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Abstract - The aim of this paper is to introduce a new class of
closed sets called gwa-closed sets using wa-closed sets in topolog-
. ] & o & p & Keywords - Topological
ical spaces. This class is independent of wa-closed sets. This new )
. spaces, generalized closed sets,
class of set lies between the class of a-closed sets and the class of

) ) ] . wa-closed sets, gwa-closed sets
ag-closed sets. Some of their properties are investigated. We also

. T . and gwa-open sets.

define and study the gwa-closure and gwa-interior in topological

spaces.

1 Introduction

In 1969 Levine [9] gives the concept and properties of generalized closed (briefly
g-closed) sets and the complement of g-closed set is said to be g-open set. In 1982
Mashhour et.al [13] introduced and studied the concept of pre-open set. Later Maki
et.al [12], Dontechev [6], Gyanambal [7], Arya and Nour [3] and Bhattacharya and
Lahiri [4] introduced and studied the concepts of gp-closed, gsp-closed, gpr-closed, gs-
closed, sg-closed and ag-closed and their compliments are respective open sets.

N Jasted [16] introduced and studied the concept of a-sets. Later these sets are
called as a-open sets in 1983. Mashhours et.al [14] introduced and studied the concept
of a-closed sets, a-closure of set, a-continuous functions, a-open functions and a-closed
functions in topological spaces. Maki et.al [10] [11] introduced and studied generalized
a-closed sets and a-generalized closed sets. Sundarm and Sheik John [20] defined and
studied w-closed sets in topological spaces and recently S.S.Benchalli et.al [5] studied
wa-closed sets in topological spaces.
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2 Preliminaries

Throughout this paper space (X, 7) and (Y, o) (or simply X and Y) always denote
topological space on which no separation axioms are assumed unless explicitly stated.
For a subset A of a space (X, 7) CI(A), Int(A) and A° denote the Closure of A, Interior
of A and Compliment of A respectively.

Definition 2.1. A subset A of a topological space (X, T) is called,

(i) Semi-open set [8] if ACCIl(Int(A)) and Semi-closed set if Int(CI(A))CA.

(11) Pre-open set [13] if ACInt(CIl(A)) and Pre-closed set if Cl(Int(A))CA.

(111) a-open set [16] if ACInt(Cl(Int(A))) and a-closed set if Cl(Int(CI(A)))CA.

(iv) Semi-pre-open set [2] (=5-open set [1]) if ACCl(Int(Cl(A))) and semi-pre-closed
(=0-closed set [1] ]) if (Cl(Int(CI(A)))CA.

(v) Regular-open [7] if A=Int(CIl(A)) and Regular-closed if A=Cl(Int(A)).

The a-closure of A is the smallest a-closed set containing A, and this is denoted
by aCI(A). Similarly the semi-closure (resp pre-closure and semi-pre-closure) of a set A
in a topological space (X, 7) is the intersection of all semi-closed (resp pre-closed and
semi-pre-closed) sets containing A and is denoted by scl(A) (resp pcl(A) and spcl(A)).

Definition 2.2. A subset of a topological space (X, T) is called a,

(1) Generalized closed (briefly g-closed) set [9] if cl(A)C U whenever ACU and U is open
in X.

(i7) Semi-generalized closed (briefly sg-closed) set [4] if scl(A)C U whenever ACU and
U s Semi-open in X.

(i71) Generalized semi-closed (briefly gs-closed) set [3] if scl(A)C U whenever ACU and
U is open in X.

(1v) Generalized a-closed (briefly ga-closed) set [10] if acl(A)CU whenever ACU and
U s a-open in X.

(v) a-generalized closed (briefly ag-closed) set [11] if acl(A)CU whenever ACU and U
15 open in X.

(vi) Generalized pre-closed (briefly gp-closed) set [12] if pcl(A)C U whenever ACU and
U is open in X.

(vii) Generalized semi-pre-closed (briefly gsp-closed) set [6] if spcl(A)CU whenever
ACU and U is open in X.

(viii) Generalized pre-regular-closed (briefly gpr-closed) set [7] if pcl(A)CU whenever
ACU and U is reqular-open in X.

(1z) Weakly closed (briefly w-closed) set [21] if cl(A)C U whenever ACU and U is semi-
open in X.

(x) Weakly generalized closed (briefly wg-closed) set [20] if cl(int(A))Z U whenever ACU
and U is open in X.

