Review
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 1, 19 - 27, 30.04.2025
https://doi.org/10.59124/guhes.1600806

Abstract

References

  • Akuma, P., Okagu, O. D., & Udenigwe, C. C. (2019). Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Frontiers in Sustainable Food Systems, 3 (23), 1-28. https://doi.org/10.3389/fsufs.2019.00023.
  • Alzhrani, G. N., Alanazi, S. T., Alsharif, S. Y., Albalawi, A. M., Alsharif, A. A., Abdel‐Maksoud, M. S., & Elsherbiny, N. (2021). Exosomes: Isolation, characterization, and biomedical applications. Cell Biology International, 45(9), 1807-1831. https://doi.org/10.1002/cbin.11620.
  • Asgarpour, K., Shojaei, Z., Amiri, F., Ai, J., Mahjoubin-Tehran, M., Ghasemi, F., ArefNezhad, R., Hamblin, M. R., & Mirzaei, H. (2020). Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Communication and Signaling, 18, 1-16. https://doi.org/10.1186/s12964-020-00650-6.
  • Dilsiz, N. (2024). A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Translational Oncology, 50, 102121. https://doi.org/10.1016/j.tranon.2024.102121.
  • Gazze, S. A., Thomas, S. J., Garcia-Parra, J., James, D. W., Rees, P., Marsh-Durban, V., Corteling R., Gonzalez D., Conlan R.S. & Francis, L. W. (2021). High content, quantitative AFM analysis of the scalable biomechanical properties of extracellular vesicles. Nanoscale, 13(12), 6129-6141. https://doi.org/10.1039/d0nr09235e.
  • Guerrini, L., Garcia-Rico, E., O’Loghlen, A., Giannini, V., & Alvarez-Puebla, R. A. (2021). Surface-enhanced Raman scattering (SERS) spectroscopy for sensing and characterization of exosomes in cancer diagnosis. Cancers, 13(9), 2179. doi: 10.3390/cancers13092179.
  • Gurunathan, S., Kang, M. H., Jeyaraj, M., Qasim, M. & Kim, J. H. (2019). Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 8(4), 307. doi: 10.3390/cells8040307.
  • Iriawati, I., Vitasasti, S., Rahmadian, F. N. A., & Barlian, A. (2024). Isolation and characterization of plant-derived exosome-like nanoparticles from Carica papaya L. fruit and their potential as anti-inflammatory agent. PloS one, 19(7). doi: 10.1371/journal.pone.0304335.
  • Konoshenko, M. Y., Lekchnov, E. A., Bryzgunova, O. E., Kiseleva, E., Pyshnaya, I. A., & Laktionov, P. P. (2021). Isolation of extracellular vesicles from biological fluids via the aggregation–precipitation approach for downstream miRNAs detection. Diagnostics, 11(3), 384. doi: 10.3390/diagnostics11030384.
  • Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V., & Laktionov, P. P. (2018). Isolation of extracellular vesicles: general methodologies and latest trends. BioMed research international, 2018(1), 8545347. https://doi.org/10.1155/2018/8545347.
  • Kurian, T. K., Banik, S., Gopal, D., Chakrabarti, S., & Mazumder, N. (2021). Elucidating methods for isolation and quantification of exosomes: a review. Molecular biotechnology, 63(4), 249-266. https://doi.org/10.1007/s12033-021-00300-3.
  • Leng, Y., Yang, L., Pan, S., Zhan, L., & Yuan, F. (2024). Characterization of blueberry exosome-like nanoparticles and miRNAs with potential cross-kingdom human gene targets. Food Science and Human Wellness, 13(2), 869-878. https://doi.org/10.26599/FSHW.2022.9250074.
  • Li, P., Kaslan, M., Lee, S. H., Yao, J., & Gao, Z. (2017). Progress in exosome isolation techniques. Theranostics, 7(3), 789-804. 10.7150/thno.18133. eCollection 2017.
  • Midekessa, G., Godakumara, K., Ord, J., Viil, J., Lättekivi, F., Dissanayake, K., Kopanchuk, S., Rinken, A., Andronowska, A., Bhattacharjee, S., Rinken, T., ve Fazeli, A. (2020). Zeta potential of extracellular vesicles: toward understanding the attributes that determine colloidal stability. ACS omega, 5(27), 16701-16710. doi: 10.1021/acsomega.0c01582.
