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ÖZ 

Atangana-Baleanu Caputo (ABC) türevi ile tanımlı üçüncü mertebeden kesirli kısmi diferansiyel denklemin tam 

çözümü başlangıç ve sınır değerlerine bağlı olarak hesaplandı. Bu denklem için kararlılık kestirimleri verildi. Bu 

denklem Implicit Rather fark metodu ile çözüldü. Problem için fark şemalarının kararlılığı gösterildi. Bu teknik 

ABC üçüncü mertebeden kısmi diferansiyel denklemin 𝜶 = 𝟎. 𝟎𝟎𝟏, 𝟎. 𝟏, 𝟎. 𝟓, 𝟎. 𝟗𝟗, 𝟎. 𝟗𝟗𝟗 için kesirli türev 

değerlerine karşılık uygulanmıştır. Yaklaşık çözüm, tekniğin doğruluğunu ve etkinliğini onaylar. 
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Implicit Rather Difference Method for Third Order Differential 

Equations in the Sense of Atangana-Baleanu Caputo Fractional 

Derivative 

 

ABSTRACT 

The exact solution of the third order partial differential equation defined by Atangana-Baleanu Caputo (ABC) 

fractional derivative is calculated for depending on the initial and boundary values. Stability estimates are obtained 

for this equation. Implicit Rather difference schemes are constructed for this problem. The stability of difference 

schemes for this problem is presented. This technique has been applied by ABC fractional orders 𝛼 =

0.001, 0.1, 0.5, 0.99, 0.999. Approximation solution confirms the accuracy and effectiveness of the technique. 

Keywords- Fractional Differential Equation, Implicit Rather Difference Schemes, Stability Estimates, 

Approximation Solution, Exact Solution. 
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I.INTRODUCTION 

Fractional differential equations have several implementations in finance, engineering, physic, and 

seismology [1-3]. It is developed because of its applications in different areas of geophysics, biology, chemical 

and petroleum industries [4]. Michele Caputo and Mauro Fabrizio presented a fractional derivative operator based 

on the exponential function to overcome the problem of the singular kernel in 2015 [5]. But their fractional 

derivative operator does not have singular kernel [6, 7]. Atangana and Alqahtani applied the concept of Caputo 

Fabrizio (CF) fractional derivatives to the equation of ground water pollution [8]. CF fractional derivative, as the 

kernel in integral was non-singular but was still non-local. To eliminate singularity and non-locality, Atangana 

and Baleanu identified a new derivative with the help of Mittag-Leffler function [9, 10]. However, Atangana et al. 

provided the numerical approximation to the fractional Advection-Diffusion equation whose fractional derivatives 

are Atangana- Baleanu derivative of Rieman- Liouville type [11]. In many similar current life problems, the ABC 

derivative has been used. Modanli has studied two different numerical method for the fractional telegraph 

differential equation [12]. The Atangana- Baleanu derivative has been applied in modeling of many real problems 

[13, 14]. 

In this paper, the impilicit rather difference method is used for the third order partial differential equation 

defined by ABC fractional derivative. The stability estimates are showed by the Von-Neuman’s method. 

Now, we examine the following fractional differential equation defined by ABC derivative 

{
 
 

 
 
𝜕3𝑢(𝑡,𝑥)

𝜕𝑡3
+𝑚

𝜕2𝑢(𝑡,𝑥)

𝜕𝑡2
+ 𝐷0

𝐴𝐵𝐶
𝑡
𝛼𝑢(𝑡, 𝑥) − 𝑛

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2
− 𝑝

𝜕𝑢(𝑡,𝑥)

𝜕𝑥
+ 𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥)

0 < 𝑥 < 𝐿,   0 < 𝑡 < 𝑇,   0 < 𝛼 ≤ 1,                                                                           
𝑢(0, 𝑥) = ℎ1(𝑥),   𝑢𝑡(0, 𝑥) = ℎ2(𝑥),   𝑢𝑡𝑡𝑡(0, 𝑥) = ℎ3(𝑥), 0 ≤ 𝑡 ≤ 𝑇,               

𝑢(𝑡, 𝑋𝐿) = 𝑟1(𝑡),   𝑢(𝑡, 𝑋𝑅) = 𝑟2(𝑡),   𝑋𝐿 < 𝑥 < 𝑋𝑅,                                                
𝑚 > 0,   𝑛 > 0.                                                                                                                

 (1) 

Here, ℎ1, ℎ2, ℎ3, 𝑟1, 𝑟2 and 𝑓 are known functions, 𝑢(𝑡, 𝑥) is unknown function. For 𝛼 = 1, the problem 

(1) was called as the third order linear time-varying systems model [13]. For more details see [15-22]. 