(xi) Strongly generalized closed (briefly g*-closed) set [18] if cl(A)CU whenever ACU
and U s g-open in X.

(xi1) Regular generalized closed (briefly rg-closed) set [17] if cl(A)CU whenever ACU
and U is reqular-open in X.

(xiii) a-generalized regular closed (briefly agr-closed) set [23] if acl(A)CU whenever
ACU and U is reqular-open in X.

(xv) g*-preclosed (briefly g*p-closed) [22] if pcl(A)C U whenever ACU and U is g-open
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mn X.
(ziv) wa closed set [5] if acl(A)CU whenever ACU and U is w-open in X.

The compliment of the above mentioned closed sets are their open sets respectively.

3 gwa-closed sets in Topological spaces.

In this section we introduce gwa-closed sets in topological space and study some of
their properties.

Definition 3.1. A subset A of a topological space (X, 1) is called a generalized wa-
closed (gwa-closed) set if acl(A) C U whenever A C U and U is wa-open in X.

Theorem 3.2. Fvery closed set in X is gwa-closed set.

Proof: Let A be a closed set in a topological space X, let G be any wa-open sets in
X such that A C G, Since A is closed, we have cl(A) = A, but acl(A) C cl(A) is always
true. So acl(A) C cl(A) C G. Therefore acl(A) C G. Hence A is gwa-closed set.

The converse of the above theorem need not be true as seen from the following
example.

Example 3.3. Let X = {a, b, ¢} and 7 ={X, ¢, {a}, {a, b}} then the set A ={a, c}
15 gwa-closed but not closed.

Theorem 3.4. FEvery a-closed set in X is gwa-closed set.

Proof: Let A be a-closed set in a topological space X. Let U be wa-open set in X
such that A C U. Since A is a-closed we have acl(A) = A C U. Therefore acl(A) C

U. Hence A is gwa-closed set.

The converse of the above theorem need not be true as seen from the following
example.

Example 3.5. Let X = {a, b, ¢} and 7 = {X, ¢, {a}, {b, c}} then the set A = {b} is

qwa-closed but not a-closed in X.

Theorem 3.6. Fvery gwa-closed set in X is ag-closed set in X.

Proof: Let A be gwa-closed set in X. Let U be any open set in X, such that A C
U. Since every open set is wa-open set and A is gwa-closed, we have acl(A) C U and
hence A is ag-closed set in X.

The converse of the above theorem need not be true as seen from the following
example.

Example 3.7. Let X = {a, b, ¢} and 7 = {X, ¢, {a}} then the set A = {a, b} is
ag-closed but not gwa-closed in X.



Journal of New Results in Science 7 (2014) 7-19 10

Remark 3.8. From the theorem 3.4 and 3.6 it follows that gwa-closed set properly lies
between «a-closed set and ag-closed set.

Theorem 3.9. Every reqular-closed (resp w-closed, ga-closed) set is gwa-closed set.

Proof: The proof is obvious from theorem 3.2.

The converse of the above theorem need not be true as seen from the following
example.

Example 3.10. In Ezample 3.3 the set A = {a, c} is gwa-closed but not reqular-closed
(w-closed, ga-closed) set in X.

Theorem 3.11. Fvery qwa-closed set in X is gs-closed (resp gp-closed, gsp-closed, gpr-
closed, rg-closed, wg-closed, agr-closed, g*p-closed) set in X.

Proof: Since every open set is wa-open [5], the proof follows.

The converse of the above theorem need not be true as seen from the following
example.

Example 3.12. In Example 3.7, the set A = {a, b} is gs-closed (gp-closed, gsp-closed,
gpr-closed, rg-closed, wg-closed, agr-closed) but not gwa-closed in X.

Example 3.13. Let X = {a, b, ¢} and 7 = {X, ¢, {a}, {a, c}} then the set A = {a,
b} is g*p-closed but not gwa-closed set in X.

Remark 3.14. The concept of gwa-closed set is independent of the concept of sets
namely p-closed, sp-closed, semi-closed, g-closed, sg-closed, g*-closed, g*s-closed, wa-
closed sets as seen from the following example.

Example 3.15. In Example 3.10, the set A = {a, ¢} is gwa-closed but not p-closed,
sp-closed, semi-closed, sg-closed, g*s-closed, and the set B={b} is gwa-closed but not
g-closed and g*-closed in X.

