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Spin 1 Spinor Construction with Clifford Algera and Dirac Spin 1/2 Spinors 

Murat AN1* 

ABSTRACT: A compatible spin 1 spinor representation with Clifford algebra (1,3) (or 1,3Cl ) is derived 

for both (1/ 2,1/ 2)  and (1,0) (0,1)  Lorentz group representations with spin 1/2 particles Dirac spinors 

in 1,3Cl . The relation between the two different representations of spin 1 spinors is analogous to the 

relation between the electromagnetic vector potential field A  and the electromagnetic field strength 

tensor F  . From this relationship, the two representations are combined by the formula

( , ) ( , ) /u p p p m     . We also note that the Grassmann basis provides more convenient basis for 

spin 1 spinors especially in chiral representations of (1,0) (0,1) , even though the Clifford basis is more 

fitting for spin 1/2 and (1/ 2,1/ 2)  spinor representations for both helicity and handedness. 
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INTRODUCTION  

         The first mathematical term spinors is discovered by Elie Cartan (Cartan, 1938). Later Paul 

Ehrenfest put the term “spinors” with his work on quantum physics (Tomonaga, 1998). It was Wolfgang 

Pauli who used the first spinors in mathematical physics in 1927 by his Pauli matrices (Pauli, 1927). In 

1930 G. Juvet (Juvet, 1930) and Fritz (Sauter, 1930) found that they could use left ideals of a matrix 

algebra to represent spinors. In this algebra, the left column of matrices could be used as vectors and left 

minimal ideals are spinor space. The usage of the minimal left ideal of Clifford algebras began with 

Marcel Riesz in 1947 (Riesz, 1947).  

         The paper begins with the definition and properties of Clifford algebra.  We continue with spinors 

in Clifford algebra. First, minimal left ideal or projection method of Dirac spinors similar to Hestenes’ 

description (Hestenes, 1975) in projective spin-1/2 representation group (1/ 2,0) (0,1/ 2) . Then, we 

use the vector definition of  1,3Cl  to find out the polarization vectors which are (1/ 2,1/ 2)  spinors in 

terms of Clifford numbers. Moreover, these spinors can be shown in terms of spin 1/2 spinors. It is 

discovered that (1,0) (0,1)  spin 1 spinors can be expressed as ( , ) ( , ) /u p p p m      similar to the 

electromagnetic field strength tensor F  and vector potential field A  are related to each other. In the 

next section, we argue that the Grassmann basis or Witt basis (Pavšič, 2010) is a more fitting choice of 

basis for the spinors in chiral representation and in spherical harmonics form of coordinates when 

comparing with the Clifford basis. We also pointed out how this basis is in harmony with natural way 

of occurring of particles like as in light-front form of dynamics.  The last section before conclution is 

about the how local transformations can express spin 1 spinors in terms of fibers in gauge fields. 

MATERIALS AND METHODS 

Clifford Algebra (1,3)  

           Clifford algebra (1,3) shortly 1,3Cl , is a Clifford algebra with Minkowski space metric which is

{1, 1, 1, 1}g diag      in quadratic form 
2x g x x 

  , where generators are   with 
        . 

The Clifford algebra 1,3Cl  consists of different grades as (1, , , , )I I      as scalar, vectors, bivectors, 

trivectors, and volume element which is 0 1 2 3I     . It has total 16 dimensions. 

           The entire grades or multivector structure of 1,3Cl  is  

𝐶𝑙1,3 = ℝ⊕ℝ4 ⊕Λ2ℝ4 ⊕Λ3ℝ4 ⊕Λ4ℝ4 

           The Poincare isomorphism to 1,3Cl  can be expressed as  𝑀𝜇𝜈 ≃ 𝑖𝛾𝜇 ∧ 𝛾𝜈/2 where the wedge 

product is   / 2              in shortly as   .  In Clifford algebra, we define the boost and 

rotation operators by rotors R . For boosts, the rotor is 0 /2i
iR e

 
 , 1,2,3i  . For rotations, it is 

/2k
ijR e
 

 , , 1, 2,3i j   with i j . The rotor transforms a vector v as 1' ,v RvR  this transformation is 

also the same for any multivector A  as 1' .A RAR                                                                                                                       

 

 

 



Murat AN 10(3): 1683-1691, 2020 

Spin 1 Spinor Construction with Clifford Algera and Dirac Spin 1/2 Spinors 

 

1685 

Spinors  

           We begin with the definition of Dirac spinors from (Hestenes, 1975) which are also left minimal 

ideals. Then, since Clifford algebra generators are already part of spin-1 group of (1/ 2,1/ 2) , 

polarization vectors ( , )p   are associated with Clifford numbers as vectors and expressed with the 

spherical harmonics in order to get -1,0,1 spin states. First, the rest frame spinors of (1/ 2,1/ 2)  can be 

defined as vectors of 1,3Cl  with Cartesian representation of their spins and then the derivation of the 

(1,0) (0,1)  spinors from the polarization vectors holds similarity between field strength tensor and 

vector potential as ( , ) ( , ) /u p p p m     . 