Now, we present some basic definitions and properties of fractional calculus theory for third order 

differential equation defined by fractional ABC derivative. 

Definition 1: Let𝑓 ∈  𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, 𝛼 ∈ [0,1], then the definition of the new fractional derivative (Atangana- 

Baleanu derivative in Caputo sense) is given as [13]: 

𝐷𝑎
𝐴𝐵𝐶

𝑡
𝛼𝑢(𝑡) =

𝐵(𝛼)

1−𝛼
∫ 𝑓′(𝑥)𝐸𝛼[−𝛼

(𝑡−𝑥)𝛼

1−𝛼
]𝑑𝑥

𝑡

0
. (2) 

Where𝐵(𝛼) = 1 − 𝛼 +
𝛼

Γ(α)
 and 𝐸𝛼 is the Mittag-Leffler function. We defined this function as following: 

𝐸𝛼 [−𝛼
(𝑡 − 𝑥)𝛼

1 − 𝛼
] =  ∑

−𝛼
(𝑡−𝑥)𝛼)

(1−𝛼)

Γ(αk+1)

𝑘
∞

𝑖=0

. 

Definition 2: Atangana- Baleanu obtained the Laplace transform for the Eq. 1 as [13]: 

£{ 𝐷𝑎
𝐴𝐵𝐶

𝑡
𝛼(𝑢(𝑡))} =

𝐵(𝛼)

1−𝛼

𝑢(𝑠)𝑠𝛼−𝑠𝛼−1𝑢(0)

𝑠𝛼+
𝛼

1−𝛼

. (3) 

Next section, we shall calculate the exact solution by the Laplace transform method of the third order 

partial differential equation defined by ABC fractional derivative operator. 

II.EXACT SOLUTION OF THE THIRD ORDER DIFFERENTIAL EQUATION IN SENSE OF ABC FRACTIONAL DERIVATIVE 
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In this section, we shall find the exact solution of the problem (1) by Laplace transform method. From 

the problem (1), taking  𝑝 = 0, we have the following problem 

{
 
 

 
 

𝜕3𝑢(𝑡,𝑥)

𝜕𝑡3
+𝑚

𝜕2𝑢(𝑡,𝑥)

𝜕𝑡2
+ 𝐷0

𝐴𝐵𝐶
𝑡
𝛼𝑢(𝑡, 𝑥) − 𝑛

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2
+ 𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥),   

0 < 𝑥 < 𝐿,   0 < 𝑡 < 𝑇,   0 < 𝛼 ≤ 1,                                                               
𝑢(0, 𝑥) = ℎ1(𝑥),   𝑢𝑡(0, 𝑥) = ℎ2(𝑥),   𝑢𝑡𝑡𝑡(0, 𝑥) = ℎ3(𝑥), 𝑋𝐿 ≤ 𝑥 ≤ 𝑋𝑅,

𝑢(𝑡, 𝑋𝐿) = 𝑟1(𝑡),   𝑢(𝑡, 𝑋𝑅) = 𝑟2(𝑡),   0 ≤ 𝑡 ≤ 𝑇,                                          
𝑚 > 0,   𝑛 > 0.                                                                                                    

 (4) 

The problem (4) was studied in the [14]. In this study, we shall the problem (1). Using the operator 

method, the exact solution of the problem (1) can be found similar as [14]. For the exact solution of the problem 

(1), we give one test example problem. 