  • Miron, R. J., & Zhang, Y. (2024). Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontology 2000, 94(1), 231-256. doi: 10.1111/prd.12520.
  • Omrani, M., Beyrampour-Basmenj, H., Jahanban-Esfahlan, R., Talebi, M., Raeisi, M., Serej, Z. A., Akbar-Gharalari, N., Khodakarimi, S., Wu, J., & Ebrahimi-Kalan, A. (2024). Global trend in exosome isolation and application: an update concept in management of diseases. Molecular and Cellular Biochemistry, 479(3), 679-691. doi: 10.1007/s11010-023-04756-6.
  • Rupert, D. L., Claudio, V., Lässer, C. & Bally, M. (2017). Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(1), 3164-3179. doi: 10.1016/j.bbagen.2016.07.028.
  • Sarasati, A., Syahruddin, M. H., Nuryanti, A., Ana, I. D., Barlian, A., Wijaya, C. H., Ratnadewi, D., Wungu, T.D.K. & Takemori, H. (2023). Plant-derived exosome-like nanoparticles for biomedical applications and regenerative therapy. Biomedicines, 11(4), 1053. doi: 10.3390/biomedicines11041053.
  • Sha, A., Luo, Y., Xiao, W., He, J., Chen, X., Xiong, Z., Peng, L., Zou, L., Liu, B. & Li, Q. (2024). Plant-Derived Exosome-like Nanoparticles: A Comprehensive Overview of Their Composition, Biogenesis, Isolation, and Biological Applications. International Journal of Molecular Sciences, 25(22), 12092. doi: 10.3390/ijms252212092.
  • Sidhom, K., Obi, P. O., & Saleem, A. (2020). A review of exosomal isolation methods: is size exclusion chromatography the best option?. International journal of molecular sciences, 21(18), 6466. doi: 10.3390/ijms21186466.
  • Soares Martins, T., Magalhães, S., Rosa, I. M., Vogelgsang, J., Wiltfang, J., Delgadillo, I., Catita, J., AB da Cruz E Silva, O., Nunes, A. & Henriques, A. G. (2020). Potential of FTIR spectroscopy applied to exosomes for Alzheimer’s disease discrimination: a pilot study. Journal of Alzheimer's Disease, 74(1), 391-405. doi: 10.3233/JAD-191034.
  • Suharta, S., Barlian, A., Hidajah, A. C., Notobroto, H. B., Ana, I. D., Indariani, S., Kencana, Wungu T.D. & Wijaya, C. H. (2021). Plant‐derived exosome‐like nanoparticles: A concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. Journal of food science, 86(7), 2838-2850. doi: 10.1111/1750-3841.15787.
  • Wu, S., Zhao, Y., Zhang, Z., Zuo, C., Wu, H., & Liu, Y. (2024, January). The Advances and applications of characterization technique for exosomes: from dynamic light scattering to super-resolution imaging technology. In Photonics, 11(2), 101. https://doi.org/10.3390/photonics11020101.
  • Zhang, M., Jin, K., Gao, L., Zhang, Z., Li, F., Zhou, F., & Zhang, L. (2018). Methods and technologies for exosome isolation and characterization. Small Methods, 2(9). https://doi.org/10.1002/smtd.201800021.
  • Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., Han, M. K., Xiao, B., Xu, C., Srinivasan, S. & Merlin, D. (2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321-340. doi: 10.1016/j.biomaterials.2016.06.018.
  • Zhu, H., & He, W. (2023). Ginger: a representative material of herb-derived exosome-like nanoparticles. Frontiers in Nutrition, 10, 1223349. doi: 10.3389/fnut.2023.1223349.
  • Zhao, B., Lin, H., Jiang, X., Li, W., Gao, Y., Li, M., Yu, Y., Chen N. & Gao, J. (2024). Exosome-like nanoparticles derived from fruits, vegetables, and herbs: Innovative strategies of therapeutic and drug delivery. Theranostics, 14(12), 4598-4621. doi: 10.7150/thno.97096.