Example 3.16. In Ezample 3.5, the set A = {b} is gwa-closed but not wa-closed set
n X.

Example 3.17. Let X ={a, b, ¢, d} and T ={ X, ¢, {b, ¢}, {b, ¢, d}, {a, b, c}} then
the set A = {b} is p-closed and sp-closed but not gwa-closed set in X.

Example 3.18. Let X = {a, b, ¢} and 7 = {X, ¢, {a}, {b}, {a, b}} then the set A =

{a} is semi-closed, sg-closed and g*s-closed but not gwa-closed set in X .

Example 3.19. In Example 3.13, the set A = {a, b} is g-closed, g*-closed, and wa-
closed but not gwa-closed set in X.

Theorem 3.20. Union of two qua-closed sets are a gwa-closed set.

Proof: Let A and B be two gwa-closed sets in (X, T), let G be any wa-open set in
(X, 7), such that AU BC G. Then A C G and B C G. Since A and B are gwa-closed
sets, acl(A) C G and acl(B) C G. Therefore acl(A) Uacl(B) = acl(AUB) C G. Hence
A U B is gwa-closed set.
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Theorem 3.21. If a subset A of X is gwa-closed in (X, 7) then acl(A)-A does not
contain any non empty wa-closed set in (X, 7).

Proof: Suppose A is gwa-closed and F be a non empty wa-closed subset of acl(A)-
A. Then F C acl(A) N (X-A). Since (X-A) is wa-open and A is gwa-closed. acl(A) C
(X-A), therefore F C (X-acl(A)). Thus F C acl(A) N (X-acl(A)) = ¢. That is F =
¢. Thus acl(A)-A does not contain any non-empty wa-closed set in (X, 7).

However the converse of the above theorem need not be true as seen from the fol-
lowing example.

Example 3.22. In Example 3.17, the set A = {a, b} then acl(A)-A = {c, d} does not
contain non empty wa-closed set. But A is not gwa-closed set in (X, T).

Theorem 3.23. If A is qwa-closed set in X and A C B C acl(A) then B is also gwa-
closed set in X.

Proof: It is given that A is gwa-closed set in X. To prove B is also quwa-closed set
of X. Let U be an wa-open set of X, such that B C U. Since A C B, we have A C U.
Since A is gwa-closed, and acl(A) C U. Now acl(B) C acl(acl(A)) = acl(A) C U. So
acl(B) C U. Hence B is gwa-closed set in X.

However the converse of the above theorem need not be true as seen from the
following example.

Example 3.24. In Ezample 3.5, the set A = {a} and B = {a, b} such that A and B
are gwa-closed sets but A C B € acl(A).

Theorem 3.25. For each x € X either x is wa-closed or x¢ is guwa-closed in X.

Proof: Suppose {z} is not wa-closed in X, then {x}¢ is not wa-open and the only
wa-open set containing {x}¢ is the space X itself. Therefore acl({z}¢)CX. and hence
{z}¢ is gwa-closed set in (X, T).

Theorem 3.26. Let A be gwa-closed in (X, 7). Then A is a-closed if and only if
acl(A)-A is wa-closed.

Proof: Necessity: Suppose A be a-closed. Then acl(A) = A and so acl(A)-A = ¢,
which s wa-closed.
Sufficiency: Suppose acl(A)-A is wa-closed. Then acl(A)-A = ¢, since A is qwa-closed.
That is acl(A)-A or A is a-closed.

Theorem 3.27. Let A C Y C X, and suppose that A is gua-closed set in X. Then A
15 gwa-closed relative to Y.

Proof: Let A C YN G where G is wa-open. Then A C G and hence acl(A) C G.
This implies that Y Nacl(A) C Y N G. Thus A is gwa-closed relative to Y.

Now we introduce the following.
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Definition 3.28. A subset A of a topological space (X, ) is called gwa-open set if its
compliment A° is gwa-closed.

Theorem 3.29. A subset A of (X, T7) is gwa-open set if and only if U C « int(A)
whenever U is wa-closed and U C A.

Proof: Assume that A is gwa-open in X and U is wa-closed set of (X, T) such that
UC A. Then X-A is a gwa-closed set in (X, 7). Also X-A C X-U and X-U is wa-open
set of (X, 7). This implies that acl(X-A) C X-U. But acl(X-A) = X-aint(A). Thus
X-aint(A) C X-U. So U C auint(A).

