

Araştırma Makalesi

Research Article

İZOTROPİK MALZEMELERİN SÜNEK KIRILMA GEZENEKLERİNİN TAYİNİ

Fuzuli Ağrı AKÇAY*

İstanbul Teknik Üniversitesi, Gemi İnşaatı ve Deniz Bilimleri Fakültesi, İstanbul, Türkiye Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA

Anahtar Kelimeler	Öz				
Kırılma,	Kırılma mekaniği camiası tarafından genel kabul görmüş bir sünek kırılma kriteri				
Süneklik,	henüz bulunmamaktadır. Literatürdeki çeşitli sünek kırılma kriterlerinin, kalibre				
Plastisite,	edilen parametre sayısı ve modelin doğruluğu göz önünde bulundurularak				
KAEB,	karşılaştırılması sonucunda Maksimum Kayma Gerilmesi (MSS) kriterinin en				
MSS.	avantajlı kriter olduğu gözlemlenmiştir. Buna karşın, bu karşılaştırma				
	çalışmalarında yakın zamanda geliştirilmiş Karr-Akçay Enerji Dengesi (KAEB)				
	kriteri göz önünde bulundurulmamıştır. Dolayısıyla, bu çalışmada, KAEB kriteri ile				
	MSS kriteri deney sonuçları üzerinden karşılaştırılarak, her iki kriterin üstünlükleri				
	ve eksiklikleri tartışılmıştır. MSS kriterinin yalnızca Lode açısına/parametresine				
	bağlı bir kriter olması temel zayıflıklarından bir tanesidir. Buna karşın, KAEB kriteri				
	gerilme üçeksenliliği ve Lode açısı/parametresi bağlılıklarını özünde içermektedir.				
	Bununla birlikte, her iki kriter de yalnızca bir adet kalibrasyon parametresi hesabını				
	gerektirir. Bu çalışmada, kalibre edilen parametre sayısı ve modelin doğruluğu göz				
	önünde bulundurulduğunda, KAEB kriterinin MSS kriterine göre daha avantajlı bir				
	kriter olduğu gözlemlenmiştir.				

CHARACTERIZATION OF DUCTILE FRACTURE LOCI OF ISOTROPIC MATERIALS

Keywords	Abstract				
Fracture,	There is no generally accepted ductile fracture criterion by the fracture mechanics				
Ductility,	community. As a result of the comparison of various ductile fracture criteria				
Plasticity,	proposed in the literature, Maximum Shear Stress (MSS) criterion has been				
KAEB,	observed to be the most advantageous criterion with respect to the number o				
MSS.	calibrated parameters and the accuracy of the model. Nevertheless, recently developed Karr-Akçay Energy Balance (KAEB) criterion was not evaluated in these studies. Therefore, in this study, KAEB criterion and MSS criterion are compared, and the advantages and disadvantages of both criteria are discussed. One of the				
	fundamental shortcomings of MSS criterion is that the criterion is based on Lode angle/parameter only. In contrast, KAEB criterion contains the stress triaxiality and Lode angle/parameter dependence inherently. Both criteria, however, require only one calibration parameter. In this study, KAEB criterion is observed to be more advantageous compared to MSS criterion with respect to the number of calibrated parameters and the accuracy of the model.				
Alıntı / Cite	· · ·				

Akçay, F. A. (2020). İzotropik Malzemelerin Sünek Kırılma Gezeneklerinin Tayini, Mühendislik Bilimleri ve Tasarım Dergisi, 8(1), 65-73.

Yazar Kimliği / Author ID (ORCID Number)	Makale Süreci / Article Process		
F. A. Akçay, 0000-0002-5116-0069	Başvuru Tarihi / Submission Date	19.03.2019	
	Revizyon Tarihi / Revision Date	23.11.2019	
	Kabul Tarihi / Accepted Date	06.12.2019	
	Yayım Tarihi / Published Date	20.03.2020	

^{*} İlgili yazar / Corresponding author: akcayfu@itu.edu.tr, +90-212-285-6427

1. Giriș (Introduction)

Gemi, açık deniz yapıları, uçak ve otomobil gibi büyük taşıma araçlarını güvenli bir şekilde tasarlamak ve inşa etmek insanlığın bilhassa ilgisini çekmiştir. Çünkü bahsi geçen mobil yapıların hasara uğraması insan hayatına da mal olabileceğinden, bu yapılar güvenli bir operasyon ömrüne sahip olmalıdır. Bu tür yapıların güvenliği büyük ölçüde, sistemin çarpışma, diğer nesnelere kazara çarpma ve bazı durumlarda patlama gibi aşırı yükleme koşullarına dayanma kabiliyetine bağlıdır. Dolayısıyla, tasarımcıların ve mühendislerin, tasarım gereksinimlerini karşılarken, asgari ağırlık ve maliyetle birlikte, yapının herhangi bir bölümünün kırılmaya karşı dayanımını da göz önünde bulundurmaları gerekmektedir.