Hestenes’ Projection Method and Spin 1/2 Spinors 

Describing spinors as left minimal ideals in Clifford algebra is well known method (Pavšič, 2010; 

Lounesto, 1997; Hestenes, 1986). In this approach, column representation is used because of 

isomorphism between Clifford numbers and matrices. We take Hestenes’ convention of spinors which 

is 0 31/ 4(1 )(1 )U      projection for spinors as minimal left ideals. Here the factors 01/ 2(1 )  and 

31/ 2(1 )  are energy and spin projection operators and we make a slight notation as we use our spin 

operator as 12i   instead of 3 . Then, the projective spin spinor representation of (1/ 2,0) (0,1/ 2)  is 

given by 

0 12

1
(1 )(1 ).

2
u i                                                                                                             (7)    

 u  is given as positive energy and positive helicity spinor so in order to get other spinors, some operators 

are needed applied on spinor u  given by (7). Two operators are needed to get other spinors and these 

are charge and spin, raising and lowering operators:    

1 2

1
( ),

2
Q i                                                                                                                  (8)  

23 31

1
( ).

2
S i                                                                                                                  (9) 

They become 1(0)Q RQ R  and 1(0)S RS R  in moving frame. These two operators are 

the change of two projections in spinors: spin and energy (handedness). Since we only have two states: 

spin up or down or particle or anti-particle, one of the   get rid of one state and change the other state 

and they can be simplified for spin 1/2 case as 

,Q Q Q                  .S S S                                                                                     (10) 

The Dirac spinor representations can derived from u  via these operator as  

1 ,u u   2 ,u Su   1 ,SQu     2 ,Qu                                                                             (11) 

where they are spin up and down for particles and anti-particles and these spinors in moving frame are 

expressed as 

( ) ( )( ) (0).i iu p Ru                                                                                                                (12)    
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The rotor is chosen as a single boost in any direction (Dirac boost) 0 /2i
iR e

 
  

0cosh sinh
2 2

i

iR
  




  ,                                                                                                  (13) 

where cosh
2 2

E m

m

 
  and sinh

2 2 ( )

i ip

m E m

 





 with 1 2 2 2 3 2( ) ( ) ( )      . 

01 .
2

i

i

E m p
R

m E m


 
  

 
                                                                                              (14) 

and its conjugate is given by 1 1 1u u R . Spinors of anti-particles are charge conjugation of positive 

energy spinors so that they are given by 1 1*

2i u    and 2 2*

2i u    or negative energy solutions 

(Feynman-Stueckelberg interpretation) 1 4( ) ( )p u p   , 2 3( ) ( )p u p    instead of 3u  and 4u  and in 

terms of Clifford numbers  1 4

2iu    and 2 3

2iu   . However, the conjugate spinors can be found 

also with charge lowering operator in (8) to apply to spinor as shown in (11). 

The Polarization Vectors 

By definition Clifford numbers are also vectors as v x

  and we can begin with defining the 

0 helicity as the z direction vector as 3(0,0)   for ( , )p   in 1,3Cl . Using described spin raising and 

lowering operators from (9), S  and S   on 3(0,0)  , we can also define spin 1  and 1  polarization 

vectors so polarization vectors at rest frame becomes 

1 2(0, ) ( ) / 2,i                                                                                                     (15) 

3(0,0) ,                                                                                                                      (16) 

1 2(0, ) ( ) / 2.i                                                                                                     (17) 

These spinors also confirms a relationship between the polarization vectors and spherical harmonics as
1

1(0, ) Y  , 0

1(0,0) Y , 1

1(0, ) Y  .  

As in Lorentz transformations are done by two-sided rotors for spin 1 spinors contrary to spin-

1/2 spinors. The polarization vectors in momentum space boosted in any arbitrary direction by 

0 /2i
iR e

 
  as the same Dirac spinors used for spin-1/2 case. 

