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This paper presents the construction and implementation of a three-step optimized 

hybrid method for solving stiff system of first order initial value problems of ordinary 

differential equations. The method contains six implicit formulas which were obtained 

from a continuous approximation, using shifted chebyshev polynomial as the basis 

function, via evaluations at six different points on the selected three-step including 

three optimized intra-step points. The method is consistent, zero-stable and 

convergent. Numerical experiments are included to show the competitive and superior 

strength of the proposed method for solving these kinds of problems over similar 

properties of methods in literature. 

 

1. Introduction 

Many applied sciences problems can be formulated into ordinary differential equations. The first order ordinary 

differential equation of the form appears frequently in applied sciences. 

 

𝑦′(𝑡) = 𝑓(𝑡, 𝑦); 𝑦(𝑡0) = 𝑦0 (1) 

 

Solving problems of equation (1) can be done seamlessly by the conventional methods of Euler, its various 

modifications, Ruge-kutta methods, multi-step methods and recently developed block methods. However, the 

accuracy of these methods and their rate of convergence recently become points of concerns for researchers 

especially problems with special properties such as discontinuity and stiffness. Where the conditions for existence 

and uniqueness of equation (1) are assumed satisfied, our aim is to solve the initial problem of the form (1) and 

its stiff related problems on a given interval [𝑡0, 𝑡3] using an Optimized Hybrid Block Method (OHBM). Milne 

[1] was the researcher to first introduce block methods. Block methods were developed to eradicate prediction, a 

major drawback, of starting values of predictor-corrector approach. They have been proven to be more efficient 

in terms of cost implementation, computation time, convergence rate and accuracy [2]. Akinfenwa, Jator and Yao 

[3] developed a continuous clock Backward Differentiation Formula (BEF) that was effectively used for solving 

stiff ordinary differential equations. Many more block numerical methods were found in the work of Musa, 

Suleiman, & Senu [4]: Fully Implicit 3-point Block Extended Backward Differentiation Formula for Stiff Initial 

Value Problems; Musa, Suleiman, Ismail, Senu & Ibrahim [5]: An Improved 2-point Block Backward 
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Differentiation Formula for Solving Stiff Initial Value Problems. Sunday, Odekunle, James, & Adesanya [6]: 

Numerical Solution of Stiff and Oscillatory Differential Equations Using a Block Integrator; Ramos, Kalogiratou, 

Monovasilis & Simos [7]: A Trigonometrically Fitted Optimized Two-step Hybrid Block Method for Solving 

Initial Value Problems of the form 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′) with Oscillatory Solutions; Ramos [2]: An Optimized Two-

step Hybrid Block Method for Solving First-order Initial-value Problems in Ordinary Differential Equations; 

Ramos & Popescu [8]: How Many 𝑘-step Linear Block Methods Exist and Which of them is the Most Efficient 

One? and Singh, Garg, Kanwar & Ramos [9]: An Efficient Optimized Adaptive Step-size Hybrid Block Method 

for Integrating Differential System. The stability and possibility of some Runge-kutta methods were shown in 

solving the stiff system of equations arising from the decomposition of singular Lane-Emden equations as found 

in Ogunniran, Tayo, Haruna and Adebisi [10]. 

2. Methods 

In this session, we describe the development of a continuous implicit three-step hybrid block method for the 

solution of Initial Value Problem (IVP) as defined in equation (1) assuming the existence of stiffness in the 

physical and behaviourial state of the problem. The method is basically on the approximation of the exact solution 

of (1) at points on the following divisions of intervals 𝑎 to 𝑏 of the solutions with fixed step length by a linear 

combination of the basis functions {𝑇0
∗(𝑡), 𝑇1

∗(𝑡), 𝑇2
∗(𝑡), 𝑇3

∗(𝑡), 𝑇4
∗(𝑡), 𝑇5

∗(𝑡), 𝑇6
∗(𝑡), 𝑇7

∗(𝑡)} where 𝑇𝑚
∗ (𝑡) is a 

family of shifted Chebyshev polynomial of order 𝑚. 

 The shifted chebyshev polynomials of the first kind are orthogonal on the support interval [0,1] with weight 

function:  

𝑤(𝑡) =
1

√𝑡 − 𝑡2
 

 

 and normalized by the requirement that 𝑇𝑚
∗ (1) = 1. 

 𝑇𝑚
∗ (1) = 1 satisfies the three-term recurrence relation: 

  

𝑇𝑚+1
∗ (𝑡) = 2(2𝑡 − 1)𝑇𝑚

∗ (𝑡) − 𝑇𝑚−1
∗ (𝑡), for𝑚 ≥ 1. 

 

 with starting values  

𝑇0
∗(𝑡) = 1, 𝑇1

∗(𝑡) = 2𝑡 − 1. 

