. Radyolojik olarak ortalama 13,04±5,14(6-26) mm olan nodüllerin %59,4(n=19)’ü pGGNs, %40,6(n=13) PSNs lezyonlardı. Nodullerin risk skorlamasında Mayo Clinic Modeline göre ortanca değer %11,95 (IQR: 15,7), Brock Modeline göre ortanca değer %9,77 (IQR: 18,15), Bayesian Modeline göre ortanca değer %13 (IQR: 36,25) ve Herder Modeline göre ortanca değer %12,1 (IQR: 14,58) idi. Malignite oranı %93,8 olan çalışmada en sık tespit edilen histopatolojik subtipler Invazif Adenokarsinom (%37,5) ve Insitu Adenokarsinomdu (28,1). Ortanca tüp çekme süresi 2 (IQR:1), hastanede yatış süresi 3 (IQR:2) gündü. Mortalite görülmedi.
Sonuçlar: Çalışmamız, SPN’lerde malignite riskini belirlemede yaygın olarak kullanılan modellerin, pGGNs ve PSNs’de gelişen erken evre akciğer adenokanser riskini tespit etmede, yetersiz olduğunu göstermiştir. Riskleri belirlemede, immün-yanıtlı hastalıklar gibi, hastaya ait farklı faktörlerinde değerlendirmeye dahil edilerek multivaryans analizlerin daha değerli olacağı görüşüne varıldı.

Ethical Statement

Bu çalışma Ondokuz Mayıs Üniversitesi Etik Kurulu tarafından onaylanmıştır (Onay No: 2025/66 , tarih: 12 Şubat 2025). Yazarların beyan edecekleri herhangi bir çıkar çatışması bulunmamaktadır.

Supporting Institution

Yok.

Thanks

Bu çalışmanın bir versiyonu 2-3 Kasım 2024 tarihlerinde Konya'da düzenlenen Türk Toraks Derneği 2024 Güz Sempozyumu'nda sözlü bildiri olarak sunulmuştur.