İnsanlığın kırılma konusuna olan ilgisi çok uzun zaman önce başlamış olsa da, kırılmaya sebep olan mekanizmaları anlama ve açıklama çabalarının çoğu son yüzyılda ilerleme kaydetmiştir. Griffith (1921), enerji dengesi yaklaşımı kullanarak halihazırda eliptik bir çatlak bulunduran (gevrek) malzemeler için kırılma kriteri geliştirmiştir. Kırılma kriterinin çıkarımında, Griffith sistemin yalnızca elastik gerinim enerjisini hesaba dahil etmiş ve formülasyonunu gevrek bir malzeme olan cam ile deneyler yaparak doğrulamıştır. Bununla birlikte, bu kriter sünek malzemeler için tatmin edici sonuçlar vermemiştir. Daha sonra Orowan (1945, 1949) ve Irwin (1948) plastik deformasyonun sünek kırılmada önemli bir rol oynadığını göstermiştir; dolayısıyla, plastik iş katkısı formülasyona dahil edilmelidir. Benzer bir çabada, Irwin (1957), çatlak ucu civarındaki gerilme dağılımının "çatlak-uzama-kuvveti" ile belirlenebildiğini göstermiş ve Griffith'in formülasyonunu rastgele çatlak geometrileri ve yükleme koşulları için genelleştirmiştir. Gerilme şiddeti faktörü ve çatlak-uzama-kuvveti kavramlarının Irwin (1957) tarafından geliştirilmesinden yaklaşık on yıl sonra, çatlak-uzama-kuvveti (aynı zamanda gerinim enerji salınım oranı) hesabı için Rice (1968) tarafından yeni bir yöntem geliştirilmiştir. Bu yöntem, yörüngeden bağımsız bir çizgisel integralin değerlendirilmesinden oluşur ve J integrali olarak adlandırılır.

Takip eden eğilim, mekanizma bazlı kırılma modelleri geliştirmeye yönelik olmuştur. Boşluk oluşma, büyüme ve birleşme mekanizması tespit edilmiş ve kapsamlı bir şekilde incelenmiştir. McClintock (1968), Rice ve Tracey (1969), Gurson (1977), Tvergaard (1981) ve Tvergaard ve Needleman (1984) tarafından yapılan temel çalışmalar sünek kırılmanın bilhassa hidrostatik basınçtan etkilendiğini ortaya çıkarmıştır. Buna göre, malzeme sünekliğinin bir ölçüsü olan eşdeğer gerinim, gerilme tensörünün birinci değişmezine bağlı hale getirilmiştir. Bununla birlikte, yukarıda bahsedilen çalışmalar, nispeten yüksek gerilme üçeksenliliği ile tayin edilen açılma kırılmasını doğru tespit etmekte, fakat kayma kırılması tespitinde yanılmaktadır. Dolayısıyla, kayma kırılmasını tanımlamak üzere boşluk büyüme ve birleşme modellerini genişleten girişimlerde bulunulmuştur (bkz. örn. Nahshon ve Hutchinson, 2008; Malcher vd., 2014). Farklı bir mikromekanik boşluk büyüme modeli Kiran ve Khandelwal (2013a) tarafından önerilmiş, Kiran ve Khandelwal (2013b) tarafından ise ASTMA992 çeliği üzerinde uygunlanmıştır.

Fizik temelli sünek kırılma modellerine paralel olarak, kapsamlı deney sonuçlarına dayanarak önerilen birtakım ampirik kırılma modelleri de literatürde kalıcı ver tutmustur (bkz. örn. Cockcroft ve Latham, 1968; Hancock ve Mackenzie, 1976; Johnson ve Cook, 1985). Baska kapsamlı bir denev programı, eksenel simetrik ve düzlem gerilme yükleme koşulları altında basma, kayma, tek eksenli ve çift eksenli gerilmeler de dahil olmak üzere, Bao ve Wierzbicki (2004) tarafından Al2024-T351 alaşımı üzerinde yürütülmüstür. Wierzbicki vd. (2005), birlesik çekme-kayma-basma yüklemesi altında özel olarak tasarlanmış kelebek numuneler üzerinde bir dizi kırılma testi gerçekleştirmiştir. Çekme-burulma yükleme koşulları altındaki boru numunelerinin iki-eksenli kırılma testlerinin sonuçları Barsoum ve Faleskog (2007) tarafından yayınlanmışken, Korkolis ve Kyriakides (2008) iç başınç ve eksenel gerilme veya basmaya tabi tutulmuş 6260-T4 alüminyum tüplerinin kırılmasını incelemiştir. Birleşik çekme-burulma deneyleri TRIP780 çelik levhalar (bkz. örn. Dunand ve Mohr, 2011) ve yüksek mukavemetli çelik 36NiCrMo16 (bkz. örn., Papasidero vd., 2014) da dahil olmak üzere, farklı malzemeler için de gerçekleştirilmiştir. Yakın zamanda, Charoensuk vd. (2017) yüksek mukavemetli çelik sınıfı 780 ve 1000'den üç farklı doğrultuda alınan çeşitli geometrik numuneler üzerinde çekme teştleri gerçekleştirmiş ve gerilme üçeksenliliği, Lode açışı ve eşdeğer gerinim uzayında kırılma gezeneğini elde etmiştir. Son onbeş yılda yürütülen bu deneysel çalışmaların hepsinde malzeme sünekliğinin hem gerilme üçeksenliliği hem de Lode açısına/parametresine bağlı olduğu gösterilmiştir.