 

  2.1. Formulation of the Method  

We consider the approximation, 𝑦(𝑡) of (1) by a polynomial 𝑢(𝑡). The polynomial represents an approach to 

obtaining the iterative method which is given by an implicit set of equations. We therefore consider the points 

𝑡𝑖, 𝑡𝑖+1, 𝑡𝑖+2, 𝑡𝑖+3 with the step length ℎ = 𝑡𝑖 − 𝑡𝑖−1 and three intra-step points 𝑡𝑟1 = 𝑡𝑖 + 𝑟1ℎ, 𝑡𝑟2 = 𝑡𝑖 + 𝑟2ℎ and 

𝑡𝑟3 = 𝑡𝑖 + 𝑟3ℎ with 0 < 𝑟1 < 1, 1 < 𝑟2 < 2 and 2 < 𝑟3 < 3. 

 For solution of (1), we assume the solution 𝑦(𝑡) is approximated by 𝑢(𝑡) in the form:  

 

𝑦(𝑡) ≈ 𝑢(𝑡) = ∑

7

𝑚=0

𝑎𝑚𝑇𝑚
∗ (𝑡) (2) 

 

where 𝑎𝑚,𝑚 = 1(1)7 are real unknown parameter to be determined. 

 Differentiating (2), we have:  

𝑦′(𝑡) ≈ 𝑢′(𝑡) = ∑

7

𝑚=0

𝑎𝑚𝑇
∗′𝑚(𝑡) (3) 

  



Ogunniran et al.  CUJSE 17(2): 80-95 (2020) 

 

82 

 

The evaluations produce a system of 8 algebraic equations in 8 unknown which is given matrix form as below: 

 

(

 
 
 
 
 
 

𝑇0
∗(𝑡) 𝑇1

∗(𝑡) 𝑇2
∗(𝑡) 𝑇3

∗(𝑡) 𝑇4
∗(𝑡) 𝑇5

∗(𝑡) 𝑇6
∗(𝑡) 𝑇7

∗(𝑡)

𝑇∗′0(𝑡) 𝑇∗′1(𝑡) 𝑇∗′2(𝑡) 𝑇∗′3(𝑡) 𝑇∗′4(𝑡) 𝑇∗′5(𝑡) 𝑇∗′6(𝑡) 𝑇∗′7(𝑡)

𝑇∗′0(𝑡) 𝑇∗′1(𝑡) 𝑇∗′2(𝑡) 𝑇∗′3(𝑡) 𝑇∗′4(𝑡) 𝑇∗′5(𝑡) 𝑇∗′6(𝑡) 𝑇∗′7(𝑡)

𝑇∗′0(𝑡) 𝑇∗′1(𝑡) 𝑇∗′2(𝑡) 𝑇∗′3(𝑡) 𝑇∗′4(𝑡) 𝑇∗′5(𝑡) 𝑇∗′6(𝑡) 𝑇∗′7(𝑡)

𝑇∗′0(𝑡) 𝑇∗′1(𝑡) 𝑇∗′2(𝑡) 𝑇∗′3(𝑡) 𝑇∗′4(𝑡) 𝑇∗′5(𝑡) 𝑇∗′6(𝑡) 𝑇∗′7(𝑡)

𝑇∗′0(𝑡) 𝑇∗′1(𝑡) 𝑇∗′2(𝑡) 𝑇∗′3(𝑡) 𝑇∗′4(𝑡) 𝑇∗′5(𝑡) 𝑇∗′6(𝑡) 𝑇∗′7(𝑡)

𝑇∗′0(𝑡) 𝑇∗′1(𝑡) 𝑇∗′2(𝑡) 𝑇∗′3(𝑡) 𝑇∗′4(𝑡) 𝑇∗′5(𝑡) 𝑇∗′6(𝑡) 𝑇∗′7(𝑡)

𝑇∗′0(𝑡) 𝑇∗′1(𝑡) 𝑇∗′2(𝑡) 𝑇∗′3(𝑡) 𝑇∗′4(𝑡) 𝑇∗′5(𝑡) 𝑇∗′6(𝑡) 𝑇∗′7(𝑡))

 
 
 
 
 
 

(

 
 
 
 
 

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7)

 
 
 
 
 

=

(

 
 
 
 
 
 

𝑦𝑖
𝑓𝑖
𝑓𝑖+𝑟1
𝑓𝑖+1
𝑓𝑖+𝑟2
𝑓𝑖+2
𝑓𝑖+𝑟3
𝑓𝑖+3 )

 
 
 
 
 
 

 (4) 

 

 To obtain the real coefficients of (2), we impose the following conditions in the evaluations of (2) and (3), 

 

𝑦𝑖 = 𝑢(𝑡𝑖); 𝑖 = 0;

𝑓𝑖+𝑗 = 𝑢′(𝑡𝑖+𝑗); 𝑗 = 0, 𝑟1, 1, 𝑟2, 2, 𝑟3, 3.
} (5) 

 

which yield the system of 8 equations in 8 unknowns and was solved to have the results of these coefficients of 

the polynomial 𝑢(𝑥) in terms of 𝑦𝑖 , 𝑓𝑖, 𝑓𝑖+𝑟1 , 𝑓𝑖+1, 𝑓𝑖+𝑟2 , 𝑓𝑖+2, 𝑓𝑖+𝑟3 , 𝑓𝑖+3. After due substitution in (2), the resulting 

scheme is obtained. 