Conversely: Suppose U C aint(A) whenever U is wa-closed and U C A, To prove
that A is gwa-open. Let G be wa-open set of (X, T) such that X-A C G. Then X-G C
A. Now X-G is wa-closed set containing A. So X-G C aint(A), X-aint(A) C G, But
acl(X-A) = X-aint(A). Thus acl(X-A) C G. That is X-A is gwa-closed set and hence
A is gwa-open.

Theorem 3.30. If A is wa-open and gwa-closed set then A is a-closed.

Proof: Since A C A and A is wa-open and gwa-closed, we have acl(A) C A. Thus
acl(A) = A. Hence A is a-closed set of (X, T).

Theorem 3.31. A regular open gwa-closed set is preclosed and hence clopen.

Proof: Let A be regular open gwa-closed. Since reqular open set is wa-open, cacl(A)
C A. This implies A is a-closed. Since every a-closed (regular) open set is (regular)
closed, A is clopen.

Theorem 3.32. A set A is gwa-open in (X, 7) if and only if F C «int(A) whenever
F is wa-closed in (X, 7) and F C A.

Proof: Suppose F' C aint(A) where F is wa-closed and F C A. Let X-A C G where
G is wa-open in (X, 7). Then G C X-G and X-G C aint(A). Thus X-A is gwa-closed
in (X, 7). Hence A is gwa-open in (X, T).

Conversely: Suppose that A is gwa-open. F C A and F is wa-closed in (X, 7).
Then X-F is wa-open and X-A C X-F. Therefore acl(X-A) C X-F. But acl(X-A) =
X-aint(A). Hence F' C aint(A).

Theorem 3.33. A subset A is gwa-open in (X, 7) if and only if G = X whenever G
is wa-open and cint(A) U (X-G) C G.

Proof: Let A be gwa-open. G be wa-open and aint(A) U (X-A) C G. This gives
X-G C (X-aint(A)) N (X-(X-A)) = X-cint(A)-(X-A) = acl(X-A)-(X-A). Since X-A
15 gwa-closed and X-G is wa-closed. Then by theorem 3.32 it follows that X-G = ¢.
Therefore X = G.

Conversely: Suppose F is wa-closed and F' C A. Then aint(A) U (X-A) C aint(A)
U (X-F). It follows that aint(A) U (X-F) = X and hence F C aint(A). Therefore A is
gwa-open in (X, T).
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4 gwa-Closure and gwa-Interior

In this section the notion of gwa-closure and gwa-interior is defined and some of its
basic properties are studied.

Definition 4.1. For a subset A of (X, T) gwa-closure of A is denoted by gwacl(A) and
is defined as gwacl(A) = N{G; A C G, G is gwa-closed in (X, T)}.

Theorem 4.2. For an x € X, z € gwacl(A) if and only if ANV # ¢ for every gwa-
open set V containing .

Proof: Let x € gwacl(A). Suppose there exists a gwa-open set V containing © such
that VN A = ¢. Then A C X-V, gwacl(A) C X-V. This implies © ¢ gwacl(A) which
is a contradiction. Hence A NV # ¢.

Conversely, Suppose x ¢ gwacl(A) then there exists gwa-closed set G containing A
such that ¢ ¢ G. Then z € X-G and X-G is gwa-open. Also (X-G) N A = ¢ which is
a contradiction to the hypothesis, Hence x € gwacl(A).

Theorem 4.3. If A C X, then A C gwacl(A) Ccl(A).

Proof: Since every closed set is qwa-closed, the proof follows.

Remark 4.4. Both containment relations in the theorem 4.3 may be proper as seen
from the following example.

Example 4.5. In Ezample 3.10, the set A = {a} then gwacl(A) = {a, ¢} and cl(A) =
X, and so A C gwacl(A) Ccl(A).

Theorem 4.6. If A is gwa-closed, then gwacl(A) = A.

Proof: Let A be gwa-closed set in (X, 7). Since A C A and A is gwa-closed set,
A e {G; A C G, G is gwa-closed set } which implies that A = N{G; A C G, G is
gwa-closed set } C A, that is gwacl(A) C A. But A C gwacl(A) is always true. Hence
A = gwacl(A).

Theorem 4.7. If A C X and A is gwa-closed, then gwacl(A) is the smallest gwa-closed
subset of X containing A.

Proof: Let A be gwa-closed set in (X, 7). Then gwacl(A) =n{ G; A C G, G
is gwa-closed in (X, T)} Since A C A and A is gwa-closed set, gwacl(A) = A is the
smallest gwa-closed subset of X containing A.