Bu doğrultuda, araştırmacılar mevcut modelleri genişletmiş, gerilme üçeksenliliği ve Lode açısına/parametresine bağlılığı içeren yeni modeller geliştirmiştir. Gerilme tensörünün üçüncü değişmezi Wierzbicki ve Xue (2005) tarafından ortaya atılmış, (üçüncü deviatorik gerilme değişmezine bağlı olan) Lode açısının etkisi Bai ve Wierzbicki (2008) tarafından sünek kırılma modeline dahil edilmiştir. Asimetrik kırılma modelinin genel formu, klasik Mohr-Coulomb kırılma modelinin eşdeğer plastik gerinim, gerilme üçeksenliliği ve Lode açısı uzayına aktarılmasıyla Bai ve Wierzbicki (2010) tarafından ortaya konulmuştur. Modifiye edilmiş Mohr-Coulomb (MMC) kırılma modeli, Li vd. (2010) ve Luo ve Wierzbicki (2010) tarafından yüksek mukavemetli çelik ve alüminyum alaşımları üzerindeki deney sonuçları kullanılarak doğrulanmıştır. Bu model anizotropik bir akma kriteriyle birlikte AHSS çeliği için köşe kırılması ve düzlem gerinim simülasyonlarında da uygulanmıştır (bkz. örn. Wang vd., 2014; Wang ve Wierzbicki, 2015). Gerilme vektörünün büyüklüğünü (MSV) kullanan bir kriter Khan ve Liu (2012) tarafından önerilmiştir. Lou ve Huh (2013) metal levha kırılması tahmininde kullanılmak üzere bir sünek kırılma modeli önermiş ve bu model Park vd. (2015) tarafından hem anizotropi hem de yükleme geçmişi etkilerini göz önüne alacak şekilde modifiye edilmiştir. Mohr ve Marcadet (2015), lokalizasyon kriterinin, gerilme uzayından, eşdeğer plastik gerinim, gerilme üçeksenliliği ve Lode açısı uzayına aktarılmasıyla yeni bir kırılma modeli elde etmiştir. Yakın zamanda, Jia ve Bai (2016a, 2016b) gerilme değişmezi bazlı MMC kırılma modelini, düzlem gerilme koşulu altında tamamen gerinim bazlı MMC (eMMC) modeline dönüştürmüştür. Bu modifikasyon, kırılma gerinimini, gerilme üçeksenliliği ve Lode açısı yerine doğrudan dijital görüntü korelasyonu (DIC) ile ölçülebilen 'gerinim oranı' uzayında öngörmeyi mümkün kılmıştır. Bu model, Jia vd. (2017) tarafından TRIP780 ve magnezyum AZ31B-H24 alaşım levhalarının kırılma özelliklerini araştırmak için kullanılmıştır. Yakın zamanda geliştirilmiş diğer bir model ise enerji konseptine dayanmaktadır. Karr ve Akçay (2016), enerji salınım oranlarının sürekli ortamda modellenmesine dayanan, gerilme üçeksenliliği ve Lode açısı/parametresi bağlılıklarını özünde içeren analitik bir sünek kırılma kriteri geliştirmiştir.

Yukarıdaki metinde de geniş bir şekilde değinildiği üzere, kırılma mekaniğinde farklı çalışma grupları tarafından bir çok kriter önerilmiştir. Buna karşın, her bir kriterin kendine özgü üstünlükleri ve eksikleri bulunması sebebiyle kırılma mekaniği camiası tarafından henüz genel kabul görmüş bir sünek kırılma kriteri bulunmamaktadır. Dolayısıyla, bu çalışmanın amacı, yakın zamanda geliştirilmiş Karr-Akçay Enerji Dengesi (KAEB) kriteri ile Maksimum Kayma Gerilmesi (MSS) kriterini deney sonuçları üzerinden karşılaştırarak, yeni kriterin değerlendirilmesi ve literatürdeki eksikliği giderme ihtimalini tartışmaktır. Karşılaştırmada MSS kriterinin kullanılmasının sebebi, literatürdeki çeşitli sünek kırılma kriterlerinin kalibre edilen parametre sayısı ve modelin doğruluğu göz önünde bulundurularak karşılaştırılması sonucunda, MSS kriterinin en avantajlı kriter olduğunun gözlemlenmiş olmasıdır (Wierzbicki vd., 2005; Habibi vd., 2018).

Makale şu şekilde devam etmektedir: Kırılma kriterleri ikinci bölümde tanıtılmış ve literatürdeki deney sonuçları kullanılarak üçünce bölümde kalibre edilmiştir. Elde edilen sonuçlar ise dördüncü bölümde sunulmuş ve tartışılmıştır.

2. Kırılma Kriterleri: Karr-Akçay Enerji Dengesi (KAEB) Kriteri ve Maksimum Kayma Gerilmesi (MSS) Kriteri (Fracture Criteria: Karr-Akçay Energy Balance (KAEB) Criterion and Maximum Shear Stress (MSS) Criterion)

Bu bölümde, öncelikle kırılma mekaniğinde oldukça sık kullanılan iki parametrenin (gerilme üçeksenliliği ve Lode parametresi) matematiksel tanımları sunulmuştur. Daha sonra, karşılaştırılması ve değerlendirilmesi yapılacak sünek kırılma kriterleri sunulmuştur.

Gerilme üçeksenliliği ve Lode parametresi her üç gerilme değişmezini de tanımlarında barındırdığı için herhangi bir gerilme durumunu temsil etmede kullanılabilir. Gerilme üçeksenliliği birinci gerilme değişmezinin (hidrostatik basıncın) etkisini barındırmakta iken, Lode parametresi üçüncü gerilme değişmezinin etkisini barındırmaktadır. Gerilme üçeksenliliği (η) ve Lode parametresi (\mathcal{L}) aşağıdaki gibi tanımlanmıştır:

$$\eta = \frac{(\sigma_{I} + \sigma_{II} + \sigma_{III})/3}{\sqrt{\frac{1}{2} \left[(\sigma_{I} - \sigma_{II})^{2} + (\sigma_{II} - \sigma_{III})^{2} + (\sigma_{III} - \sigma_{I})^{2} \right]}}$$
(1a)

$$L = \frac{2\sigma_{II} - \sigma_{I} - \sigma_{III}}{\sigma_{I} - \sigma_{III}}$$
(1b)

Burada, $\sigma_I \ge \sigma_{II} \ge \sigma_{III}$ olmak üzere her bir gerilme alt indiste belirtilen doğrultudaki asal gerilmeyi temsil etmektedir.