 To obtain the appropriate values of 𝑟1, 𝑟2 and 𝑟3, we optimized the local truncation errors of the formulae 𝑦𝑖+1, 

𝑦𝑖+2, and 𝑦𝑖+3. In what follows, we have: 

 

ℒ(𝑦(𝑡𝑖+1); ℎ) = (
19 𝑟1

2𝑟2𝑟3

1209600
+
19 𝑟2

2𝑟3𝑟1𝑟

1209600
+
19 𝑟2𝑟3

2𝑟1

1209600
−
17 𝑟1

2𝑟2

2419200

−
17 𝑟1

2𝑟3

2419200
−
17 𝑟1𝑟3

2

2419200
+
97 𝑟1𝑟2𝑟3

1209600
−
17 𝑟1𝑟3

2

2419200
−
17 𝑟2

2𝑟3

2419200

−
17 𝑟2𝑟3

2

2419200
+

11 𝑟1
2

2822400
−
3 𝑟1𝑟2

78400
−
3 𝑟1𝑟3

78400
+

11 𝑟2
2

2822400
−
3 𝑟2𝑟3

78400
+

11 𝑟3
2

2822400
+

11 𝑟1

470400
+

11 𝑟2

470400

+
11 𝑟3

470400
−

13

793800
) 𝑦(9)ℎ9 + (

19 𝑟1𝑟2𝑟3

151200
−
17 𝑟1𝑟2

302400
−
17 𝑟1𝑟3

302400
−
17 𝑟2𝑟3

302400
+

11 𝑟1

352800
+

11 𝑟2

352800
+

11 𝑟3

352800

−
83

4233600
)𝑦(8)ℎ8 }

 
 
 
 
 

 
 
 
 
 

 (6) 

 

ℒ(𝑦(𝑡𝑖+2); ℎ) = (
𝑟1
2𝑟2𝑟3

151200
+
𝑟2
2𝑟3𝑟1

151200
+
𝑟2𝑟3

2𝑟1

151200
+

𝑟1
2𝑟3

151200
+

𝑟1
2𝑟3

151200
+

𝑟1𝑟2
2

151200
+
𝑟1𝑟2𝑟3

18900
+

𝑟1𝑟3
2

151200
+

𝑟2
2𝑟3

151200
+

𝑟2𝑟3
2

151200
−

𝑟1
2

58800
+

𝑟1𝑟2

44100
+

𝑟1𝑟3

44100
−

𝑟2
2

58800
+

𝑟2𝑟3

44100
−

𝑟3
2

58800
−

𝑟1

9800
−

𝑟2

9800
−

𝑟3

9800
+

23

99225
)𝑦(9)ℎ9 + (

𝑟1𝑟2𝑟3

18900
+

𝑟1𝑟2

18900
+

𝑟1𝑟3

18900
+

𝑟2𝑟3

18900
−

𝑟1

7350
−

𝑟2

7350
−

𝑟3

7350
+

8

33075
) 𝑦(8)ℎ8 }

  
 

  
 

 (7) 

 

ℒ(𝑦(𝑡𝑖+3); ℎ) = (
𝑟1
2𝑟2𝑟3

44800
+
𝑟2
2𝑟3𝑟1

44800
+
𝑟2𝑟3

2𝑟1

44800
−
3 𝑟1

2𝑟3

89600
−
3 𝑟1

2𝑟3

89600
−
3 𝑟1𝑟2

2

89600
+
3 𝑟1𝑟2𝑟3

44800
−
3 𝑟1𝑟3

2

89600
−
3 𝑟2

2𝑟3

89600
−

3 𝑟2𝑟3
2

89600
+
27 𝑟1

2

313600
−
9 𝑟1𝑟2

78400
−
9 𝑟1𝑟3

78400
+
27 𝑟2

2

313600
−
9 𝑟2𝑟3

78400
+
27 𝑟3

2

313600
+

81 𝑟1

156800
+

81 𝑟2

156800
+

81 𝑟3

156800
−

81

39200
) 𝑦(9)ℎ9 + (

𝑟1𝑟2𝑟3

5600
−
3 𝑟1𝑟2

11200
−
3 𝑟1𝑟3

11200
−
3 𝑟2𝑟3

11200
+
27 𝑟1

39200
+
27 𝑟2

39200
+
27 𝑟3

39200
−

297

156800
) 𝑦(8)ℎ8}

  
 

  
 

 (8) 

 

 Equations (6) - (8) are forced to be of order 8, as such we equate the coefficients of 𝑦(8)ℎ8 in equations to 

zero thus producing a system of 3 algebraic equations as follows: 

 

19 𝑟1𝑟2𝑟3
151200

−
17 𝑟1𝑟2
302400

−
17 𝑟1𝑟3
302400

−
17 𝑟2𝑟3
302400

+
11 𝑟1
352800

+
11 𝑟2
352800

+
11 𝑟3
352800

−
83

4233600
= 0 (9) 
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𝑟1𝑟2𝑟3
18900