However the converse of the above theorem need not be true as seen from the
following example.

Example 4.8. In Example 3.13, the set A = {a, c} then qwacl(A) = X, which is the
smallest gwa-closed set in X containing A but A is not gwa-closed in (X, 7).

Remark 4.9. The following example shows that for any two subsets A and B of X,
ACB implies gwacl(A) # gwacl(B).
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Example 4.10. In example 3.13, the set A = {c} and B = {a, ¢} then A C B. Now
gwacl(A) = {c} and gwacl(B) = X. Hence gwacl(A) # gwacl(B).

Remark 4.11. For a subset A of (X, 7) gwacl(A) # cl(A) as seen from the following
example.

Example 4.12. In Ezample 3.13, the set A = {c} CX, gwacl(A) = {c} and cl(A) =
{b, ¢} Therefore gwacl(A) # cl(A).

Remark 4.13. For any two subsets A and B of (X, 7), gwacl(A) = gwacl(B) does not
imply that A = B. This is shown by the following example.

Example 4.14. In Ezample 3.7, the set A = {a} and B = {a, c} then gwacl(A) =
gwacl(B). But A # B.

Theorem 4.15. Let A and B be the subsets of (X, 7), Then,
gwacl(p) = ¢.

gwacl(X) = X.

gwacl(A) is gwa-closed set in (X, T).

If A C B then gwacl(A) C gwacl(B).

gwacl(A U B) = gwacl(A) U gwacl(B).

gwacl(gwacl(A)) = gwacl(A).

S G oo

Proof: Proof of (1), (2), (3) and (4) are obvious from definition 4.1.

(5). We know that gwacl(A) C gwacl(A U B) and gwacl(B) C gwacl(A U B) =
gwacl(A) U gwacl(B) C gwacl(A U B)-(i). Now we prove gwacl(A U B) C gwacl(A)
U gwacl(B). let x be any point such that © ¢ gwa(A) U gwacl(B), then there exists
gwa-closed sets P and @ such that A C Pand BC Q, ¢ P and Q, then x ¢ P U Q,
AUBCPUQ and PU @ is gwa-closed set by Theorem 3.20, thus © ¢ qwacl(A U
B) = gwacl(A U B) C gwacl(A) U gwacl(B)-(ii). From (i) and (i) gwacl(A U B) =
gwacl(A) U gwa(B).

(6). Let P be gwa-closed set containing A. Then by definition 4.1 gwacl(A) C P. Since
P is gwa-closed set and contains gqwacl(A) and is contained in every gwa-closed set
containing A, it follows gwacl(gwacl(A)) C gwacl(A). Therefore gwacl(gwacl(A)) =
gwacl(A).

Theorem 4.16. Let A and B be subset of (X, T) then gwacl(A N B) C gwacl(A) N
gwacl(B).
Proof: Since AN BC A and AN B C B, by theorem 4.15 (4), gwacl(A N B) C
gwacl(A) and gwacl(A N B) C gwacl(B). Thus gwacl(A N B) C gwacl(A) N gwacl(B).
In general gwacl(A) N gwacl(B) C gwacl(A N B) as seen from the following example.

Example 4.17. In Ezample 3.18, the set A = {a} and B = {b} then gwacl(A) = {a,
c} and gwacl(B) = {b, ¢} and gwacl(A N B) = ¢. Hence gwacl(A) N gwacl(B) C
gwacl(A N B).

Now we introduce the following.
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Definition 4.18. For a subset A of (X, T) gwa-interior of A is denoted by gwaint(A)
and is defined as gwaint(A) = U{ G; G C A and G is gwa-open in (X, 7)}. that is
gwaint(A) is the union of all gwa-open sets contained in A.

Theorem 4.19. Let A be subset of (X, 7) then gwaint(A) is the largest gwa-open sub-
set of X contained in A if A is gwa-open.

Proof: Let A C X be gwa-open, then gwaint(A) =U{ G; G C A and G is gwa-open
in (X, 1)} Since A C A and A is gwa-open, A = gwaint(A) is the largest gwa-open
subset of X contained in A.

The converse of the above theorem need not be true as seen from the following
example.

Example 4.20. In Ezample 3.18, the set A = {b, c}, then gwaint(A) = {b} is gwa-
open in (X, 7), but A is not gwa-open in (X, T).