References

  • 1. Saji H, Okada M, Tsuboi M, Nakajima R, Suzuki K, Aokage K, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomized, controlled, non-inferiority trial. Lancet. 2022;399(10335):1607-17.
  • 2. Miyoshi T, Ito H, Wakabayashi M, Hashimoto T, Sekino Y, Suzuki K, et al. Risk factors for loss of pulmonary function after wedge resection for peripheral ground-glass opacity dominant lung cancer. Eur J Cardiothorac Surg. 2023;64(6).
  • 3. Piskorski L, Debic M, von Stackelberg O, Schlamp K, Welzel L, Weinheimer O, et al. Malignancy risk stratification for pulmonary nodules: comparing a deep learning approach to multiparametric statistical models in different disease groups. Eur Radiol. 2025.
  • 4. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC, Mayo JR, et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology. 2017;284(1):228-43.
  • 5. Zhong D, Sidorenkov G, Jacobs C, de Jong PA, Gietema HA, Stadhouders R, et al. Lung Nodule Management in Low-Dose CT Screening for Lung Cancer: Lessons from the NELSON Trial. Radiology. 2024;313(1):e240535.
  • 6. Gould MK, Donington J, Lynch WR, Mazzone PJ, Midthun DE, Naidich DP, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e93S-e120S.
  • 7. Baldwin DR, Callister ME, Graham R, Gleeson F. Pulmonary nodules again? The 2015 British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Clin Radiol. 2016;71(1):18-22.
  • 8. Heideman BE, Kammer MN, Paez R, Swanson T, Godfrey CM, Low SW, et al. The Lung Cancer Prediction Model "Stress Test": Assessment of Models' Performance in a High-Risk Prospective Pulmonary Nodule Cohort. CHEST Pulm. 2024;2(1): 100033.
  • 9. White CS, Dharaiya E, Campbell E, Boroczky L. The Vancouver Lung Cancer Risk Prediction Model: Assessment by Using a Subset of the National Lung Screening Trial Cohort. Radiology. 2017;283(1):264-72.
  • 10. Perandini S, Soardi GA, Motton M, Rossi A, Signorini M, Montemezzi S. Solid pulmonary nodule risk assessment and decision analysis: comparison of four prediction models in 285 cases. Eur Radiol. 2016;26(9):3071-6.
  • 11. Winkler Wille MM, van Riel SJ, Saghir Z, Dirksen A, Pedersen JH, Jacobs C, et al. Predictive Accuracy of the PanCan Lung Cancer Risk Prediction Model -External Validation based on CT from the Danish Lung Cancer Screening Trial. Eur Radiol. 2015;25(10):3093-9.
  • 12. Altorki N, Wang X, Kozono D, Watt C, Landrenau R, Wigle D, et al. Lobar or Sublobar Resection for Peripheral Stage IA Non-Small-Cell Lung Cancer. N Engl J Med. 2023;388(6):489-98.
  • 13. Al-Ameri A, Malhotra P, Thygesen H, Plant PK, Vaidyanathan S, Karthik S, et al. Risk of malignancy in pulmonary nodules: A validation study of four prediction models. Lung Cancer. 2015;89(1):27-30.
  • 14. Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, Edell ES. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med. 1997;157(8):849-55.
  • 15. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369(10):910-9.
  • 16. Dewan NA, Shehan CJ, Reeb SD, Gobar LS, Scott WJ, Ryschon K. Likelihood of malignancy in a solitary pulmonary nodule: comparison of Bayesian analysis and results of FDG-PET scan. Chest. 1997;112(2):416-22.
  • 17. Herder GJ, van Tinteren H, Golding RP, Kostense PJ, Comans EF, Smit EF, et al. Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography. Chest. 2005;128(4):2490-6.
  • 18. Chen S, Lin W, Liu W, Zou L, Chen Y, Lu F. Pulmonary nodule malignancy probability: a meta-analysis of the Brock model. Clinical Radiology. 2025;82:106788.
  • 19. Papalampidou A, Papoutsi E, Katsaounou P. Pulmonary nodule malignancy probability: a diagnostic accuracy meta-analysis of the Mayo model. Clinical Radiology. 2022;77(6):443-50.
  • 20. Nomenoglu H, Findik G, Cetin M, Aydogdu K, Gulhan SSE, Bicakcioglu P. Efficiency of pulmonary nodule risk scoring systems in Turkish population. Updates in Surgery. 2024;76:2903–2915.
  • 21. Brooks RT, Luedders B, Wheeler A, Johnson TM, Yang Y, Roul P, et al. The Risk of Lung Cancer in Rheumatoid Arthritis and Rheumatoid Arthritis-Associated Interstitial Lung Disease. Arthritis Rheumatol. 2024;76(12):1730-8.
  • 22. Lee G, Walser TC, Dubinett SM. Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr Opin Pulm Med. 2009;15(4):303-7.
  • 23. Nakano-Narusawa Y, Yokohira M, Yamakawa K, Ye J, Tanimoto M, Wu L, et al. Relationship between Lung Carcinogenesis and Chronic Inflammation in Rodents. Cancers. 2021;13(12):2910.
  • 24. Luo G, Zhang Y, Rumgay H, Morgan E, Langselius O, Vignat J, et al. Estimated worldwide variation and trends in incidence of lung cancer by histological subtype in 2022 and over time: a population-based study. The Lancet Respiratory Medicine. 2025;13(4): 348 - 363.
  • 25. AlShammari A, Patel A, Boyle M, Proli C, Gallesio JA, Wali A, et al. Prevalence of invasive lung cancer in pure ground glass nodules less than 30 mm: A systematic review. European Journal of Cancer. 2024;213: 115116.
  • 26. Cho J, Kim ES, Kim SJ, Lee YJ, Park JS, Cho YJ, et al. Long-Term Follow-up of Small Pulmonary Ground-Glass Nodules Stable for 3 Years: Implications of the Proper Follow-up Period and Risk Factors for Subsequent Growth. J Thorac Oncol. 2016;11(9):1453-9.
  • 27. Lee GD, Park CH, Park HS, Byun MK, Lee IJ, Kim TH, et al. Lung Adenocarcinoma Invasiveness Risk in Pure Ground-Glass Opacity Lung Nodules Smaller than 2 cm. Thorac Cardiovasc Surg. 2019;67(4):321-8.
  • 28. Kobayashi Y, Ambrogio C, Mitsudomi T. Ground-glass nodules of the lung in never-smokers and smokers: clinical and genetic insights. Translational Lung Cancer Research. 2018;7(4):487-97.
  • 29. Liu M, Mu J, Song F, Liu X, Jing W, Lv F. Growth characteristics of early-stage (IA) lung adenocarcinoma and its value in predicting lymph node metastasis. Cancer Imaging. 2023;23(1):115.
  • 30. Liang X, Liu M, Li M, Zhang L. Clinical and CT Features of Subsolid Pulmonary Nodules With Interval Growth: A Systematic Review and Meta-Analysis. Front Oncol. 2022;12:929174.
  • 31. Miyoshi T, Aokage K, Katsumata S, Tane K, Ishii G, Tsuboi M. Ground-Glass Opacity Is a Strong Prognosticator for Pathologic Stage IA Lung Adenocarcinoma. The Annals of Thoracic Surgery. 2019;108(1):249-55.