In comparison of these polarization vectors with the classical expressions in (1,3)SO  group 

presented, one-to-one correspondence of each component is found by ( , ) . ( , )p p      . 

 Similar to the notation from (Ashdown et al., 1998), spin 1 states from spin 1/2 states can be constructed 

as  

*

' ' .m m m mA                                                                                                                     (18) 
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The same connection can acquired for the polarization vectors as  

'( , ') ( ) ( ) ( )m mp m m u p u p p    '( ) ( ) ( )m mp p p   .                                                    (19) 

Where, 1( )p RSQR   is defined with spin operator S  and charge operator Q  from (10) and we can 

construct the polarization vectors from the Dirac spinors in 1,3Cl  as 

1 2 1 2( , ) ( ( ) ( ) ( ) ( )) / 2p u p p p u p    
1

1 2( ) / 2,R i R                                      (20)     

1 1 2 2( ,0) ( ( ) ( ) ( ) ( )p u p p u p p    1 1 2 2( ) ( ) ( ) ( )) / 2p u p p u p   1

3 ,R R                (21) 

2 1 2 1( , ) ( ( ) ( ) ( ) ( )) / 2p u p p p u p    
1

1 2( ) / 2.R i R                                        (22) 

As we expected, it shows a direct relation between change of spin of the spin 1/2 Dirac spinors and the 

polarization vectors. 

(1,0) (0,1)  Lorentz Group Spinors 

We use the relation similar to the electromagnetic field strength tensor related with the four 

potential as F A A        since the vector potential is .ip xA e  . Here, the field tensor becomes 
.( ) ip xF i p pe   where ( ) ( )p p

    and p p

 . Due to the similarity with F  , the spinor is 

given by ( ) /iu p p m  . For the rest frame, 0(0) iu    and our rest frame spinors on (1,0) (0,1)  

representation are thus given by 

01 12(0, ) (1 ) / 2,u i                                                                                                 (23) 

01 12(0, ) (1 ) / 2,u i                                                                                                   (24) 

03(0,0) .u                                                                                                                      (25) 

We can observe that the spinors of (1/ 2,1/ 2)  are associated with vectors while spin (1,0) (0,1)  group 

are with bivectors. 

There exist two  (2)SU  subalgebras in bivectors of 1,3Cl  which can be separated into A J iK   

and B J iK   to project right-handed and left-handed spinor parts in chiral representation in terms of 

rotation (J) and boost (K) operators. In Clifford algebra, we can write down A  and B  such that 

5(1 )A J   and 5(1 )B J   since 5J iK  . Thus, we have the same operator as spin 1/2 spinor to 

project into right-handed spinors (1,0)   and left-handed spinors (0,1)  as shown in Table. The electric 

and magnetic field can be expressed similarly as (1,0)E iB   and  (0,1)E iB   since these parts are 

related to the bivectors as F A

   with 


    and A A

 . 
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Table. Relation of { , , }x y z  directions in (1/ 2,1/ 2)  and in (1,0) (0,1)  representations for each right-

handed 5(1 )  and left-handed 5(1 )  cases. 

(1/ 2,1/ 2)  (1,0)                                (0,1)  

  
1     

01 23( )i     
01 23( )i    

  
2     

02 31( )i     
02 31( )i    

  
3     

03 12( )i     
03 12( )i    

 

 

 In order to find components of spinors, we will introduce a new basis Grassmann or Witt basis in 

the next section.  In this basis, we compare the (1,0) (0,1)  spinors with the spinors defined in terms of 

spin   states rather than in terms of the Cartesian states ( , , )x y z  and also in the Chiral basis.

RESULTS AND DISCUSSION 

Grassmann Algebra and Clifford Spinors 

In constructing spinors, we can use Grassmann or Witt basis from (Winnberg, 1977) instead of 

Clifford basis.  

  We can redefine our Clifford basis with a slight notation difference as 

1 0 3( ) / 2,         2 1 2( ) / 2,i                                                                         (26) 

1 0 3( ) / 2,         2 1 2( ) / 2,i                                                                           (27) 

where they satisfy the properties of Grassmann algebra as 

2 2 2 2

1 1 2 2( ) ( ) ( ) ( ) 0          and i j j i       for  i j                                          (28) 

The polarization vectors can be rewritten with this new basis as 

1 1 2 2( , ) ,L Rp 

                     (41) 

here 0 3( ) / 2     , 0 3( ) / 2     , 1 2( ) / 2R i    , 1 2( ) / 2L i    . 