+
𝑟1𝑟2
18900

+
𝑟1𝑟3
18900

+
𝑟2𝑟3
18900

−
𝑟1

7350
−

𝑟2
7350

−
𝑟3
7350

+
8

33075
= 0 (10) 

 

𝑟1𝑟2𝑟3
5600

−
3 𝑟1𝑟2
11200

−
3 𝑟1𝑟3
11200

−
3 𝑟2𝑟3
11200

+
27 𝑟1
39200

+
27 𝑟2
39200

+
27 𝑟3
39200

−
297

156800
= 0 (11) 

 

 Solving these equations results into a symmetric plane curve with respect to the diagonal 𝑟1 = 𝑟2 = 𝑟3 which 

are then solved to obtain a unique solution with the constraints 𝑟1 = 𝑟2 = 𝑟3 and producing a unique solution with 

constraints 0 < 𝑟1 < 1,1 < 𝑟2 < 2,2 < 𝑟3 < 3, thereby producing the optimized intra-step points as follows: 

  

𝑟1 =
3

2
−
1

2
√5 ≈ 0.381966012

𝑟2 =
3

2
≈ 1.5

𝑟3 =
3

2
+
1

2
√5 ≈ 2.618033988}

 
 

 
 

 (12) 

 

 After substituting the values obtained for 𝑟1, 𝑟2 and 𝑟3, we have the intended scheme as below:  

 

𝑁 = 𝐴 + ℎ𝐵𝑓 (13) 

 

where; 

 

𝑁 =

(

 
 
 
 
 

3780(3 + √5)𝑦
𝑖+
3
2
−
1
2√
5

𝑦𝑖+1
𝑦
𝑖+
3
2

𝑦𝑖+2

3780(√5 − 3)𝑦
𝑖+
3
2
+
1
2√
5

𝑦𝑖+3 )

 
 
 
 
 

 

 

𝐴 =

(

 
 
 
 

(11340 + 3780√5)𝑦𝑖
𝑦𝑖
𝑦𝑖
𝑦𝑖

(3780√5 − 11340)𝑦𝑖
𝑦𝑖 )

 
 
 
 

 

 

𝐵 =

(

 
 
 
 
 
 
 
 
 

(516√5 + 1498) 3528 + 1242√5 −567 − 1089√5 1792 + 384√5 378 − 774√5 1008 − 270√5 −77 − 9√5
106

945

41

140
+
2

15
√5

151

420
−
16

189

11

420

41

140
−
2

15
√5

1

945
1037

8960

81

280
−
81

640
√5

5427

8960

8

35
−
243

8960

81

280
−
81

640
√5 −

13

8960
107

945

2

7
−
2

15
√5

58

105

512

945

23

105

2

7
−
2

15
√5

2

945

516√5 − 1498 −1008 − 275√5 567 − 1089√5 −1792 + 384√5 −378 − 774√5 −3528 + 1242√5 77 − 9√5
4

35

81

140

81

140

16

35

81

140

81

140

4

35
)
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𝑓 =

(

 
 
 
 
 
 

𝑓𝑖
𝑓
𝑖+
3
2
−
1
2√
5

𝑓𝑖+1
𝑓
𝑖+
3
2

𝑓𝑖+2
𝑓
𝑖+
3
2
+
1
2√
5

𝑓𝑖+3 )

 
 
 
 
 
 

 

 

3. Specification of the Method  

This section contains the discussion of some main characteristics of the proposed three-step optimized hybrid 

block method. Rigorous analysis was carried out to obtain the order, consistency, zero-stability, convergence and 

linear stability of the method. 

  3.1. Order and Zero-stability 

Order and Consistency of the Method 

Due to Lambert [6], a numerical scheme is said to be of order 𝑝 = 𝑘 if in the difference equation, ℒ{𝑦(𝑥); ℎ}; 

𝑐∘ = 𝑐1 = 𝑐2 =. . . = 𝑐𝑘 = 0 and 𝑐𝑘+1 ≠ 0, and the Error constant = 𝑐𝑘+1. 

 Expanding (13) in Taylor series and collecting related terms, we have corresponding formula and it order as 

given in the table below: 

 Table 1: Table of Order for Formulae in Method (13) 

S/N Formula Order 

1  𝑦
𝑖+
3

2
−
1

2
√5

   8 

2  𝑦𝑖+1   8 

3  𝑦
𝑖+
3

2

   8 

4  𝑦𝑖+2  8 

5  𝑦
𝑖+
3

2
+
1

2
√5

  8 

6  𝑦𝑖+3   8 

 

 Table 1 above shows the error of the block method is 8 which implies the proposed method is consistent 

because the necessary and sufficient condition for consistence of a method is that it is of at least order 1. 