The Role of Malignancy Risk Scores in Assessing Cancer Risk in Pure Ground-Glass and Part-Solid Nodules

Year 2025, Volume: 35 Issue: 3, 535 - 543, 30.06.2025
https://doi.org/10.54005/geneltip.1665515

Abstract

Aim: This study aimed to evaluate the effectiveness of commonly used malignancy risk prediction models in assessing the likelihood of malignancy in pure ground-glass opacities (pGGNs) and part solid pulmonary nodules (PSNs) among patients with solitary pulmonary nodules (SPN).
Methods: Between January 2021 and June 2024, 75 patients undergoing the uniportal video-assisted thoracoscopic (U-VATS) segmentectomy due to SPNs were retrospectively reviewed. Of these, 32 patients undergoing segmentectomy for radiologically defined pGGN or PSNs were included in the study. Demographic data, smoking history, nodule characteristics, and surgical details were collected. Malignancy risk scores were calculated separately using the Mayo Clinic, Brock, Bayesian, and Herder models. These scores were then compared with the final histopathological results.
Results: The mean age of the included patients was 62.89±10.53 years (range: 35–80), with a male to-female ratio of 17:15. The smoking prevalence was 50%, with a history of malignancy present in 8 patients and a family history of lung cancer in 3 patients. The prevalence of chronic immune mediated diseases was 43.8%. The mean radiological nodule size was 13.04±5.14 mm (range: 6–26 mm). Among the nodules, 59.4% (n=19) were pGGNs, and 40.6% (n=13) were PSNs. The median malignancy risk scores were 11.95% (IQR: 15.7) for the Mayo Clinic model, 9.77% (IQR: 18.15) for the Brock model, 13% (IQR: 36.25) for the Bayesian model, and 12.1% (IQR: 14.58) for Herder model. The overall malignancy rate was 93.8%, with invasive adenocarcinoma (37.5%) and adenocarcinoma in situ (28.1%) being the most common histopathological subtypes. The median chest tube removal time was 2 days (IQR: 1), and the median length of hospital stay was 3 days (IQR: 2). No postoperative mortality was observed.
Conclusions: Our findings suggest that the widely used risk prediction models are insufficient in accurately identifying early-stage lung adenocarcinoma in patients with pGGN and PSNs. Incorporating additional patient-related factors, such as chronic immune-mediated conditions, into multivariate analyses may enhance the predictive accuracy of malignancy-risk assessments in SPN.

Ethical Statement

This study was approved by Ethics Committee of Ondokuz Mayis University (Approval No: 2025/66 , date: 12 Feb 2025). The authors have no conflict of interest to declare.

Supporting Institution

None.

Thanks

A version of this study was presented as an oral presentation at the Turkish Thoracic Society 2024 Fall Symposium in Konya, November 2-3, 2024.