2.1 Karr-Akçay Enerji Dengesi (KAEB) Kriteri (Karr-Akçay Energy Balance (KAEB) Criterion)

Enerjinin korunumu prensibi, bir cisim üzerinde dış kuvvetler tarafından yapılan iş ve diğer tüm enerji değişim oranları toplamının, iç enerji ve kinetik enerji değişim oranları toplamına eşit olmasını gerektirir (Eringen, 1980). Bu çalışmada, sistem üzerinde yapılan işin yalnızca dış kuvvetler tarafından yapıldığı, bundan başka hiçbir enerjinin sisteme girmediği durum değerlendirilmektedir. Ayrıca, sistemin dengede olduğu ve yarı-statik koşullara maruz kaldığı varsayılmıştır (yani, sistemin kinetik enerjisi ihmal edilmiştir). Ek olarak, sünek kırılmada plastik şekil değiştirme egemen olduğu için, plastik işe nazaran oldukça küçük olan elastik iş ihmal edilmiştir. Son olarak, makro ölçekte başlangıçta herhangi bir çatlak olmadığı ve malzemenin izotropik olduğu varsayılmıştır. Sistem minimum enerji durumunu koruduğu için, başlangıçta, kırılmamış/sağlam sistemin enerji değişim oranı kırılan sistemden daha azdır. Başka bir deyişle, minimum enerji durumunu korumak isteyen sistem, kırılma modundaki enerji değişim oranı kırık olmayan sisteme göre daha düşük olursa kırılacaktır. Bu nedenle, kritik duruma, sağlam sistemin enerji değişim oranı ile kırılan sistemin enerji değişim oranı dengelenince ulaşılır (Karr ve Akçay, 2016).

Şekil 1. Muhtemel kırılma düzlemi (Potential fracture plane)

Kırılmadan önce üniform gerilmeye maruz kalan, mevcut boyutları (sırasıyla x_I , x_{II} , ve x_{III} doğrultularında) $l_I \times l_{II} \times l_{III}$ olan dikdörtgen kartezyan koordinat sisteminde sürekli bir ortamı göz önünde bulunduralım. x_I 'in ve x_{III} 'ün, sırasıyla maksimum ve minimum asal gerilme/gerinim doğrultularında olduğunu varsayalım. Birim hacimdeki toplam iş artışı, asal gerilmeler ve asal gerinimler cinsinden,

$$dW = \sigma_I d\varepsilon_I + \sigma_{II} d\varepsilon_{II} + \sigma_{III} d\varepsilon_{III}$$
⁽²⁾

şeklinde yazılabilir. Burada, $\sigma_I \ge \sigma_{II} \ge \sigma_{III}$ geçerlidir.

Şekil 1'e istinaden, $x_I - x_{III}$ düzlemindeki kırılma düzlemi normalinde oluşmaya başlayan çatlağı ele alalım. Bu oluşum kayma modu (Mod II) kırılmasına tekabül etmektedir. Öncelikle, koordinat sistemini x_1 , x_2 ve x_3 olarak değiştirelim; öyle ki x_1 ekseni $x_I - x_{III}$ düzleminde ve kırılma düzlemine teğet doğrultuda yer alsın, x_2 ekseni ise x_{II} ekseniyle çakışsın. Bu durumda, kırılmamış sistemdeki birim hacim için plastik iş artışı

$$dW = \tau d\gamma + \sigma_{11} d\varepsilon_{11} + \sigma_{22} d\varepsilon_{22} + \sigma_{33} d\varepsilon_{33}$$
(3)

ile verilir. Eşitlik (3)'de gerilme ve gerinim bileşenleri, asal doğrultulardan ziyade yeni tanımlanmış koordinat sisteminde ifade edilmiştir. Bu durumda, kayma gerinimi $\gamma = \gamma_{31}$, kayma gerilmesi $\tau = \tau_{31}$ olur.

Kırılan cismin enerji değişim oranı, kırılan hacim elemanının plastik iş artışı, dW^* , birim alandaki kritik eşdeğer enerji salınım oranı, Γ , ve varsa birim alandaki sürtünme enerjisi kayıpları, \mathcal{F} , ile ilişkilendirilebilir. Birim alandaki sürtünme enerjisi kayıpları

$$\mathbf{F} = \mu \sigma_N l_{I,0} \tag{4}$$

bağıntısıyla ifade edilebilir. Burada, μ ve σ_N , sırasıyla, sürtünme katsayısını ve kırılma anındaki normal basma gerilmesini temsil etmektedir.

Şekil 1'de tasvir edilen taralı kırılma düzlemi A alanına sahiptir:

$$A = \frac{l_{II} l_{III}}{\sin(\theta_f)} \tag{5}$$

Burada, θ_f kırılma düzleminin boy, x_I , doğrultusuyla yaptığı açıdır.