Example 1: We consider the following problem for the special values 𝑚 = 𝑛 = 𝑝 = 1 

{
 
 
 
 
 

 
 
 
 
 
𝜕3𝑢(𝑡,𝑥)

𝜕𝑡3
+𝑚

𝜕2𝑢(𝑡,𝑥)

𝜕𝑡2
+ 𝐷0

𝐴𝐵𝐶
𝑡
𝛼𝑢(𝑡, 𝑥) − 𝑛

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2
+ 𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥),                    

𝑓(𝑡, 𝑥) = (
6(1−𝛼)

𝛽(𝛼)
+

6𝑡𝛼

𝛽(𝛼)Γ(α)
+

6𝑡(1−𝛼)

𝛽(𝛼)
+

6𝑡𝛼+1

(𝛼+1)Γ(α)
+ 𝑡3                                          

+
1−𝛼

𝛽(𝛼)
𝑡3 +

6𝛼

Γ(α+4)𝛽(𝛼)
𝑡𝛼+3)(𝑥 − 𝑥2) + 2 (

1−𝛼

𝛽(𝛼)
𝑡3 +

6𝛼

Γ(α+4)𝛽(𝛼)
)                     

 

+ (
1−𝛼

𝛽(𝛼)
𝑡3 +

6𝛼

Γ(α+4)𝛽(𝛼)
𝑡𝛼+3) (1 − 2𝑥),                                                                    

 
 𝑢(0, 𝑥) = 𝑢𝑡(0, 𝑥) = 𝑢𝑡𝑡𝑡(0, 𝑥) = 0, 0 ≤ 𝑥 ≤ 1,                                                      

                                                                             
𝑢(𝑡, 0) =  𝑢(𝑡, 1) = 0,   0 ≤ 𝑡 ≤ 1.                                                                               

   (5) 

Eq. (2) using the initial conditions in the Eq. (5) and taking the Laplace transform to both of the Eq. (5), 

we obtain 

(𝑠3 + 𝑠2
𝛽(𝛼)

1−𝛼

𝑠𝛼

𝑠𝛼+
𝛼

1−𝛼

) −
𝜕2𝑢(𝑠,𝑥)

𝜕𝑥2
−

𝜕𝑢(𝑠,𝑥)

𝜕𝑥
 

=
6

𝛽(𝛼)
(
6(1 − 𝛼)

𝑠4
+
𝛼 + 1

𝑠𝛼+1
+
1 − 𝛼

𝑠2
+
𝛼 + 1

𝑠𝛼+2
+
𝛽(𝛼)

𝑠4
+
1 − 𝛼

𝑠4
+

𝛼

𝑠𝛼+4
) (𝑥 − 𝑥2) 

+
6

𝛽(𝛼)
[
2(1 − 𝛼)

𝑠4
+
2𝛼

𝑠𝛼+4
+ (

(1 − 𝛼)

𝑠4
+

𝛼

𝑠𝛼+4
) (1 − 2𝑥)]. 

Solving this equation for homogenous and non-homogenous part as to 𝑥, using boundary value conditions, 

we have 

𝑢(𝑠, 𝑥) =
6

𝑠4
(
1−𝛼

𝛽(𝛼)
+

𝛼

𝑠𝛼𝛽(𝛼)
) (𝑥 − 𝑥2). (6) 

Taking the inverse Laplace transform for the Eq.  (6) we get the exact solution of this example following 

as: 

𝑢(𝑡, 𝑥) = (
1−𝛼

𝛽(𝛼)
𝑡3 +

6𝛼

Γ(α+4)𝛽(𝛼)
𝑡𝛼+3) (𝑥 − 𝑥2).  

Next section, we shall construct difference scheme for the implicit rather difference scheme method. Then 

we prove the stability estimates for this difference scheme method. 
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III.STABILITY ESTIMATES FOR THE IMPLICIT RATHER DIFFERENCE SCHEME METHOD 

Now, we will obtain difference schemes of implicit rather difference method for the partial differential equation 

1. Let’s assume that ℎ =
𝑥𝑅−𝑥𝐿

𝑀
 for 𝑥 − axis, 𝜏 =

𝑇

𝑁
 for 𝑡 −axisandthenwe can write 

𝑥𝑛 = 𝑥𝐿 + 𝑛ℎ; 𝑛 = 1,2, …𝑀, 𝑡𝑘 = 𝑘𝜏, 𝑘 = 1,2, …𝑁. 

