TY - JOUR T1 - Su Ürünleri Yetiştiriciliği İçin Balık Davranışlarının Bilgisayarlı Görüntü İşleme Yöntemleriyle İzlenmesi TT - Monitoring of Fish Behaviors with Computerized Image Processing Methods for the Aquaculture AU - Balcı, Beytullah Ahmet AU - Tonguç, Güray AU - Arslan, Muhammed Nurullah PY - 2022 DA - December Y2 - 2022 DO - 10.35229/jaes.1197703 JF - Journal of Anatolian Environmental and Animal Sciences JO - JAES PB - Bülent VEREP WT - DergiPark SN - 2548-0006 SP - 568 EP - 581 VL - 7 IS - 4 LA - tr AB - Hayvan davranışlarının izlenip, yorumlanarak faydalı bilgiler haline getirilmesi son yıllarda önem kazanan konulardan birisi olmuştur. Makine öğrenmesi ve derin öğrenme algoritmaları gibi yazılımsal gelişmeler, görüntüleme cihazları ve elde edilen görüntülerin işlenmesine imkân tanıyan donanımsal gelişmeler, hayvan davranışlarının izlenmesine altyapı oluşturmaktadır. Özellikle insanlarla sesli veya fiziki etkileşim yeteneği bulunmayan balıkların yaşam alanlarında temassız ve tahribatsız izlenmesi, bu teknolojiler sayesinde mümkün olabilmektedir. Alternatif türlerin yoğun akuakültüre kazandırılmasında karşılaşılan problemlerin başında canlının biyotik ve abiyotik gereksinimlerinin bilinmemesi gelmektedir. Bu çalışmada görüntü işleme yöntemleri ile, balıkların günlük yaşamları, bakımları, beslemeleri, bazı deneysel işlemlerin yapılması, bireysel veya sürü hareketleri, bu hareketlerin izlenmesi için oluşturulmuş donanımsal ve yazılımsal düzenekler ile ilgili yapılan çalışmalar hakkında bilgiler verilmiştir. Ayrıca, düzeneklerde kullanılan balıklar ve deney prosedürleri, elde edilen görüntülerin işlenme yöntemleri, kullanılan istatistiksel yöntemler ve sonuçlarda ele alınmıştır. Bu makalede, su ürünleri yetiştiriciliği sektörü için kullanılabilecek görüntü işleme alanındaki çalışmalar incelenip sunulmuştur. KW - Balık davranışları KW - Görüntü işleme KW - İnvazif olmayan KW - Su ürünleri yetiştiriciliği KW - Tahribatsız teşhis N2 - Observing and interpreting animal behaviors and turning them into useful information has become an issue that has gained importance in recent years. Software developments such as machine learning and deep learning algorithms, imaging devices, and hardware developments allow the processing of obtained images from the infrastructure for monitoring animal behavior. Thanks to these technologies, non-contact and non-destructive detection of fish, which cannot interact with people verbally or physically, in their habitats is possible. One of the problems encountered in introducing alternative species into intensive aquaculture is the lack of knowledge of the biotic and abiotic requirements of the living thing. This study gives information about the image processing methods, the daily life of fish, their care, feeding, some experimental procedures, individual or swarm movements, and the hardware and software mechanisms created to monitor these movements. In addition, the fish used in the setups and the experimental procedures, the processing methods of the images obtained, the statistical techniques used, and the results are discussed. This manuscript reviews and presents studies in the field of image processing that can be used for the aquaculture sector. CR - Akhtar, M.T., Ali, S., Rashidi, H., Van Der Kooy, F., Verpoorte, R. & Richardson, M.K. (2013). Developmental effects of cannabinoids on zebrafish larvae. Zebrafish, 10(3), 283-293. DOI: 10.1089/zeb.2012.0785 CR - Al-Jubouri, Q., Al-Nuaimy, W., Al-Taee, M. & Young, I. (2017). An automated vision system for measurement of zebrafish length using low-cost orthogonal web cameras. Aquacultural Engineering, 78(B), 155-162. DOI: 10.1016/j.aquaeng.2017.07.003 CR - AlZu’bi, H., Al-Nuaimy, W., Buckley, J., Sneddon, L., & Young, I. (2015). Real-time 3D fish tracking and behaviour analysis. IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, AEECT 2015. DOI: 10.1109/AEECT.2015.7360567 CR - Anonim. (2010). Directive 2010/63/Eu of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA relevance). Official Journal of the European Union, 10-20. CR - Anonim. (2014). https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild CR - Anonim. (2020a). https://www.kaggle.com/datasets/crowww/a-large-scale-fish-dataset CR - Anonim. (2020b). https://public.roboflow.com/object-detection/aquarium CR - Anonim. (2020c). https://public.roboflow.com/object-detection/brackish-underwater CR - Anonim. (2020d). https://public.roboflow.com/object-detection/fish CR - Anonim. (2020e). https://public.roboflow.com/object-detection/shellfish-openimages CR - Anonim. (2022). Statistics of scientific procedures on living animals-GOV.UK. Retrieved October 21, 2022. https://www.gov.uk/government/collections/statistics-of-scientific-procedures-on-living-animals CR - Anwer, A., Ali, S.S.A., Khan, A. & Mériaudeau, F. (2017). Underwater 3D scanning using Kinect v2 time of flight camera. Thirteenth International Conference on Quality Control by Artificial Vision, 10338, 103380C. DOI: 10.1117/12.2266834 CR - Banerjee, S., Alvey, L., Brown, P., Yue, S., Li, L. & Scheirer, W.J. (2021). An assistive computer vision tool to automatically detect changes in fish behavior in response to ambient odor. Scientific Reports 11, 1002. DOI: 10.1038/s41598-020-79772-3 CR - Barreiros, M.de O., Dantas, D.de O., Silva, L.C. de O., Ribeiro, S. & Barros, A.K. (2021). Zebrafish tracking using YOLOv2 and Kalman filter. Scientific Reports 11, 3219. DOI: 10.1038/s41598-021-81997-9 CR - Baxendale, S., Holdsworth, C.J., Meza Santoscoy, P.L., Harrison, M.R.M., Fox, J., Parkin, C.A., Ingham, P.W. & Cunliffe, V.T. (2012). Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Disease Models & Mechanisms, 5(6), 773-784. DOI: 10.1242/dmm.010090 CR - Bradski, G. & Kaehler, A. (2008). Learning OpenCV: Computer Vision with the OpenCV Library. https://books.google.com.tr/books/about/Learning_OpenCV.html?id=seAgiOfu2EIC&redir_esc=y CR - Bruni, G., Rennekamp, A.J., Velenich, A., McCarroll, M., Gendelev, L., Fertsch, E., Taylor, J., Lakhani, P., Lensen, D., Evron, T., Lorello, P.J., Huang, X-P., Kolczewski, S., Carey, G., Caldarone, B.J., Prinssen, E., Roth, B.L., Keiser, M.J., Peterson, R.T. & Kokel, D. (2016). Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nature Chemical Biology, 12, 559-566. DOI: 10.1038/nchembio.2097 CR - Chen, Q., Zhang, C., Zhao, J. & Ouyang, Q. (2013). Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety. TrAC Trends in Analytical Chemistry, 52, 261-274. DOI: 10.1016/j.trac.2013.09.007 CR - Chuang, M-C., Hwang, J-N. & Williams, K. (2016). A feature learning and object recognition framework for underwater fish images. IEEE Transactions on Image Processing, 25(4), 1862-1872. DOI: 10.1109/TIP.2016.2535342 CR - Cui, S., Zhou, Y., Wang, Y. & Zhai, L. (2020). Fish detection using deep learning. Applied Computational Intelligence and Soft Computing. DOI: 10.1155/2020/3738108 CR - Di Paolo, C., Seiler, T.B., Keiter, S., Hu, M., Muz, M., Brack, W. & Hollert, H. (2015). The value of zebrafish as an integrative model in effect-directed analysis-A review. Environmental Sciences Europe, 27, 1-11. DOI: 10.1186/s12302-015-0040-y CR - Ditria, E.M., Jinks, E.L. & Connolly, R.M. (2021). Automating the analysis of fish grazing behaviour from videos using image classification and optical flow. Animal Behaviour, 177, 31-37. DOI: 10.1016/j.anbehav.2021.04.018 CR - Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., Elkhayat, S.I., Bartels, B.K., Tien, A.K., Tien, D.H., Mohnot, S., Beeson, E., Glasgow, E., Amri, H., Zukowska, Z. & Kalueff, A.V. (2009). Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research, 205(1), 38-44. DOI: 10.1016/j.bbr.2009.06.022 CR - Eldrogi, N., Altherany, I. & Alqaddafi, S. (2019). Automatic fish tracking by kalman filter. Journal of Pure & Applied Sciences, 18(4), 20-23. DOI: 10.51984/jopas.v18i4.377 CR - Feijó, G.de O., Sangalli, V.A., da Silva, I.N.L. & Pinho, M.S. (2018). An algorithm to track laboratory zebrafish shoals. Computers in Biology and Medicine, 96, 79-90. DOI: 10.1016/j.compbiomed.2018.01.011 CR - Gao, H., Zhu, F., & Cai, J. (2010). A review of non-destructive detection for fruit quality. International Conference on Computer and Computing Technologies in Agriculture CCTA 2009: Computer and Computing Technologies in Agriculture III, IFIP Advances in Information and Communication Technology (IFIPAICT), 317, 133-140. DOI: 10.1007/978-3-642-12220-0_21 CR - Gao, Y., Chan, R.H.M., Chow, T.W.S., Zhang, L., Bonilla, S., Pang, C-P., Zhang, M. & Leung, Y.F. (2014). A high-throughput zebrafish screening method for visual mutants by light-induced locomotor response. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(4), 693-701. DOI: 10.1109/TCBB.2014.2306829 CR - Genç, M. (2011). Dikili durumdaki ağaçların iç kısımlarında oluşan ve belirgin bir emare göstermeyen çürük ve boşlukların tahribatsız belirlenmesi. I. Ulusal Akdeniz Orman ve Çevre Sempozyumu, 26-28 Ekim 2011, Kahramanmaraş, Bildiriler Kitabı, 306-314. https://www.academia.edu/6001195/Dikili_Durumdaki_Ağaçların_İç_Kısımlarında_Oluşan_ve_Belirgin_Bir_Emare_Göstermeyen_Çürük_ve_Boşlukların_Tahribatsız_Belirlenmesi CR - González-Rivero, M., Beijbom, O., Rodriguez-Ramirez, A., Bryant, D.E.P., Ganase, A., Gonzalez-Marrero, Y., Herrera-Reveles, A., Kennedy, E.V., Kim, C.J.S., Lopez-Marcano, S., Markey, K., Neal, B.P., Osborne, K., Reyes-Nivia, C., Sampayo, E.M., Stolberg, K., Taylor, A., Vercelloni, J., Wyatt, M., & Hoegh-Guldberg, O. (2020). Monitoring of coral reefs using artificial ıntelligence: A feasible and cost-effective approach. Remote Sensing, 12(3), 489. DOI: 10.3390/rs12030489 CR - Gray, S.M., Bieber, F.M.E., Mcdonnell, l.H., Chapman, l.J. & Mandrak, N.E. (2014). Experimental