Kırılan elemanla ilişkili birim hacimdeki plastik iş artışı ise şu şekilde ifade edilebilir:

$$dW^* = \tau^* d\gamma^* + \sigma_{11}^* d\varepsilon_{11}^* + \sigma_{22}^* d\varepsilon_{22}^* + \sigma_{33}^* d\varepsilon_{33}^*$$
(6)

Kırılmanın, iş dönel bileşeninin kaybına karşılık geldiği varsayımıyla, $\tau^* d\gamma^* = 0$ olur. Bununla birlikte, diğer asal gerilmeler ve gerinimler sınır koşullarıyla tutarlı olarak etkimeye devam eder ve $\sigma_{22}^* d\varepsilon_{22}^* = \sigma_{22} d\varepsilon_{22}, \sigma_{33}^* d\varepsilon_{33}^* = \sigma_{33} d\varepsilon_{33}$ geçerlidir. Ayrıca, kırılma yüzeylerine basma normal gerilmesi (σ_N) etki ediyorsa, temas ve kayma nedeniyle ortaya çıkan birim alandaki sürtünme enerjisi kaybı da hesaba dahil edilmelidir.

Kırılmamış ve kırılmış sistemin enerji değişim oranlarının eşitlenmesiyle kritik koşul elde edilir:

$$l_{l}l_{l}l_{l}dW = \left[\left(\Gamma_{l} + F \right) \times A \right] d\gamma + l_{l}l_{l}dW^{*}$$
⁽⁷⁾

Sınır koşullarının uygulanması ve gerekli sadeleştirmelerin yapılmasıyla kayma modu kırılması aşağıdaki kritik koşulla öngörülür:

$$e^{\varepsilon_I}\tau = \frac{C_{II} + \mu\sigma_N}{\sin\theta_f} \tag{8}$$

Burada,

$$C_{II} = \frac{\Gamma_{II}}{l_{I,0}} \tag{9}$$

$$\sigma_{N} = \frac{|\sigma_{I} + \sigma_{III}|}{2} + \frac{\sigma_{I} - \sigma_{III}}{2} \cos 2\theta_{f}$$
(10a)

$$\tau = \left(\frac{\sigma_I - \sigma_{III}}{2}\right) \sin 2\theta_f \tag{10b}$$

ile belirlenir. τ , kayma gerilmesini temsil etmektedir. C_{II} , gerilme ile aynı birime sahiptir ve spesifik enerji salınım yoğunluğu (birim uzunluktaki birim alan başına denk gelen enerji salınım oranı) olarak adlandırılmıştır. Γ_{II} ise kayma modu (Mod II) kırılması için kritik eşdeğer enerjisi salınım oranını temsil eder. $l_{I,0}$ karakteristik uzunluğu, mikro-yapısal kusurlar arasındaki ortalama mesafeyle ilişkilendirilebilir (Xia ve Shih, 1995). Bu nedenle, hem kritik eşdeğer enerjisi salınım oranı (Γ) hem de karakteristik uzunluk ($l_{I,0}$) malzemeye has değerlerdir.

Sürtünmenin etkin olduğu kayma modu kırılmasının gerçekleşmesi için $\sigma_{III} < -2\sigma_I$ olmalıdır, böylece, $\sigma_I + \sigma_{III} < 0$ olur. Eşitlik (10)'un Eşitlik (8)'e konulmasıyla

$$e^{\varepsilon_{I}} \left(\sigma_{I} - \sigma_{III}\right) \sin 2\theta_{f} \sin \theta_{f} + \mu \left[\left(\sigma_{I} + \sigma_{III}\right) + \left(\sigma_{III} - \sigma_{I}\right) \cos 2\theta_{f} \right] = 2C_{II}$$
(11)

elde edilir. Normal basma gerilmesinin kaybolacağı kırılma düzlemi açısını θ_n ile ifade edelim. $\theta_f \ge \theta_n$ olduğunda denklemin sol tarafındaki sürtünme terimi ortadan kalkar. Ayrıca, sürtünmenin olmadığı hallere tekabül eden kritik koşul, sürtünme katsayısı $\mu = 0$ alınarak da elde edilebilir.

2.2 Maksimum Kayma Gerilmesi (MSS) Kriteri (Maximum Shear Stress (MSS) Criterion)

Maksimum Kayma Gerilmesi (MSS) kriteri, kırılmanın, kayma gerilmesinin maksimum olduğu düzlemde olacağını öngörmektedir. Dolayısıyla, kırılma, maksimum kayma gerilmesinin kritik değere ulaşmasıyla gerçekleşir ve

$$\frac{\sigma_I - \sigma_{III}}{2} = C_{MSS} \tag{12}$$

ile ifade edilir. Burada, $C_{\rm MSS}$ maksimum kayma gerilmesinin ulaştığı kritik değeri temsil etmektedir.

3. Kırılma Kriterlerinin Kalibrasyonu (Calibration of the Fracture Criteria)

3.1. Malzeme (Material)

Al2024-T351 alaşımı uzay ve havacılık sanayisinde en çok kullanılan alüminyum alaşımı (Rodríguez-Millán vd., 2015) olmanın yanında, üstün darbe özelliklerine sahip olan ve balistik uygulamalar için de tercih edilen elyafmetal laminatlarda (FMLs) en çok kullanılan iki metaldan birisidir (Sadighi vd., 2012). Yukarıda bahsi geçen ve benzeri bir çok mühendislik uygulamasında tercih edilmesi ve dolayısıyla açık literatürde oldukça fazla deney verisi rapor edilmesi sebebiyle, bu çalışmada Al2024-T351 alaşımı göz önünde bulundurulmuştur.