We construct implicit rather difference method for third order partial differential equation defined by 

ABC derivative of the formula (1). Using Taylor series formula, we obtain the following formulas: 

𝜕3𝑢(𝑡𝑘,𝑥𝑛)

𝜕𝑡3
≅

𝑢𝑛
𝑘+2−3𝑢𝑛

𝑘+1+3𝑢𝑛
𝑘−𝑢𝑛

𝑘−1

𝜏3
, (7) 

𝜕2𝑢(𝑡𝑘,𝑥𝑛)

𝜕𝑡2
≅

𝑢𝑛
𝑘+1−2𝑢𝑛

𝑘+𝑢𝑛
𝑘−1

𝜏2
, (8) 

𝜕2𝑢(𝑡𝑘,𝑥𝑛))

𝜕𝑥2
≅

𝑢𝑛+1
𝑘 −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘

ℎ2
, (9) 

𝜕𝑢(𝑡𝑘,𝑥𝑛)

𝜕𝑥
≅

𝑢𝑛+1
𝑘 −𝑢𝑛

𝑘

ℎ
, (10) 

and difference scheme for 𝐷0
𝐴𝐵𝐶

𝑡
𝛼𝑢(𝑡𝑘, 𝑥𝑛)) fractional derivative was obtained in [8] as: 

𝐷0
𝐴𝐵𝐶

𝑡
𝛼𝑢(𝑡𝑘, 𝑥𝑛)) ≅

1

Γ(α)
∑

𝑢𝑛+1
𝑘 −𝑢𝑛

𝑘

ℎ
𝑑𝑗,𝑘

𝑘
𝑗=0 , (11) 

where 𝑑𝑗,𝑘 = (𝑡𝑗 − 𝑡𝑘+1)
1−𝛼. 

Using the formulas (7-11), we obtain the implicit rather difference method for third order partial 

differential equation defined by ABC derivative of the formula (1) as: 

{
 
 
 
 

 
 
 
 
𝑢𝑛
𝑘+2−3𝑢𝑛

𝑘+1+3𝑢𝑛
𝑘−𝑢𝑛

𝑘−1

𝜏3
+𝑚

𝑢𝑛
𝑘+1−2𝑢𝑛

𝑘+𝑢𝑛
𝑘−1

𝜏2
+

1

Γ(α)
∑

𝑢𝑛+1
𝑘 −𝑢𝑛

𝑘

ℎ
𝑑𝑗,𝑘

𝑘
𝑗=0

−𝑛
𝑢𝑛+1
𝑘 −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘

ℎ2
− 𝑝

𝑢𝑛+1
𝑘 −𝑢𝑛

𝑘

ℎ
+ 𝑢𝑛

𝑘 = 𝑓𝑛
𝑘 = 𝑓(𝑡𝑘, 𝑥𝑛)),                

𝑢𝑛
0 = ℎ1(𝑥𝑛),   

𝑢𝑛
1−𝑢𝑛

0

𝜏
= ℎ2(𝑥𝑛),   

𝑢𝑛
2−2𝑢𝑛

1+𝑢𝑛
0

𝜏2
= ℎ3, 0 ≤ 𝑛 ≤ 𝑀,   

𝑢0
𝑘 = 𝑢𝑀

𝑘 = 0,   0 ≤ 𝑘 ≤ 𝑁,                                                                     
𝑚 > 0,   𝑛 > 0.                                                                                          

 (12) 

Using the general Von-Neumann’s method as the formula 𝑛𝑛
𝑘 = 𝑟𝑘𝑒𝑖𝑛𝜃 for stability estimates of the 

formula (12), we obtain 

{
 
 

 
 𝑟3 + (−3 +𝑚𝜏 +

𝜏2(2𝜏)1−𝛼

Γ(α)
) 𝑟2 + (3 − 2𝑚𝜏 −

𝜏2(−2𝜏)1−𝛼

Γ(α)
+

2𝑛𝜏3

ℎ2
𝑐𝑜𝑠𝜃 −

2𝜆𝜏3

ℎ2
−

𝑝𝜏3𝑒𝑖𝜃

ℎ
+ 1) 𝑟

−1 + 𝑘𝜏 +
𝑝𝜏3

ℎ
− 𝑓0

1 = 0                                                                                                                           

𝑓0
1 = 𝑓(𝜏, 0),   for 𝑛 = 0,   𝑘 = 1.                                                                                                            

 (13) 

Taking 𝑓0
1 → 0, we can rewrite the formula (13) the following polynomial function form 