Plant-Derived Exosome-Like Nanoparticles Based Treatments In Cancer Therapy

Year 2025, Volume: 7 Issue: 1, 19 - 27, 30.04.2025
https://doi.org/10.59124/guhes.1600806

Abstract

Plant-derived exosome-like vesicles (PELVs) are nanometer-sized particles comprising proteins, lipids, nucleic acids, and small molecule substances generated from plants. PELVs have many advantages, such as low toxicity, efficient cellular uptake, high biocompatibility, stability, and large-scale production. PELVs can regulate intercellular communication by releasing their contents, including mRNA, miRNA, lipids, and proteins. Plant-derived exosome-like vesicles (PDELVs) have attracted considerable attention in scientific research owing to their promising therapeutic effects and researches have assessed the the extensive therapeutic potential of PDELVs in the treatment of various diseases including cancer treatment. They exhibit various clinical attributes and therapeutic benefits over conventional pharmaceuticals. This mini-review aims to summarize and categorize the main paths followed by scientists working with the PDELNs for cancer therapy.

Ethical Statement

Ethics committee approval was deemed unnecessary for this study, given that open-access sources were utilized.

References

  • Akuma, P., Okagu, O. D., & Udenigwe, C. C. (2019). Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Frontiers in Sustainable Food Systems, 3 (23), 1-28. https://doi.org/10.3389/fsufs.2019.00023.
  • Alzhrani, G. N., Alanazi, S. T., Alsharif, S. Y., Albalawi, A. M., Alsharif, A. A., Abdel‐Maksoud, M. S., & Elsherbiny, N. (2021). Exosomes: Isolation, characterization, and biomedical applications. Cell Biology International, 45(9), 1807-1831. https://doi.org/10.1002/cbin.11620.
  • Asgarpour, K., Shojaei, Z., Amiri, F., Ai, J., Mahjoubin-Tehran, M., Ghasemi, F., ArefNezhad, R., Hamblin, M. R., & Mirzaei, H. (2020). Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Communication and Signaling, 18, 1-16. https://doi.org/10.1186/s12964-020-00650-6.
  • Dilsiz, N. (2024). A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Translational Oncology, 50, 102121. https://doi.org/10.1016/j.tranon.2024.102121.
  • Gazze, S. A., Thomas, S. J., Garcia-Parra, J., James, D. W., Rees, P., Marsh-Durban, V., Corteling R., Gonzalez D., Conlan R.S. & Francis, L. W. (2021). High content, quantitative AFM analysis of the scalable biomechanical properties of extracellular vesicles. Nanoscale, 13(12), 6129-6141. https://doi.org/10.1039/d0nr09235e.
  • Guerrini, L., Garcia-Rico, E., O’Loghlen, A., Giannini, V., & Alvarez-Puebla, R. A. (2021). Surface-enhanced Raman scattering (SERS) spectroscopy for sensing and characterization of exosomes in cancer diagnosis. Cancers, 13(9), 2179. doi: 10.3390/cancers13092179.
  • Gurunathan, S., Kang, M. H., Jeyaraj, M., Qasim, M. & Kim, J. H. (2019). Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 8(4), 307. doi: 10.3390/cells8040307.
  • Iriawati, I., Vitasasti, S., Rahmadian, F. N. A., & Barlian, A. (2024). Isolation and characterization of plant-derived exosome-like nanoparticles from Carica papaya L. fruit and their potential as anti-inflammatory agent. PloS one, 19(7). doi: 10.1371/journal.pone.0304335.
  • Konoshenko, M. Y., Lekchnov, E. A., Bryzgunova, O. E., Kiseleva, E., Pyshnaya, I. A., & Laktionov, P. P. (2021). Isolation of extracellular vesicles from biological fluids via the aggregation–precipitation approach for downstream miRNAs detection. Diagnostics, 11(3), 384. doi: 10.3390/diagnostics11030384.
  • Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V., & Laktionov, P. P. (2018). Isolation of extracellular vesicles: general methodologies and latest trends. BioMed research international, 2018(1), 8545347. https://doi.org/10.1155/2018/8545347.
  • Kurian, T. K., Banik, S., Gopal, D., Chakrabarti, S., & Mazumder, N. (2021). Elucidating methods for isolation and quantification of exosomes: a review. Molecular biotechnology, 63(4), 249-266. https://doi.org/10.1007/s12033-021-00300-3.
  • Leng, Y., Yang, L., Pan, S., Zhan, L., & Yuan, F. (2024). Characterization of blueberry exosome-like nanoparticles and miRNAs with potential cross-kingdom human gene targets. Food Science and Human Wellness, 13(2), 869-878. https://doi.org/10.26599/FSHW.2022.9250074.
  • Li, P., Kaslan, M., Lee, S. H., Yao, J., & Gao, Z. (2017). Progress in exosome isolation techniques. Theranostics, 7(3), 789-804. 10.7150/thno.18133. eCollection 2017.