Remark 4.21. For any subset A of X, int(A) C gwaint(A) C A.

Remark 4.22. For a subset A of X, gwaint(A) # int(A) as seen from the following
example.

Example 4.23. In Ezample 3.5, the set A = {b}, then gwaint(A) = {b} and int(A)
= ¢ hence gwaint(A) # int(A).

Remark 4.24. For any two subsets A and B of X gwaint(A) = gwaint(B) does not
imply that A = B. That is shown by the following example.

Example 4.25. In Ezample 3.7, the set A = {b} and B = {c} then gwaint(A) = ¢ =
gwaint(B). But A # B.

Remark 4.26. For any two subsets A and B of X, gwaint(A) U gwaint(B) # gwaint(A
U B).

Example 4.27. In Example 3.18 the set A = {b, ¢} and B = {a, ¢} now gwaint(A)
= {b} and gwaint(B) = {a} and gwaint(A U B) = gwaintX = X. Hence gwaint(A) U
gwaint(B) # gwaint(A U B).

Theorem 4.28. For any subset A of X [X-gwaint(A)] = [qwacl(X-A)].

Proof: Let X € X-gwaint(A), then X is not in gwaint(A), that is every gwa-open

set G containing x is such that G C A. This implies every gwa-open set G containing
z intersects X-A. That is G N (X-A) # ¢. Then by theorem 4.2 © € gwacl(X-A) and
therefore [X-gqwaint(A)] C [qwacl(X-A)].
Conversely; Let x € qwacl(X-A), then every gwa-open set G containing x intersects
X-A, That is, G N (X-A) # ¢. That is every gwa-open set G containing x is such that
G C A. Then by definition 4.18, z not in gwaint(A), that is x € [X-gwaint(A)]; and so
[gwacl(X-A)] C [X-gwaint(A)]. Thus [X-gwaint(A)] = [qwacl(X-A)].
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5 gwa-Neighborhoods and gwa-Limit points

In this section we define the notion of gwa-neighborhood, gwa-limit point and gwa-
derived set of a set and show some of their basic properties and analogous to those for
open sets.

Definition 5.1. Let (X, 7) be a topological space and let x € X. A subset N of X is
said to be gwa-neighborhood of a point x € X if there exists an gwa-open set G such
that z € G C N.

Definition 5.2. Let (X, 7) be a topological space and A be a subset of X, A subset N
of X is said to be gwa-neighborhood of A if there exists an gwa-open set G such that A
e GCN

The collection of all gwa-neighborhood of x € X is called the gwa-neighborhood
system at x and shall be denoted by gwaN(x).

Theorem 5.3. A subset A of a topological space is qua-open if it is a guwa-neighborhood
of each of its points.

Proof: Let a subset G of a topological space be qua-open. Then for every z € X, x
€ G C G, and therefore G is a gwa-neighborhood of each of its points.

The converse of the above theorem need not be true as seen from the following
example.

Example 5.4. In Example 3.7 the set A = {b, c} is gwa-neighborhood of each of its
points b and c but A is not gua-open.

Theorem 5.5. Let (X, 7) be a topological space. If A is gwa-closed subset of X and x
€ gwacl(A) if and only if for any gwa-neighborhood N of x in (X, 7), NN A # ¢.

Proof: Let us assume that there is a gwa-neighborhood N of the point z in (X, T)
such that NN A = ¢. There exist an gwa-open set G of X such that X € G C N.
Therefore we have G N A = ¢ and so x € X-G. Then quacl(A) € X-G and therefore ©
¢ gwacl(A), which is the contradiction to the hypothesis x € gwacl(A). Therefore N N
A # .

Conversely: Suppose that © ¢ gwacl(A). Then there exists a gwa-closed set G of
(X, 7) such that A C G and z ¢ G. Thus z € X-G and X-G is gwa-open in (X, T)
and hence X-G is a gwa-neighborhood of x in (X, 7). But A N (X-G) = ¢ which is a
contradiction. Hence © € gwacl(A).

Theorem 5.6. Let (X, 7) be a topological space and x € X. Let gwaN(z) be the collec-
tion of all gwa-neighborhood of x. Then,

1. gwaN(z) # ¢ and x € each member of gwaN(z).

2. The intersection of the any two members of gwaN(z) is again a member of guaN(x).
3. If N € gwaN(z) and M C N, then M € gwaN(x).