{
𝑃(𝑟) = 𝑟3 + (−3 +𝑚𝜏 +

𝜏2(2𝜏)1−𝛼

Γ(α)
) 𝑟2 + (3 − 2𝑚𝜏 −

𝜏2(−2𝜏)1−𝛼

Γ(α)
+

2𝑛𝜏3

ℎ2
𝑐𝑜𝑠𝜃

−
2𝜆𝜏3

ℎ2
−

𝑝𝜏3𝑒𝑖𝜃

ℎ
+ 1)𝑟 − 1 + 𝑘𝜏 +

𝑝𝜏3

ℎ
= 0,                                                                 

 (14) 
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where 

𝑎0 = −1 + 𝑘𝜏 +
𝑝𝜏3

ℎ
, 

𝑎1 = 3 − 2𝑚𝜏 −
𝜏2(−2𝜏)1−𝛼

Γ(α)
+
2𝑛𝜏3

ℎ2
𝑐𝑜𝑠𝜃 −

2𝜆𝜏3

ℎ2
−
𝑝𝜏3𝑒𝑖𝜃

ℎ
+ 1, 

𝑎2 = −3 +𝑚𝜏 +
𝜏2(2𝜏)1−𝛼

Γ(α)
, 

𝑎3 = 1. 

From the article [14], we write the following lemma. 

Lemma 3: Taking𝑝 =
3𝑎1−𝑎2

2

9
 and 𝑞 =

9𝑎1𝑎2−27𝑎0−2𝑎2
2

54
, then this formula have that the following roots 

𝑟1 = √𝑞 + √𝑝3 + 𝑞2
3

,  

𝑟2 = √𝑞 − √𝑝3 + 𝑞2
3

,  

𝑟3 = −𝑟1 − 𝑟2 − 𝑎2. 

When the found values  𝑎0, 𝑎1 and 𝑎2are written instead in this lemma, we obtained 𝑟1 < 1, 𝑟2 < 1 and 

𝑟3 < 1. 𝑟1 and  𝑟2 are stable but 𝑟3 is unstable. 

Next section, we shall show one example by the implicit rather difference method for the approximation 

solution.  

IV. NUMERICAL IMPLEMENTATION 

In section 2, we obtained the exact solution for one test problem. In this section, we shall investigate the 

approximation of this example by the implicit rather difference method. We utilize a procedure of modified Gauss 

elimination method for difference equation (12). We obtain the maximum norm of the error of the numerical 

solution by: 

𝜀 = max ‖𝑢(𝑡, 𝑥) − 𝑢(𝑡_𝑘, 𝑥_𝑛 )‖, 𝑛 = 0, 1, …𝑀, 𝑘 = 0, 1 ,2, …𝑁  

where 𝑢𝑛
𝑘 = 𝑢(𝑡𝑘, 𝑥𝑛) is the approximate solution and 𝑢(𝑡, 𝑥) is exact solution. The error analysis for this method. 
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Table 1.Error Analysis 

   𝝉 =
𝟏

𝑵
, 𝒉 =

𝟏

𝑴
 

The difference scheme (12)   

𝛼                           0.1 0.50 0.01 0.99 0.999 1 

𝑁 = 𝑀 = 20       0.2155 0.1860 0.2008 0.0403 0.0380 0.0378 

𝑁 = 𝑀 = 80         1.8796 1.0237 1.6434 0.0680 0.0462 0.0418 

𝑁 = 400,𝑀 = 20 0.1493 0.1277 0.1381 0.0230 0.0216 0.0214 

From the error analysis table, obtained results are satisfied stability estimates for 𝑁 = 𝑀 = 20 and 𝑁 =
400, 𝑀 = 20 and all 𝛼. But it is not satisfied for 𝑁 = 𝑀 = 80, 0.01 < 𝛼 < 0.5. This result is due to the stability 

of the roots in lemma. 

V. RESULTS 

In this study, exact solution is obtained for by Laplace transform method for third order partial differential 

equation with ABC fractional derivative. First order difference schemes are presented. Stability inequalities are 

given for first order difference. We have utilized the implicit rather difference method to get algorithms for 

investigating third order partial differential equation with ABC fractional derivative. Approximate solutions are 

obtained by this method. MATLAB software program has been utilized for all results. Finally, the exact and the 

approximation solutions are compared. Obtained results showed that this approximation method is effective and 

good. 
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