References

  • 1. Saji H, Okada M, Tsuboi M, Nakajima R, Suzuki K, Aokage K, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomized, controlled, non-inferiority trial. Lancet. 2022;399(10335):1607-17.
  • 2. Miyoshi T, Ito H, Wakabayashi M, Hashimoto T, Sekino Y, Suzuki K, et al. Risk factors for loss of pulmonary function after wedge resection for peripheral ground-glass opacity dominant lung cancer. Eur J Cardiothorac Surg. 2023;64(6).
  • 3. Piskorski L, Debic M, von Stackelberg O, Schlamp K, Welzel L, Weinheimer O, et al. Malignancy risk stratification for pulmonary nodules: comparing a deep learning approach to multiparametric statistical models in different disease groups. Eur Radiol. 2025.
  • 4. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC, Mayo JR, et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology. 2017;284(1):228-43.
  • 5. Zhong D, Sidorenkov G, Jacobs C, de Jong PA, Gietema HA, Stadhouders R, et al. Lung Nodule Management in Low-Dose CT Screening for Lung Cancer: Lessons from the NELSON Trial. Radiology. 2024;313(1):e240535.
  • 6. Gould MK, Donington J, Lynch WR, Mazzone PJ, Midthun DE, Naidich DP, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e93S-e120S.
  • 7. Baldwin DR, Callister ME, Graham R, Gleeson F. Pulmonary nodules again? The 2015 British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Clin Radiol. 2016;71(1):18-22.
  • 8. Heideman BE, Kammer MN, Paez R, Swanson T, Godfrey CM, Low SW, et al. The Lung Cancer Prediction Model "Stress Test": Assessment of Models' Performance in a High-Risk Prospective Pulmonary Nodule Cohort. CHEST Pulm. 2024;2(1): 100033.
  • 9. White CS, Dharaiya E, Campbell E, Boroczky L. The Vancouver Lung Cancer Risk Prediction Model: Assessment by Using a Subset of the National Lung Screening Trial Cohort. Radiology. 2017;283(1):264-72.
  • 10. Perandini S, Soardi GA, Motton M, Rossi A, Signorini M, Montemezzi S. Solid pulmonary nodule risk assessment and decision analysis: comparison of four prediction models in 285 cases. Eur Radiol. 2016;26(9):3071-6.
  • 11. Winkler Wille MM, van Riel SJ, Saghir Z, Dirksen A, Pedersen JH, Jacobs C, et al. Predictive Accuracy of the PanCan Lung Cancer Risk Prediction Model -External Validation based on CT from the Danish Lung Cancer Screening Trial. Eur Radiol. 2015;25(10):3093-9.
  • 12. Altorki N, Wang X, Kozono D, Watt C, Landrenau R, Wigle D, et al. Lobar or Sublobar Resection for Peripheral Stage IA Non-Small-Cell Lung Cancer. N Engl J Med. 2023;388(6):489-98.
  • 13. Al-Ameri A, Malhotra P, Thygesen H, Plant PK, Vaidyanathan S, Karthik S, et al. Risk of malignancy in pulmonary nodules: A validation study of four prediction models. Lung Cancer. 2015;89(1):27-30.
  • 14. Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, Edell ES. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med. 1997;157(8):849-55.
  • 15. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369(10):910-9.
  • 16. Dewan NA, Shehan CJ, Reeb SD, Gobar LS, Scott WJ, Ryschon K. Likelihood of malignancy in a solitary pulmonary nodule: comparison of Bayesian analysis and results of FDG-PET scan. Chest. 1997;112(2):416-22.
  • 17. Herder GJ, van Tinteren H, Golding RP, Kostense PJ, Comans EF, Smit EF, et al. Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography. Chest. 2005;128(4):2490-6.
  • 18. Chen S, Lin W, Liu W, Zou L, Chen Y, Lu F. Pulmonary nodule malignancy probability: a meta-analysis of the Brock model. Clinical Radiology. 2025;82:106788.