4. Fach member N € gqwaN(z) is a superset of a member GEgquaN(z) where G is a
gwa-open set.
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Proof: (1). Since X is gwa-open set containing p, it is a gwa-neighborhood of every
p € X. Hence there exists atleast one qua-neighborhood namely X for each p € X there
is gwaN(p) # ¢. Let N € gwaN(p), N is a gwa-neighborhood of p, then there exists
a gwa-open set G such that p € G C N so p € N. Therefore p € every member N of
gwaN(p).
(2). Let N € gwaN(p)and M €gwaN(p). Then by definition 5.1, there exists gwa-open
set G and F such thatp € G C Nandp € FC M. Hencep € GN FC M N N. Note
that G N F is a gwa-open set. Therefore it follows that N N M is a gwa-neighborhood
of p. Hence NN M € gwaN(p).
(3). If N € gwaN(p) then there is an gwa-open set G such that p € G C N. Since M
C N, M is gwa-neighborhood of p. Hence M € gwaN(p).
(4). Let N € gwaN(p) then there exists a gwa-open set G, such that p € G C N. Since
G is gwa-open and p € G, G is gwa-neighborhood of P.therefore G € gwaN(p) and also
G C N.

Definition 5.7. Let (X, 7) be a topological space and A be a subset of X. Then a point x
€ X is called a gwa-limit point of A if and only if every gwa-neighborhood of x contains
a point of A distinct from x. That is [N-{z}] N A # ¢ for each gwa-neighborhood N of
x. Also equivalently if and only if every qwa-open set G containing x contains a point
of A other then x.

In a topological space (X, 7) the set of all gwa-limit points of a given subset A of
X is called a gwa-derived set of A and is denoted by gwad(A).

Theorem 5.8. Let A and B be subset of a topological space (X, 7). Then,

gwad(¢) = ¢.

If A C B, then gwad(A) C gwad(B).

If x € gwad(A), then z € gwad[A-{z}].

gwad(A U B) = gwad(A) U gwad(B).

. gwad(A N B) C gwad(A) N gwad(B).

Proof (1). Let z be any point of X and z € gwad(p). That is x is a gwa-limit point of
¢. Then for every gwa-open set G containing z, we should have [G-{z}] N¢ # ¢ which
is impossible. Hence gwad(p) = ¢

(2). If v € gwad(A), that is if © is gwa-limit point of A, then by Definition 5.7 [G-{z}]
N A # ¢ for every gwa-open set G containing x. Since A C B implies [G-{z}] N A C
[G-{z}] N B. Thus if x is a gwa-limit point of A it is also a gwa-limit point of B, that
is v € gwad(B). Hence gwad(A) C gwad(B).

(3). If z € gwad(A), by definition 5.7 every gwa-open set G containing © contains at
least one point other than x of A-{z}. Hence x is gwa-limit point of A-{z} and it belongs
to gwad[A-{z}]. Therefore r € gwad(A) = z € gwad[A-{z}].

(4). Since AC AU Band BC AU B, from (1) gwad(A)U gwad(B) C gwad(A U B).
To prove other way If v ¢ gwad(A) U gwad(B), then x ¢ gwad(A) and x ¢ gqwad(B).
Hence there ezists gwa-neighborhoods Gy and Gy of x such that Gy N(A-{z}) = ¢ and
Gy N (B-{z}) = ¢ Since Gy N Gy is gwa-neighborhood of x, we have (Gy N G2) N
[(A U B)-{x}] = ¢. Therefore © ¢ gwad(A U B). Hence gwad(A U B) = gwad(A) U
gwad(B).

(5). Since AN BC Aand AN BC B, by (2) gwad(ANB ) C gwad(A) and gwad(A
N B) C gwad(B). Consequently gwad(A N B) C gwad(A) N gwad(B).

G Lo de
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Theorem 5.9. Let (X, 7) be a topological space and A be a subset of X. If A is gwa-
closed,then gwad(A) C A.

Proof: Let A be gwa-closed, Now we will show that guad(A) C A. Since A is gwa-
closed, X-A is gwa-open. To each © € X-A there exists gwa-neighborhood G of x such
that G C X-A. Since A N (X-A) = ¢, the gwa-neighborhood G contains no point of A
and so X is not a qwa-limit point of A. Thus no point of X-A can be gwa-limit point
of A that is, A contains all its qwa-limit points. that is gwad(A) C A.
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