  3.2. Zero-stability 

This is a property concerning the method when limiting ℎ to zero. Thus as ℎ tends to zero in (13), we have the 

following system of equations: 

 
𝑦
𝑖+
3
2
−
1
2√
5
= 𝑦𝑖

𝑦𝑖+1 = 𝑦𝑖
𝑦
𝑖+
3
2
= 𝑦𝑖

𝑦𝑖+2 = 𝑦𝑖
𝑦
𝑖+
3
2
+
1
2√
5
= 𝑦𝑖

𝑦𝑖+3 = 𝑦𝑖 }
  
 

  
 

 (14) 

 

which can be written in matrix form 

 

𝐼𝑌𝑖 − 𝐵0𝑌𝑖−1 = 0 (15) 
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where  

𝐼 =

(

 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

)

 
 
 
 

, 𝑌𝑖 =

(

 
 
 
 

𝑦
𝑖+
3
2
−
1
2√
5
= 𝑦𝑖

𝑦𝑖+1 = 𝑦𝑖
𝑦
𝑖+
3
2
= 𝑦𝑖

𝑦𝑖+2 = 𝑦𝑖
𝑦
𝑖+
3
2
+
1
2√
5
= 𝑦𝑖

𝑦𝑖+3 = 𝑦𝑖 )

 
 
 
 

 

 

𝐵0 =

(

 
 
 
 

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

)

 
 
 
 

, 𝑌𝑖−1 =

(

 
 
 
 

𝑦𝑖
𝑦𝑖
𝑦𝑖
𝑦𝑖
𝑦𝑖
𝑦𝑖
)

 
 
 
 

 

  

 According to Lambert [11], a block method is zero-stable if the roots 𝑟𝑘 of the first characteristic polynomial 

𝜉(𝑟) = 𝑑𝑒𝑡|𝐼𝑟 − 𝐵0| does not exceed 1 i.e. |𝑟𝑘| ≤ 1. The first characteristic polynomial of method (13) is given 

by  

𝑟5(𝑟 − 1) = 0 (16) 

 

 The roots of (16) are 𝑟 = 0,0,0,0,0,1 which none of it does not exceed 1, thus Method (13) is zero-stable. 

  3.3. Convergence 

According to Henrici [12], we establish the convergence of the three-step optimized hybrid block method since 

consistence and zero-stability are necessary and sufficient features for convergence.   

  3.4. Linear Stability 

This is a behaviourial property related to ℎ > 0. As in most literature, the linear stability will be analyzed using 

the Dalquist’s test 

 

𝑦′(𝑡) = 𝛾𝑦(𝑡), ℜ(𝛾) < 0 (17) 

 

Applying (13) on (17), we have obtained a recurrence equation  

 

𝑌𝑖 = 𝑀(𝑧)𝑌𝑖−1 (18) 

 

 where 𝑀(𝑧) is the stability matrix given by  

 

𝑀(𝑧) =
𝐵0 + 𝑧𝐶0
𝐵1 − 𝑧𝐶1

 (19) 

 

where 
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𝐵0 =

(

 
 
 
 

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

)

 
 
 
 

 (20) 

 

𝐵1 =

(

 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

)

 
 
 
 

 (21) 

 

𝐶0 =

(

 
 
 
 
 
 
 
 
 

0 0 0 0 0 (516√5 + 1498)

0 0 0 0 0
106

945

0 0 0 0 0
1037

8960

0 0 0 0 0
107

945

0 0 0 0 0 516√5 − 1498

0 0 0 0 0
4

35
)

 
 
 
 
 
 
 
 
 

 (22) 

 

𝐶1 =

(

 
 
 
 
 
 
 
 
 

3528 + 1242√5 −567 − 1089√5 1792 + 384√5 378 − 774√5 1008 − 270√5 −77 − 9√5
41

140
+
2

15
√5

151

420
−
16

189

11

420

41

140
−
2

15
√5

1

945
81

280
−

81

640√5

5427

8960

8

35
−
243

8960

81

280
−
81

640
√5 −

13

8960

2

7
−
2

15
√5

58

105

512

945

23

105

2

7
−
2

15
√5

2

945

−1008 − 275√5 567 − 1089√5 −1792 + 384√5 −378 − 774√5 −3528 + 1242√5 77 − 9√5
81

140

81

140

16

35

81

140

81

140

4

35
)

 
 
 
 
 
 
 
 
 

 (23) 

 

and 𝑧 = ℎ𝛾. The eigenvalues of 𝑀(𝑧) was obtained as 𝜉0, 𝜉0, 𝜉0, 𝜉0, 𝜉0, 𝜉𝑘. The only leading eigenvalue 

 

𝜉𝑘 = −1/2 

383095755 √5𝑧6 + 3683945187 √5𝑧5 + 2037188145 𝑧6

+10983913668 √5𝑧4 + 25951773525 𝑧5 − 20484255800 √5𝑧3

+147227776480 𝑧4 − 182103644640 √5𝑧2 + 453569705100 𝑧3

−96494328000 𝑧√5 + 849828086600 𝑧2 − 64329552000 √5 + 1630877976000 𝑧 + 1087251984000

1317413079 √5𝑧5 − 1079991735 𝑧6 − 16482485901 √5𝑧4

+8698126980 𝑧5 + 49001940865 √5𝑧3 − 27029731235 𝑧4

−55445935170 √5𝑧2 + 112158342075 𝑧3 − 48247164000 𝑧√5

−381063854950 𝑧2 + 32164776000 √5 + 815438988000 𝑧 − 543625992000

 (24) 