Al2024-T351 alaşımına ait deney verileri, Bao ve Wierzbicki (2004), Bai ve Wierzbicki (2010) ve Khan ve Liu (2012) çalışmalarından temin edilmiştir. Yazarlar, kayma gerilmesi, burulma, tek eksenli ve çift eksenli çekme ve basma gerilmesi koşullarını içeren çok kapsamlı bir deney programı yürütmüştür. Farklı boyutlarda ve çeşitli geometrik şekillere sahip çok sayıda numune kullanıldığı için, numunelere ait detayların burada sunulması mümkün değildir. Dolayısıyla, deney programı yalnızca özet halinde Tablo 1'de sunulmuştur. Numune tip ve boyut detaylarıyla ilgilenen okuyucular, Bao ve Wierzbicki (2004), Bai ve Wierzbicki (2010) ve Khan ve Liu (2012) kaynaklarından detaylara erişebilirler.

Mevcut çalışma kapsamında kullanılan deney verileri Tablo 1'de listelenmiştir. Teorik modellerle uyumlu olması için yalnızca kayma modu (Mod II) kırılmasıyla sonuçlanan deney verileri göz önünde bulundurulmuştur. Gerilme üçeksenliliği ve Lode açısı/parametresi düzlem gerilme koşulları altında eşsiz bir şekilde ilişkilendirilebildiği için (Bai ve Wierzbicki, 2010), tabloda yalnızca gerilme üçeksenliliği verileri sunulmuştur. İlgilenen okuyucular yürütülen tüm deneylere ait verilerin derlemesine Lou vd. (2014)'den ulaşabilir. Deney verileriyle tutarlı olması için Al2024-T351 alaşımının plastik bölgedeki davranışı von-Mises akma kriteri ve Hollomon pekleşme bağıntısı kullanılarak tanımlanmıştır.

Deney numarası	Numune tipi	Yükleme durumu	Gerilme üçeksenliliği (η)	Eşdeğer kırılma gerinimi ($\overline{\varepsilon_f}$)
#5	Dairesel silindir	Tek eksenli basma	-0.278	0.451
#6	Dairesel silindir	Tek eksenli basma	-0.234	0.380
#7	Dairesel silindir	Tek eksenli basma	-0.233	0.356
#8	Dairesel silindir	Tek eksenli basma	-0.224	0.341
#9	Çentikli dairesel silindir	Tek eksenli basma	-0.248	0.622
#10	Özel geometri	Kayma	0.012	0.211
#11	Özel geometri	Çekme–Kayma	0.117	0.261
#12	Dairesel oyuklu levha	Tek eksenli çekme	0.343	0.310
#13	Kemik şekilli	Tek eksenli çekme	0.357	0.480
#14	Boru	Tek eksenli çekme	0.356	0.326
#16*	Boru	Burulma	0.000	0.288
#17	Boru	Çekme–Burulma	0.191	0.253
#18	Diktörtgen kesitli çubuk	Çift eksenli basma	-0.496	0.349

Tablo 1. Deney verileri (Experimental data) (Bai ve Wierzbicki, 2010; Khan ve Liu, 2012; Lou vd., 2014).

* Bu veri kalibrasyon için kullanılmıştır (This datum is utilized for calibration).

3.2. Kalibrasyon (Calibration)

KAEB ve MSS kırılma kriterlerinin kalibrasyonu için bir adet deney verisi yeterlidir ve her iki kriterin kalibrasyonunda gerilme üçeksenliliği $\eta = 0$ 'daki deney verisi (16 numaralı deney) kullanılmıştır. Kriterlere ait sabitler, $C_{II} = 350.2$ MPa ve $C_{MSS} = 354.5$ MPa şeklinde elde edilmiştir.

4. Sonuçlar ve Tartışma (Results and Discussion)

Bu çalışmada, yakın zamanda geliştirilmiş Karr-Akçay Enerji Dengesi (KAEB) kriteri ve Maksimum Kayma Gerilmesi (MSS) kriteri deney sonuçları üzerinden karşılaştılmış, her iki kriterin üstünlükleri ve eksiklikleri tartışılmıştır.

KAEB kriterinin ve MSS kriterinin uygulanmasıyla elde edilen Al2024-T351 alaşımına ait kırılma gezenekleri Şekil 2'de sunulmuştur. KAEB kriteri iki farklı sürtünme katsayısı değeri için değerlendirilmiştir. Bunun sebebi sürtünme katsayısının kırılma gezeneği üzerindeki etkisini incelemektir. Sürtünme kuvvetini yenmek için daha fazla iş yapılması gerektiğinden, şekilden de görüldüğü üzere, sürtünme katsayısındaki artış kırılma gezeneğini yukarı taşımaktadır. Diğer bir deyişle, aynı gerilme koşulları altında fakat daha yüksek sürtünme kuvvetine maruz bir yapıda kırılmanın oluşumu için daha yüksek eşdeğer gerinime ulaşılması gerekmektedir.

Şekil 2. KAEB ve MSS kriterlerinin uygulanmasıyla elde edilen Al2024-T351 alaşımına ait düzlem gerilme kırılma gezeneği (Plane stress fracture loci of Al2024-T351 alloy utilizing KAEB and MSS criteria).