evidence for species-specific response to turbidity in imperilled fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 24(4), 546-560. DOI: 10.1002/aqc.2436 CR - Gray, S.M., Sabbah, S. & Hawryshyn, C.W. (2011). Experimentally increased turbidity causes behavioural shifts in Lake Malawi cichlids. Ecology of Freshwater Fish, 20(4), 529-536. DOI: 10.1111/j.1600-0633.2011.00501.x CR - Kitasato, A., Miyazaki, T., Sugaya, Y. & Omachi, S. (2018). Automatic discrimination between Scomber japonicus and Scomber australasicus by geometric and texture features. Fishes, 3(3), 26. DOI: 10.3390/fishes3030026 CR - Knausgård, K.M., Wiklund, A., Sørdalen, T.K., Halvorsen, K.T., Kleiven, A.R., Jiao, L. & Goodwin, M. (2022). Temperate fish detection and classification: a deep learning based approach. Applied Intelligence, 52(6), 6988-7001. DOI: 10.1007/s10489-020-02154-9 CR - Koçer, H.E. & Çevik, K.K. (2021). Deep neural networks based wrist print region segmentation and classification. MANAS Journal of Engineering, 9(1), 30-36. DOI: 10.51354/mjen.853971 CR - Kokel, D., Cheung, C.Y.J., Mills, R., Coutinho-Budd, J., Huang, L., Setola, V., Sprague, J., Jin, S., Jin, Y.N., Huang, X-P., Bruni, G., Woolf, C.J., Roth, B.L., Hamblin, M.R., Zylka, M.J., Milan, D.J. & Peterson, R. T. (2013). Photochemical activation of TRPA1 channels in neurons and animals. Nature Chemical Biology, 9, 257-263. DOI: 10.1038/nchembio.1183 CR - Labao, A.B. & Naval Jr., P.C. (2019). Simultaneous localization and segmentation of fish objects using multi-task CNN and dense CRF. Asian Conference on Intelligent Information and Database Systems ACIIDS 2019: Intelligent Information and Database Systems, Lecture Notes in Computer Science, 11431, 600-612. DOI: 10.1007/978-3-030-14799-0_52 CR - Lawrence, C. (2007). The husbandry of zebrafish (Danio rerio): A review. Aquaculture, 269(1-4), 1-20. DOI: 10.1016/j.aquaculture.2007.04.077 CR - Levin, E.D., Bencan, Z. & Cerutti, D.T. (2007). Anxiolytic effects of nicotine in zebrafish. Physiology & Behavior, 90(1), 54-58. DOI: 10.1016/j.physbeh.2006.08.026 CR - Levy, D., Belfer, Y., Osherov, E., Bigal, E., Scheinin, A.P., Nativ, H., Tchernov, D. & Treibitz, T. (2018). Automated analysis of marine video with limited data. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1466-1474. DOI: 10.1109/CVPRW.2018.00187 CR - Linney, E., Upchurch, L. & Donerly, S. (2004). Zebrafish as a neurotoxicological model. Neurotoxicology and Teratology, 26(6), 709-718. DOI: 10.1016/j.ntt.2004.06.015 CR - Liu, Y., Ma, P., Cassidy, P.A., Carmer, R., Zhang, G., Venkatraman, P., Brown, S.A., Pang, C.P., Zhong, W., Zhang, M. & Leung, Y. F. (2017). Statistical analysis of zebrafish locomotor behaviour by generalized linear mixed models. Scientific Reports, 7, 2937. DOI: 10.1038/s41598-017-02822-w CR - MacPhail, R.C., Brooks, J., Hunter, D.L., Padnos, B., Irons, T.D. & Padilla, S. (2009). Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol. Neurotoxicology, 30(1), 52-58. DOI: 10.1016/j.neuro.2008.09.011 CR - Man, M., Abdullah, N., Rahim, M.S.M. & Amin, I.M. (2016). Fish length measurement: The results from different types of digital camera. Journal of Advanced Agricultural Technologies, 3(1), 67-71. DOI: 10.18178/joaat.3.1.67-71 CR - Maximino, C., Da Silva, A.W.B., Arauj́o, J., Lima, M.G., Miranda, V., Puty, B., Benzecry, R., Picanço-Diniz, D.L.W., Gouveia Jr., A.G., Oliviera, K.R.M. & Herculano, A.M. (2014). Fingerprinting of psychoactive drugs in zebrafish anxiety-like behaviors. PLOS ONE, 9(7), e103943. DOI: 10.1371/journal.pone.0103943 CR - Maximino, C., de Brito, T.M., da Silva Batista, A.W., Herculano, A.M., Morato, S. & Gouveia, A. (2010). Measuring anxiety in zebrafish: A critical review. Behavioural Brain Research, 214(2), 157-171. DOI: 10.1016/j.bbr.2010.05.031 CR - Monkman, G.G., Hyder, K., Kaiser, M.J. & Vidal, F.P. (2019). Using machine vision to estimate fish length from images using regional convolutional neural networks. Methods in Ecology and Evolution, 10(12), 2045-2056. DOI: 10.1111/2041-210X.13282 CR - Nath, A.K., Roberts, L.D., Liu, Y., Mahon, S.B., Kim, S., Ryu, J.H., Werdich, A., Januzzi, J.L., Boss, G.R., Rockwood, G.A., MacRae, C.A., Brenner, M., Gerszten, R.E. & Peterson, R.T. (2013). Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. The FASEB Journal, 27(5), 1928-1938. DOI: 10.1096/fj.12-225037 CR - Niu, B., Li, G., Peng, F., Wu, J., Zhang, L. & Li, Z. (2018). Survey of Fish Behavior Analysis by Computer Vision. Journal of Aquaculture Research & Development, 9(5). DOI: 10.4172/2155-9546.1000534 CR - Papadakis, V.M., Papadakis, I.E., Lamprianidou, F., Glaropoulos, A. & Kentouri, M. (2012). A computer-vision system and methodology for the analysis of fish behavior. Aquacultural Engineering, 46, 53-59. DOI: 10.1016/j.aquaeng.2011.11.002 CR - Pérez, D., Ferrero, F.J., Alvarez, I., Valledor, M. & Campo, J.C. (2018). Automatic measurement of fish size using stereo vision. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-6. DOI: 10.1109/I2MTC.2018.8409687 CR - Petrellis, N. (2021). Measurement of fish morphological features through image processing and deep learning techniques. Applied Sciences, 11(10), 4416. DOI: 10.3390/app11104416 CR - Prober, D.A., Rihel, J., Onah, A.A., Sung, R.J. & Schier, A.F. (2006). Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. The Journal of Neuroscience, 26(51), 13400-13410. DOI: 10.1523/JNEUROSCI.4332-06.2006 CR - Pylatiuk, C., Zhao, H., Gursky, E., Reischl, M., Peravali, R., Foulkes, N. & Loosli, F. (2019). DIY automated feeding and motion recording system for the analysis of fish behavior. Technology Briefs, 24(4), 394-398. DOI: 10.1177/2472630319841412 CR - Qian, Z-M., Cheng, X.E. & Chen, Y.Q. (2014). Automatically detect and track multiple fish swimming in shallow water with frequent occlusion. PLOS ONE, 9(9), e106506. DOI: 10.1371/journal.pone.0106506 CR - Rao, R.M. & Arora, M.K. (2004). Overview of image processing. Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data, 51-85. DOI: 10.1007/978-3-662-05605-9_3 CR - Rico-Díaz, Á.J., Rabuñal, J.R., Gestal, M., Mures, O.A. & Puertas, J. (2020). An application of fish detection based on eye search with artificial vision and artificial neural networks. Water, 12(11), 3013. DOI: 10.3390/w12113013 CR - Rihel, J., Prober, D.A., Arvanites, A., Lam, K., Zimmerman, S., Jang, S., Haggarty, S.J., Kokel, D., Rubin, L.L., Peterson, R.T. & Schier, A.F. (2010). Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science, 327(5963), 348-351. DOI: 10.1126/science.1183090 CR - Safaei, N., Smadi, O., Masoud, A. & Safaei, B. (2022). An automatic image processing algorithm based on crack pixel density for pavement crack detection and classification. International Journal of Pavement Research and Technology, 15, 159-172. DOI: 10.1007/s42947-021-00006-4 CR - Stewart, A., Gaikwad, S., Kyzar, E., Green, J., Roth, A. & Kalueff, A.V. (2012). Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology, 62(1), 135-143. DOI: 10.1016/j.neuropharm.2011.07.037 CR - Stewart, A., Maximino, C., De Brito, T.M., Herculano, A.M., Gouveia Jr., A., Morato, S., Cachat, J.M., Gaikwad, S., Elegante, M.F., Hart, P.C. & Kalueff, A.V. (2011). Neurophenotyping of adult zebrafish using the light/dark box paradigm. Neuromethods, 51, 157-167. DOI: 10.1007/978-1-60761-953-6_13 CR - Torjesen, I. (2014). Number of animals used in science increased slightly in 2013, Home Office reports. BMJ, 349, g4586. DOI: 10.1136/bmj.g4586 CR - van der Sluijs, I., Gray, S.M., Amorim, M.C.P., Barber, I., Candolin, U., Hendry, A.P., Krahe, R., Maan, M.E., Utne-Palm, A.C., Wagner H.J. & Wong, B.B.M. (2011). Communication in troubled waters: Responses of fish communication systems to changing environments. Evolutionary Ecology, 25, 623-640. DOI: 10.1007/s10682-010-9450-x CR - Wang, S.H., Cheng, X.E., Qian, Z-M., Liu, Y. & Chen, Y.Q. (2016). Automated planar tracking the waving bodies of multiple zebrafish swimming in shallow water. PLOS ONE, 11(4): e0154714. DOI: 10.1371/journal.pone.0154714 CR - Xia, Y., Xu, Y., Li, J., Zhang, C. & Fan, S. (2019). Recent advances in emerging techniques for nondestructive detection of seed viability: A review. Artificial Intelligence in Agriculture, 1, 35-47. DOI: 10.1016/j.aiia.2019.05.001 CR - Xu, W., Zhu, Z., Ge, F., Han, Z., & Li, J. (2020). Analysis of behavior trajectory based on deep learning in ammonia environment for fish. Sensors, 20(16), 4425. DOI: 10.3390/s20164425 CR - Zhang, H., Wu, J., Yu, H., Wang, W., Zhang, Y. & Zhou, Y. (2021). An underwater fish individual recognition method based on improved YoloV4 and FaceNet. 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), 196-200. DOI: 10.1109/IUCC-CIT-DSCI-SMARTCNS55181.2021.00042 CR - Zhang, L., Xiang, L., Liu, Y., Venkatraman, P., Chong, L., Cho, J., Bonilla, S., Jin, Z-B., Pang, C.P., Ko, K.M., Ma, P., Zhang, M. & Leung, Y.F. (2016). A naturally derived compound schisandrin B enhanced light sensation in the pde6c zebrafish model of retinal degeneration. PLOS ONE, 11(3), e0149663. DOI: 10.1371/journal.pone.0149663 CR - Zhao, X., Yan, S. & Gao, Q. (2019). An algorithm for tracking multiple fish based on biological water quality monitoring. IEEE Access, 7, 15018-15026. DOI: 10.1109/ACCESS.2019.2895072 CR - Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background subtraction. Proceedings-International Conference on Pattern Recognition, 2, 28-31. DOI: 10.1109/ICPR.2004.1333992 CR - Zivkovic, Z. & Van Der Heijden, F. (2006). Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 27(7), 773-780. DOI: 10.1016/j.patrec.2005.11.005 UR - https://doi.org/10.35229/jaes.1197703 L1 - https://dergipark.org.tr/en/download/article-file/2743737 ER -