 

and can further be simplified as 

 

𝜉𝑘 = −1/2 

2893816295.0 𝑧6 + 34189325380.0 𝑧5 + 171788554100.0 𝑧4 + 407765516700.0 𝑧3

+442631958400.0 𝑧2 + 1415110099000.0 𝑧 + 943406732800.0
−1079991735 𝑧6 + 11643952180.0 𝑧5 − 63885690140.0 𝑧4 + 221730012900.0 𝑧3

−505044735100.0 𝑧2 + 707555049600.0 𝑧 − 471703366400.0

 (25) 



Ogunniran et al.  CUJSE 17(2): 80-95 (2020) 

 

87 

 

is a rational function which was plotted on a contour to obtain the region of absolute stability of the method as 

displayed below. 

 

 

Figure 1. Region of Absolute Stability of the Method 

4. Numerical Experiment 

Test 5.1: 

The Hamiltonian problem in time dependent optimal problem is given as:  

 

min
𝑢
∫
1

0

𝑢2(𝑡)𝑑𝑡

suchthat
𝑦′ = 𝑦 + 𝑢, 𝑦(0) = 0, 𝑦′(0) = 1.}

 

 

 (26) 

 

 As a constraint that leads to the following initial value problem using Hamiltonian conditions in the 

conventional way where:  

 

𝐻 = 𝑓 + 𝜆𝑔

𝑓 = 𝑢2, 𝑔 = 𝑦 + 𝑢

𝐻𝑢 = 0,𝐻𝑦 = −𝜆′and𝐻𝜆 = 𝑦′
} (27) 

 

and the Hamiltonian conditions lead to  

 

𝑦′′(𝑡) − 𝑦(𝑡) = 0𝑦(0) = 0, 𝑦′(0) = 1. 

 

 The last equation is then reduced to:  

 

𝑦′1 = 𝑦2
𝑦′2 = −𝑦1
𝑦1(0) = 0, 𝑦2(0) = 1, 𝑥 ∈ [0,10].
𝑦1(𝑥) = 𝑠𝑖𝑛𝑥, 𝑦2(𝑥) = 𝑐𝑜𝑠𝑥 }

 

 
 (28) 

 

 See Table 2 for numerical results.  
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Table 2: Absolute Errors for Test Problem 5.1 Using Method (13), 𝒉 = 𝟎. 𝟎𝟏 

𝒕 𝒚𝟏(𝒕) Component 𝒚𝟐(𝒕) Component 

0.0 0.0000 0.0000 

0.1 1.0000 × 10−14 1.0000 × 10−14 

0.2 1.0000 × 10−14 1.0000 × 10−14 

0.3 1.0000 × 10−14 1.0000 × 10−14 

0.4 1.0000 × 10−14 1.0000 × 10−14 

0.5 1.0000 × 10−14 1.0000 × 10−14 

0.6 1.0000 × 10−14 1.0000 × 10−14 

0.7 1.0000 × 10−14 1.0000 × 10−14 

0.8 1.0000 × 10−14 1.0000 × 10−14 

0.9 1.0000 × 10−14 1.0000 × 10−14 

1.0 1.0000 × 10−14 1.0000 × 10−14 

 

 Exact Error=|𝑦(𝑡) − 𝑦(𝑡𝑖)|, where 𝑦(𝑡) is the exact solution and 𝑦(𝑡𝑖) is results from numerical methods. 

Computation time = 0.125𝑠 and Tolerance for convergence = 10−14.  

 
Figure  2. Solution Graph in Comparison with the Exact Solution for Test Problem 5.1 
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Figure  3. Efficiency Curve of the Method for Test Problem 5.1 

 

Test 5.2: 

Ramos [8]: Consider the following linear system given by:  

 

𝑦′1(𝑡) = −21𝑦1 + 19𝑦2 − 20𝑦3, 𝑦1(0) = 1,

𝑦′2(𝑡) = 19𝑦1 − 21𝑦2 + 20𝑦3, 𝑦2(0) = 0,

𝑦′3(𝑡) = 40𝑦1 − 40𝑦2 − 40𝑦3, 𝑦3(0) = −1.

} (29) 

 

 whose exact solution is:  

 

𝑦1(𝑡) =
1

2
(exp−2𝑡 + exp−40𝑡(𝑐𝑜𝑠(40𝑡) + 𝑠𝑖𝑛(40𝑡))),

𝑦2(𝑡) =
1

2
(exp−2𝑡 − exp−40𝑡(𝑐𝑜𝑠(40𝑡) + 𝑠𝑖𝑛(40𝑡))),

𝑦3(𝑡) =
1

2
exp−40𝑡(𝑐𝑜𝑠(40𝑡) + 𝑠𝑖𝑛(40𝑡)).