Şekil 2'den de görüldüğü üzere, her ne kadar göz önünde bulundurulan sünek kırılma kriterleri nitel olarak benzer davranış gösterse de, KAEB kriteri deney verilerine daha yakın sonuçlar sağlamaktadır. MSS kriteri, özellikle pozitif gerilme üçeksenliliği bölgesindeki kırılma gerinimi değerlerini olduğundan yüksek tahmin etmektedir. Bu durum, MSS kriterinin yalnızca Lode açısına/parametresine bağlı bir kriter olmasıyla açıklanabilir. Ayrıca, MSS kriteri kırılma gezeneğindeki asimetriyi de yakalayamamaktadır. Ek olarak, MSS kriterinin sürtünmeden bağımsız bir kriter olması, sürtünme kuvvetinin etkin olduğu durumlarda doğru sonuçlar vermemesine sebep olabilir. KAEB kriterine göre formülasyonunun oldukça yalın olması ve çözümü için iterasyon gerektirmemesi MSS kriterinin üstün taraflarıdır.

MSS kriterinin yalnızca Lode açısına/parametresine bağlı bir kriter olması temel zayıflıklarından bir tanesidir. KAEB kriteri ise gerilme üçeksenliliği ve Lode açısı/parametresi bağlılıklarını özünde içermektedir. Bununla birlikte, her iki kriter de yalnızca bir adet kalibrasyon parametresi hesabını gerektirir. Sonuç olarak, kalibre edilen parametre sayısı ve modelin doğruluğu göz önünde bulundurulduğunda, KAEB kriterinin MSS kriterine göre daha avantajlı bir kriter olduğu gözlemlenmiştir.

Al2024-T351 alaşımı için cesaret verici sonuçların elde edilmiş olması, ileride yürütülecek çalışmalarda KAEB kriterinin diğer metalik malzemeler için de değerlendirilip pratik uygulamalardaki etkinliğinin araştırılmasını teşvik etmektedir.

Teşekkür (Acknowledgement)

Yazar, zaman ayırdıkları, kıymetli yorum ve önerilerde bulundukları için makaleyi değerlendiren hakemlere teşekkür etmektedir. Ayrıca, konu akışı, bütünlüğü ve yazı dilini kontrol eden Doç. Dr. Bahadır Uğurlu'ya teşekkürü bir borç bilmektedir. Bu çalışma İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince Desteklenmiştir. Proje Numarası: 41598.

Çıkar Çatışması (Conflict of Interest)

Yazar tarafından herhangi bir çıkar çatışması beyan edilmemiştir. No conflict of interest is declared by the author.

Kaynaklar (References)

Abedini, A., Butcher, C., Worswick, M. J., 2017. Fracture characterization of rolled sheet alloys in shear loading: Studies of specimen geometry, anisotropy, and rate sensitivity. Experimental Mechanics, 57, 75-88.

- Bai, Y., Wierzbicki, T., 2008. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity, 24, 1071-1096.
- Bai, Y., Wierzbicki, T., 2010. Application of extended Mohr–Coulomb criterion to ductile fracture. International Journal of Fracture, 161, 1-20.
- Bao, Y., Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46, 81-98.
- Barsoum, I., Faleskog, J., 2007. Rupture mechanisms in combined tension and shear—Experiments. International Journal of Solids and Structures, 44, 1768-1786.
- Charoensuk, K., Panich, S., Uthaisangsuk, V., 2017. Damage initiation and fracture loci for advanced high strength steel sheets taking into account anisotropic behaviour. Journal of Materials Processing Technology, 248, 218-235.
- Cockcroft, M. G., Latham, D. J., 1968. Ductility and the workability of metals. Journal of the Institute of Metals, 96, 33-39.
- Dunand, M., Mohr, D., 2011. Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading. Engineering Fracture Mechanics, 78, 2919-2934.
- Eringen, A. C., 1980. Mechanics of continua. Robert E. Krieger Publishing Company: Melbourne.
- Fourmeau, M., Børvik, T., Benallal, A., Hopperstad, O. S., 2013. Anisotropic failure modes of high-strength aluminium alloy under various stress states. International Journal of Plasticity, 48, 34-53.
- Frodal, B. H., Pedersen, K. O., Børvik T., Hopperstad, O. S., 2017. Influence of pre-compression on the ductility of AA6xxx aluminium alloys. International Journal of Fracture, 206, 131-149.
- Griffith, A. A., 1921. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, Series A, 221, 163–198.
- Gurson, A. L., 1977. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99, 2-15.
- Habibi, N., Ramazani, A., Sundararaghavan, V., Prahl, U., 2018. Failure predictions of DP600 steel sheets using various uncoupled fracture criteria. Engineering Fracture Mechanics, 190, 367-381.
- Hancock, J. W., Mackenzie, A. C., 1976. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids, 24, 147-160.
- Irwin, G. R., 1948. Fracture dynamics. Fracturing of metals: A seminar on the fracturing of metals held during the twenty-ninth national metal congress and exposition, icinde (s. 147-166). American Society for Metals: Cleveland.
- Irwin, G. R., 1957. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, 361–364.
- Jia, Y., Bai, Y., 2016a. Experimental study on the mechanical properties of AZ31B-H24 magnesium alloy sheets under various loading conditions. International Journal of Fracture, 197, 25-48.
- Jia, Y., Bai, Y., 2016b. Ductile fracture prediction for metal sheets using all-strain-based anisotropic eMMC model. International Journal of Mechanical Sciences, 115, 516-531.
- Jia, Y., Ghazali, S., Bai, Y., 2017. Application of eMMC model to fracture of metal sheets. Proceedings of the Fracture, Fatigue, Failure and Damage Evolution, Cilt 8, içinde (s. 49-55). Springer International Publishing: Cham.
- Johnson, G. R., Cook, W. H., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21, 31-48.
- Karr, D.G., Akçay, F.A., 2016. A criterion for ductile fracture based on continuum modeling of energy release rates. International Journal of Fracture, 197, 201–212.
- Khan, A. S., Liu, H., 2012. A new approach for ductile fracture prediction on Al 2024-T351 alloy. International Journal of Plasticity, 35, 1-12.
- Kiran, R., Khandelwal, K., 2013a. A micromechanical model for ductile fracture prediction in ASTM A992 steels. Engineering Fracture Mechanics, 102, 101-117.
- Kiran, R., Khandelwal, K., 2013b. Experimental studies and models for ductile fracture in ASTM A992 steels at high triaxiality. Journal of Structural Engineering, 140, 04013044.
- Korkolis, Y. P., Kyriakides, S., 2008. Inflation and burst of anisotropic aluminum tubes for hydroforming applications. International Journal of Plasticity, 24, 509-543.
- Li, Y., Luo, M., Gerlach, J., Wierzbicki, T., 2010. Prediction of shear-induced fracture in sheet metal forming. Journal of Materials Processing Technology, 210, 1858-1869.
- Luo, M., Wierzbicki, T., 2010. Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model. International Journal of Solids and Structures, 47, 3084-3102.
- Lou, Y., Huh, H., 2013. Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter. International Journal of Solids and Structures, 50, 447-455.
- Lou, Y., Huh, H., 2013. Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter. International Journal of Solids and Structures, 50, 447-455.
- Lou, Y., Yoon, J. W., Huh, H., 2014. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. International Journal of Plasticity, 54, 56-80.
- Malcher, L., Pires, F. A., De Sá, J. C., 2014. An extended GTN model for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 54, 193-228.
- McClintock, F. A., 1968. A criterion for ductile fracture by the growth of holes. Journal of Applied Mechanics, 35, 363–371.
- Mohr, D., Marcadet, S. J., 2015. Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities. International Journal of Solids and Structures, 67, 40-55.
- Nahshon, K., Hutchinson, J. W., 2008. Modification of the Gurson model for shear failure. European Journal of Mechanics-A/Solids, 27, 1–17.
- Needleman, A., Tvergaard, V., 1991. An analysis of dynamic, ductile crack growth in a double edge cracked specimen. International Journal of Fracture, 49, 41-67.