  • Midekessa, G., Godakumara, K., Ord, J., Viil, J., Lättekivi, F., Dissanayake, K., Kopanchuk, S., Rinken, A., Andronowska, A., Bhattacharjee, S., Rinken, T., ve Fazeli, A. (2020). Zeta potential of extracellular vesicles: toward understanding the attributes that determine colloidal stability. ACS omega, 5(27), 16701-16710. doi: 10.1021/acsomega.0c01582.
  • Miron, R. J., & Zhang, Y. (2024). Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontology 2000, 94(1), 231-256. doi: 10.1111/prd.12520.
  • Omrani, M., Beyrampour-Basmenj, H., Jahanban-Esfahlan, R., Talebi, M., Raeisi, M., Serej, Z. A., Akbar-Gharalari, N., Khodakarimi, S., Wu, J., & Ebrahimi-Kalan, A. (2024). Global trend in exosome isolation and application: an update concept in management of diseases. Molecular and Cellular Biochemistry, 479(3), 679-691. doi: 10.1007/s11010-023-04756-6.
  • Rupert, D. L., Claudio, V., Lässer, C. & Bally, M. (2017). Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(1), 3164-3179. doi: 10.1016/j.bbagen.2016.07.028.
  • Sarasati, A., Syahruddin, M. H., Nuryanti, A., Ana, I. D., Barlian, A., Wijaya, C. H., Ratnadewi, D., Wungu, T.D.K. & Takemori, H. (2023). Plant-derived exosome-like nanoparticles for biomedical applications and regenerative therapy. Biomedicines, 11(4), 1053. doi: 10.3390/biomedicines11041053.
  • Sha, A., Luo, Y., Xiao, W., He, J., Chen, X., Xiong, Z., Peng, L., Zou, L., Liu, B. & Li, Q. (2024). Plant-Derived Exosome-like Nanoparticles: A Comprehensive Overview of Their Composition, Biogenesis, Isolation, and Biological Applications. International Journal of Molecular Sciences, 25(22), 12092. doi: 10.3390/ijms252212092.
  • Sidhom, K., Obi, P. O., & Saleem, A. (2020). A review of exosomal isolation methods: is size exclusion chromatography the best option?. International journal of molecular sciences, 21(18), 6466. doi: 10.3390/ijms21186466.
  • Soares Martins, T., Magalhães, S., Rosa, I. M., Vogelgsang, J., Wiltfang, J., Delgadillo, I., Catita, J., AB da Cruz E Silva, O., Nunes, A. & Henriques, A. G. (2020). Potential of FTIR spectroscopy applied to exosomes for Alzheimer’s disease discrimination: a pilot study. Journal of Alzheimer's Disease, 74(1), 391-405. doi: 10.3233/JAD-191034.
  • Suharta, S., Barlian, A., Hidajah, A. C., Notobroto, H. B., Ana, I. D., Indariani, S., Kencana, Wungu T.D. & Wijaya, C. H. (2021). Plant‐derived exosome‐like nanoparticles: A concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. Journal of food science, 86(7), 2838-2850. doi: 10.1111/1750-3841.15787.
  • Wu, S., Zhao, Y., Zhang, Z., Zuo, C., Wu, H., & Liu, Y. (2024, January). The Advances and applications of characterization technique for exosomes: from dynamic light scattering to super-resolution imaging technology. In Photonics, 11(2), 101. https://doi.org/10.3390/photonics11020101.
  • Zhang, M., Jin, K., Gao, L., Zhang, Z., Li, F., Zhou, F., & Zhang, L. (2018). Methods and technologies for exosome isolation and characterization. Small Methods, 2(9). https://doi.org/10.1002/smtd.201800021.
  • Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., Han, M. K., Xiao, B., Xu, C., Srinivasan, S. & Merlin, D. (2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321-340. doi: 10.1016/j.biomaterials.2016.06.018.
  • Zhu, H., & He, W. (2023). Ginger: a representative material of herb-derived exosome-like nanoparticles. Frontiers in Nutrition, 10, 1223349. doi: 10.3389/fnut.2023.1223349.
  • Zhao, B., Lin, H., Jiang, X., Li, W., Gao, Y., Li, M., Yu, Y., Chen N. & Gao, J. (2024). Exosome-like nanoparticles derived from fruits, vegetables, and herbs: Innovative strategies of therapeutic and drug delivery. Theranostics, 14(12), 4598-4621. doi: 10.7150/thno.97096.
There are 27 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other), Primary Health Care
Journal Section Review
Authors

Gaye Umurhan 0000-0001-8891-9510

Meriç Arda Eşmekaya This is me 0000-0003-0469-4954

Burhan Ertekin 0000-0003-2804-047X

Arın Tomruk This is me 0000-0002-7600-0811

Publication Date April 30, 2025
Submission Date December 26, 2024
Acceptance Date March 1, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Umurhan, G., Eşmekaya, M. A., Ertekin, B., Tomruk, A. (2025). Plant-Derived Exosome-Like Nanoparticles Based Treatments In Cancer Therapy. Journal of Gazi University Health Sciences Institute, 7(1), 19-27. https://doi.org/10.59124/guhes.1600806