}
  
 

  
 

 (30) 

 

Discussion: 

As appear in Ramos [2] among others, we compared the results of our method (OHBM) along side BDF 6, a 

classical BDF method of order six, a continuous six-step BDF method (BHM) both the work of Akinfenwa et. 

al. [3] and Ramos [2]. Different step sizes were considered and the maximum relative errors were compared over 

the three components 𝑦1(𝑡), 𝑦2(𝑡) and 𝑦3(𝑡). The optimized three-step method presented in this paper has proven 

to be superior in terms of accuracy and a negligible computation time was used for its execution. 

 See Table 3 for Numerical Results and Comparison.  
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 Table 3: Numerical Comparison of Maximum Relative Error for Test Problem 5.2 Using Different Methods 

Steps BDF 𝟔  Akinfenwa et. al. [3]   Ramos [2]   OHBM 

20  2.000 × 10−1   4.700 × 10−2   8.360 × 10−3   2.943 × 10−5 

40  2.600 × 10−1   2.100 × 10−3   4.009 × 10−4   1.250 × 10−6  

80  2.600 × 10−3   1.400 × 10−4   6.785 × 10−6   2.721 × 10−13 

160  9.100 × 10−5   7.500 × 10−6   1.156 × 10−7   4.262 × 10−15 

320  1.800 × 10−6   1.700 × 10−7   1.853 × 10−9   7.707 × 10−18 

640  3.300 × 10−8   3.000 × 10−9   2.901 × 10−11   3.000 × 10−21 

Computation Time  NA  NA  NA   0.03125𝑠 

 

 Relative Error, MaxRerr=max𝑖
|𝑦(𝑡)−𝑦(𝑡𝑖)|

𝑦(𝑡)
, where 𝑦(𝑡) is the exact solution and 𝑦(𝑡𝑖) is results from numerical 

methods. NA mean NOT APPLICABLE as the author did not consider the execution times.  

 

Figure  4. Solution Graph in Comparison with the Exact Solution for Test Problem 5.2 
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Figure  5. Efficiency Curve of the Method for Test Problem 5.2 

Test 5.3: 

Singh et. al. [9]; Van der Pol System: 

 

𝑦′1 = 𝑦2, 𝑦′2 =
𝑦2(1 − 𝑦′1

2
) − 𝑦1

𝜇
;

𝑦1(0) = 2, 𝑦2(0) = −
2

3
+
10

81
𝜇 −

292

2187
𝜇2 −

1814

19683
𝜇3; 𝜇 = 10−1.

 (31) 

 

Discussion: 

This problem is approximated over the interval [0,0.55139] for h = 10−3 and 10−4 and comparison was done 

with RADAU: This code is based on implicit Runge–Kutta methods (Radau-IIa) with variable order (1, 5, 9, 13) 

and step size control. This code is specifically designed for solving stiff systems, ode15s: A variable-step, 

variable-order (VSVO) IVP solver. This code is based on the numerical differentiation formulas (NDFs) of orders 

1 to 5. This code is a built-in ODE solver in MATLAB which is also specifically designed for solving stiff 

systems, Singh et. al. [12]: The efficient optimized adaptive step-size hybrid block method and the proposed 

method (OHBM). The values y1 = 1.5633739442300918 and y2 = −1.0000208318542727 as obtained 

from Singh et. al. [9] was used as a reference values for numerical experiment. The great performance and 

superior strength claims of the proposed optimized block hybrid method were established and confirmed as in 

the numerical results presented in Table 4. See Table 4 for numerical results.  

Table 4. Numerical Results for Test Problem 5.3 at 𝒕 = 𝟎. 𝟓𝟓𝟏𝟑𝟗 

𝒉 Method MaxErr Cmpt. Time (s) 

10−3  RADAU 4.6122 × 10−6 0.014 

ode15s 2.9788 × 10−5 0.018 

Singh et. al. 

(2019) 

5.0900 × 10−8 0.011 

OHBM 1.9930 × 10−10 0.010 

10−4  RADAU 6.0016 × 10−7 0.016 

ode15s 4.8015 × 10−6 0.021 

Singh et. al. 

(2019) 

2.8070 × 10−9 0.014 

OHBM 2.0117 × 10−12 0.014 
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Figure 6. Solution Graph for Test Problem 5.3 

Test 5.4: 

Ramos [2]: Consider the following problem  

 

𝑦′(𝑡) = −10𝑡𝑦; 𝑦(0) = 1;

𝑦(𝑡) = exp(−5𝑡2)
 (32) 

 

has appeared in Ibrahim et. al. [13], Musa et. al. [4], Musa et. al. [5] and Ramos [2] on the interval [0,10] using 

numerous step length. The table of results for this problem shows the maximum absolute errors on the solution 

interval for different methods as reported by these literature; the 2-point block backward differentiation formula 

(BBDF) of Ibrahim et. al. [13], the 2-point improved block backward differentiation formula (IBBDF) of Musa 

et. al. [5], the 3-point block extended backward differentiation formula (3BEBDF) of Musa et. al. [4], the block 

hybrid method (BHM) of Ramos [2] and the optimized hybrid block method as presented in this paper. 