  • 19. Papalampidou A, Papoutsi E, Katsaounou P. Pulmonary nodule malignancy probability: a diagnostic accuracy meta-analysis of the Mayo model. Clinical Radiology. 2022;77(6):443-50.
  • 20. Nomenoglu H, Findik G, Cetin M, Aydogdu K, Gulhan SSE, Bicakcioglu P. Efficiency of pulmonary nodule risk scoring systems in Turkish population. Updates in Surgery. 2024;76:2903–2915.
  • 21. Brooks RT, Luedders B, Wheeler A, Johnson TM, Yang Y, Roul P, et al. The Risk of Lung Cancer in Rheumatoid Arthritis and Rheumatoid Arthritis-Associated Interstitial Lung Disease. Arthritis Rheumatol. 2024;76(12):1730-8.
  • 22. Lee G, Walser TC, Dubinett SM. Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr Opin Pulm Med. 2009;15(4):303-7.
  • 23. Nakano-Narusawa Y, Yokohira M, Yamakawa K, Ye J, Tanimoto M, Wu L, et al. Relationship between Lung Carcinogenesis and Chronic Inflammation in Rodents. Cancers. 2021;13(12):2910.
  • 24. Luo G, Zhang Y, Rumgay H, Morgan E, Langselius O, Vignat J, et al. Estimated worldwide variation and trends in incidence of lung cancer by histological subtype in 2022 and over time: a population-based study. The Lancet Respiratory Medicine. 2025;13(4): 348 - 363.
  • 25. AlShammari A, Patel A, Boyle M, Proli C, Gallesio JA, Wali A, et al. Prevalence of invasive lung cancer in pure ground glass nodules less than 30 mm: A systematic review. European Journal of Cancer. 2024;213: 115116.
  • 26. Cho J, Kim ES, Kim SJ, Lee YJ, Park JS, Cho YJ, et al. Long-Term Follow-up of Small Pulmonary Ground-Glass Nodules Stable for 3 Years: Implications of the Proper Follow-up Period and Risk Factors for Subsequent Growth. J Thorac Oncol. 2016;11(9):1453-9.
  • 27. Lee GD, Park CH, Park HS, Byun MK, Lee IJ, Kim TH, et al. Lung Adenocarcinoma Invasiveness Risk in Pure Ground-Glass Opacity Lung Nodules Smaller than 2 cm. Thorac Cardiovasc Surg. 2019;67(4):321-8.
  • 28. Kobayashi Y, Ambrogio C, Mitsudomi T. Ground-glass nodules of the lung in never-smokers and smokers: clinical and genetic insights. Translational Lung Cancer Research. 2018;7(4):487-97.
  • 29. Liu M, Mu J, Song F, Liu X, Jing W, Lv F. Growth characteristics of early-stage (IA) lung adenocarcinoma and its value in predicting lymph node metastasis. Cancer Imaging. 2023;23(1):115.
  • 30. Liang X, Liu M, Li M, Zhang L. Clinical and CT Features of Subsolid Pulmonary Nodules With Interval Growth: A Systematic Review and Meta-Analysis. Front Oncol. 2022;12:929174.
  • 31. Miyoshi T, Aokage K, Katsumata S, Tane K, Ishii G, Tsuboi M. Ground-Glass Opacity Is a Strong Prognosticator for Pathologic Stage IA Lung Adenocarcinoma. The Annals of Thoracic Surgery. 2019;108(1):249-55.
There are 31 citations in total.

Details

Primary Language English
Subjects Chest Diseases, Clinical Oncology, Clinical Sciences (Other)
Journal Section Original Article
Authors

Selçuk Gürz 0000-0003-4584-4840

Necmiye Gül Temel 0000-0001-5188-8036

Yurdanur Süllü 0000-0002-8029-2490

Aslı Tanrıvermiş Sayıt 0000-0003-2861-156X

Ayşenur Alper Gürz 0000-0001-9551-1759

Ayşen Taslak Şengül 0000-0002-1558-8228

Publication Date June 30, 2025
Submission Date March 25, 2025
Acceptance Date June 2, 2025
Published in Issue Year 2025 Volume: 35 Issue: 3

Cite

Vancouver Gürz S, Temel NG, Süllü Y, Tanrıvermiş Sayıt A, Alper Gürz A, Taslak Şengül A. The Role of Malignancy Risk Scores in Assessing Cancer Risk in Pure Ground-Glass and Part-Solid Nodules. Genel Tıp Derg. 2025;35(3):535-43.

The Journal of General Medicine is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).