 

Similarly (1,0) (0,1)  Lorentz group spinors in chiral representation: 

1 2

1 2 1 1 1 1 2 2 2 2( , ) ( )u p u u            3 4 5

1 2 1 2 1 1 1 1 2 2 2 2( )u u u                6

1 2 .u     (29) 

 When the Grassmann basis and Clifford basis are compared, one may see that the previous expression 

looks much nicer than the one in Clifford basis in previous section.  We also see how they are related in 

such a way that 2  and 2  defines circular polarizations (spin-down or spin-up in spin 1/2 spinors) and 

1  and 1  defines helicity   states and each components of ( , )u p   in 1,3Cl . 
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The u  spinor can be expressed with the polarization vector as 

( , ) ( , ) / ,u p p p m                                                                                                        (30) 

where p  as 
1 2 2 1

L Rp p p p p        . 

Now, it is possible to write down the u spinors components as  

1( , ) ( ) / ,L Lu p p p m                                   

2( , ) ( ) / 2 ,L R R Lu p p p p p m            

3( , ) ( ) / ,R Ru p p p m       

4 ( , ) ( ) / ,L Lu p p p m      

5( , ) ( ) / 2 ,L R R Lu p p p p p m             

6 ( , ) ( ) / .R Ru p p p m                                                                                                (31) 

This conversion works for any polarization vectors and spinors in any frame as long as the u  

spinor of spin-1 is expressed in chiral representation. We compared the polarization vectors from the 

previous works presented in (Ji et al., 2015; Li et al., 2015) where spin ( ,0) (0, )n n  spinors from 

1/ 2n   to 2n   including 1n   are presented in the form interpolating between the instant form 

dynamics and the front form dynamics, now known as the light-front dynamics. Regardless of the forms 

of the relativistic dynamics, we confirmed the validity of the above relation given by (30).

Spin 1 Spinors in Gauge Theory 

Gauge field is a local transformation and spin 1 fields are related with transformation between 

two spin 1/2 fields. Spin 1 spinors requires two sided transformation because they are considered to be 

mediators of spin 1/2 spinors and similar studies exist about two-sided equivalence in (Chisholm and 

Farwell, 1991). Fibers are a set of internal dimension and similar to operators given in (10) spin and 

charge and spin 1 spinors are local transformation of left minimal ideal spinors or projection spinors. 

The space fiber of left minimal ideal is the polarization vectors as 
1i

iq A mR R

   . 

 We can write down the fibers in the wave function as phase transformation 

'( )
ie A dx ipxx e e





 .                                                                                                              (32) 

Then we observe them in local transformation between two point of space-time so we can describe a 

transition between x and dx as 

2

'( ) '( ) '( ) '( ) ...
2

dx
x dx x x dx x  

                                                              (33) 

and when we take derivatives, the expansion of the wave function become 
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'( ) '( ) ( ) '( )x dx x i p eA x dx

         

         
2

2 2( ( ) ( ) ( )) '( ) ...
2

v

dx
p i p ie A e A p A p x

                                           (34) 

It can be noticed that while the polarization vectors appear in first order of the expansion, u spinors 

emerge in the second order in the transformation of the wave function. 

CONCLUSION 

We provide an easy and universal way to write down (1,0) (0,1)  spinors from polarization 

vectors ( (1/ 2,1/ 2) spinors) as shown in (44) by constructing spin-1 spinor in 1,3Cl . While we find a 

simple expression for their relation as /u p m    from F A  for 1,3Cl  spin 1 spinors, we need to 

define the basis with which the u spinor is expressed. We introduce Grassmann or Witt basis in terms of 

Clifford numbers to express u spinors in chiral representation since each Grassmann number is related 

with spin and helicity. The Clifford basis is more convenient for polarization vectors as 

( , ) . ( , )p p       since (1/ 2,1/ 2)  Lorentz group can be correlated with e x

  components as x



. However for chiral representation, the Grassmann basis is more suitable since we could express the 

helicity with 1 1{ , }   and the spin with 2 2{ , }   and the u spinor components determined by both the spin 

states {1,0, 1}  and the handedness { , }R Lu u  in (1,0) (0,1)  Lorentz group spinor. Moreover the spin 

1/2 Dirac spinor are connected with the Grassmann basis with 2 2   and 2 2   since they represent 

positive and negative spin projection respectively. Nevertheless, 1 1   and 1 1   represent helicity 

projection because it shows relation between z-direction of momentum and energy not energy projection 

alone but they are still connected.  
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