 See Table 5 for numerical results.  

 Table 5. Numerical Comparison of Errors for Test Problem 5.4 at 𝒕 = 𝟏𝟎  

Step size (𝒉) Ibrahim et. al. [13] Musa et. al. [5] Musa et. al. [4] Ramos [2] 
Exact Error 

OHBM 

10−2   2.4760 × 10−2   1.4981 × 10−3   1.2408 × 10−2   7.1970 × 10−13   4.6918 × 10−16 

10−3   2.8661 × 10−2   1.5115 × 10−5   7.3642 × 10−4   7.1986 × 10−19   9.8193 × 10−21 

 

 The proposed method shows its superiority over existing method of similar properties. Computation time for 

the proposed method is 0.078𝑠. 
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Figure  7. Solution Graph in Comparison with the Exact Solution for Test Problem 5.4 

Test 5.5: 

Ramos & Popsce [8]: We consider here a stiff parabolic equation with initial and boundary conditions given by:  

𝜕𝑦

𝜕𝑡
=
𝜕2𝑦

𝜕𝑥2
; 𝑥 ∈ [0,1], 𝑡 ∈ [0,1]

𝑦(0, 𝑡) = 𝑦(1, 𝑡) = 0; 𝑦(𝑥, 0) = sin𝜋𝑥 + sin(𝑞𝜋𝑥); 𝑞 > 1
 (33) 

 

 whose exact solution is: 

 

𝑦𝑣(𝑥, 𝑡) = exp−𝜋
2𝑡sin(𝜋𝑥) + exp−𝑞

2𝜋2𝑡sin(𝑞𝜋𝑥). (34) 

 

 Taking on the space domain a discrete evenly spaced mesh 

  

𝛾: {𝑥0 ≤ 𝑥1⋯ ≤ 𝑥𝑖+1 = 𝑏} (35) 

 

 in such a way the ∀𝑥𝑖 ∈ 𝛾, 

 

𝑓′(𝑥𝑖) =
𝑓′(𝑥𝑖+1) − 2𝑓′(𝑥𝑖) + 𝑓′(𝑥𝑖−1)

(Δ𝑥)2
 (36) 

 

setting 𝑦𝑖(𝑡) = 𝑦(𝑥𝑖, 𝑡), 𝑓𝑜𝑟𝑖 = 1,⋯ ,𝑁 with 𝑦0(𝑡) = 𝑦(0, 𝑡), 𝑦𝑁+1(𝑡) = 𝑦(1, 𝑡) = 0, the problem may be 

approximated by the form:  

 

𝑑𝑦

𝑑𝑡
= 𝐵𝑦(𝑡) (37) 

 

𝑦(𝑡0) = (𝑦1(𝑡),⋯ , 𝑦𝑛(𝑡))
𝑇 (38) 

 

and 𝐵 is a tridiagonal matrix: 
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𝐵 =
1

(Δ𝑥)2

(

  
 

−2 1 0 ⋯ 0 0 0
1 −2 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ −2 1 0
0 0 0 ⋯ 1 −2 1
0 0 0 ⋯ 0 1 −2)

  
 

 (39) 

 

where Δ𝑥 =
1

𝑁+1
 

 See Table 6 for Error Comparison of Methods. 

 Table 6. Maximum Absolute Errors at 𝒕 = 𝟏 for Test Problem 5.5 

𝒌 Ramos & Popescu [8]   OHBM 

2  1.7 × 10−4 1.2369 × 10−5 

3  1.1 × 10−4 1.2368 × 10−5 

5  1.0 × 10−4 4.4149 × 10−5 

10  1.0 × 10−4 4.4148 × 10−5 

Computation Time NA 0.125𝑠 

 

 For Δ𝑥 = 0.05, Maximum Absolute Error=max0≤𝑖≤𝑁|𝐸𝑥𝑎𝑐𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑡𝑡 = 1 − 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑡𝑡 =

1𝑎𝑛𝑑𝑠𝑝𝑎𝑐𝑒𝑥𝑖|. 

 

Figure  8. Solution Graph for Test Problem 5.5 

5. Discussion of Results and Conclusion  

  5.1. Computational Details 

In the implementation of the derived methods, a system of nonlinear equations must be solved in order to obtain 

the desired approximation. To solve these nonlinear systems, a Newton-Krylov solver, nsoli.m or a modified 

Newton solver, nsold.m was used. It is important to point that the numerical methods were programmed via 

MATLAB 9.2 version on a personal computer with the following specifications:  

 

    • System name- HP Pavilion x360 Convertible  

    • Processor- Intel(R) Core(TM) i3-7100U CPU @ 2.40GHz  

    • Installed memory (RAM)- 8.00GB  

    • System Type- 64-bits Operating System, x64-based processor  

    • Operating system- Windows 10  
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  5.2. Conclusion 

An analysis of an optimized three-step hybrid block methods has been extensively carried out. Some numerical 

experiments have been presented to demonstrate the performance of the method considered. The numerical 

results of the experiments establish the efficiency of the new method and its superiority over similar 

characteristics of methods in literature. 
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