- Orowan, E., 1945. Notch brittleness and the strength of metals. Transactions of the Institution of Engineers and Shipbuilders in Scotland, 89, 165–215.
- Orowan, E., 1949. Fracture and strength of solids. Reports on Progress in Physics, 12, 185-232.
- Osovski, S., Srivastava, A., Ponson, L., Bouchaud, E., Tvergaard, V., Ravi-Chandar, K., Needleman, A., 2015. The effect of loading rate on ductile fracture toughness and fracture surface roughness. Journal of the Mechanics and Physics of Solids, 76, 20-46.
- Papasidero, J., Doquet, V., Mohr, D., 2014. Determination of the effect of stress state on the onset of ductile fracture through tension-torsion experiments. Experimental Mechanics, 54, 137-151.
- Papasidero, J., Doquet, V., Mohr, D., 2015. Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: Bao–Wierzbicki results revisited. International Journal of Solids and Structures, 69, 459-474.
- Park, N., Huh, H., Nam, J. B., Jung, C. G., 2015. Anisotropy effect on the fracture model of DP980 sheets considering the loading path. International Journal of Automotive Technology, 16, 73-81.
- Rice, J. R., 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35, 379–386.
- Rice, J. R., Tracey, D. M., 1969. On the ductile enlargement of voids in triaxial stress fields*. Journal of the Mechanics and Physics of Solids, 17(3), 201–217.
- Rodríguez-Millán, M., Vaz-Romero, Á., Arias, Á., 2015. Failure behavior of 2024-T3 aluminum under tension-torsion conditions. Journal of Mechanical Science and Technology, 29(11), 4657-4663.
- Sadighi, M., Alderliesten, R. C., Benedictus, R., 2012. Impact resistance of fiber-metal laminates: A review. International Journal of Impact Engineering, 49, 77-90.
- Shah, O. R., Tarfaoui, M., 2017. Determination of mode I & II strain energy release rates in composite foam core sandwiches. An experimental study of the composite foam core interfacial fracture resistance. Composites Part B: Engineering, 111, 134-142.
- Tvergaard, V., 1981. Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture, 17, 389–407.
- Tvergaard, V., Needleman, A., 1984. Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 32, 157-169.
- Valoppi, B., Bruschi, S., Ghiotti, A., Shivpuri, R., 2017. Johnson-Cook based criterion incorporating stress triaxiality and deviatoric effect for predicting elevated temperature ductility of titanium alloy sheets. International Journal of Mechanical Sciences, 123, 94-105.
- Wang, K., Luo, M., Wierzbicki, T., 2014. Experiments and modeling of edge fracture for an AHSS sheet. International Journal of Fracture, 187, 245-268.
- Wang, K., Wierzbicki, T., 2015. Experimental and numerical study on the plane-strain blanking process on an AHSS sheet. International Journal of Fracture, 194, 19-36.
- Wierzbicki, T., Bao, Y., Lee, Y. W., Bai, Y., 2005. Calibration and evaluation of seven fracture models. International Journal of Mechanical Sciences, 47, 719–743.
- Wierzbicki, T., Xue, L., 2005. On the effect of the third invariant of the stress deviator on ductile fracture. Impact and Crashworthiness Laboratory, Teknik Rapor 136.
- Xia, L., Shih, C. F., 1995. Ductile crack growth–I. A numerical study using computational cells with microstructurally-based length scales. Journal of the Mechanics and Physics of Solids, 43, 233–259.