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Abstract
In this paper, we propose a new generalization of the Poisson distribution by using the
concept of the weighted distribution; a trigonometric weight with the cosine function
is used. We derive some distributional properties of the new distribution, such as the
cumulative distribution function, moment generating function, factorial moments, and
index of dispersion. Then, the related model is considered for modeling purposes, with
estimation of the model parameters performed via several methods. Zero-inflated count
regression analysis is introduced by using the new distribution. Finally, we provide two
applications of the obtained results on practical data sets.
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1. Introduction
Many areas of applied sciences require precise models for processing count data (such

as ecology, environmental science, insurance, etc.). To obtain such distributions, there
is a need for new discrete distributions with desirable properties. Among the simple
techniques in this regard, there are the weighted distributions introduced by Rao [15].
These techniques aim to create flexible distributions by the use of a tuning weight function
and a well-established (simple) baseline distribution. For further details, we may refer the
reader to Patil and Rao [13, 14] for the general formalism with discussions, Castillo and
Casany [6] for the Poisson distribution as a baseline, Bhati and Joshi [4] for the geometric
distribution as a baseline and Bakouch [3] for the negative binomial Lindley distribution
as a baseline, and the references therein. The mathematical backgrounds of the discrete
weighted distributions can be formulated as follows. For a random variable X following a
discrete distribution defined by a probability mass function (pmf) denoted by f∗(x) and
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a weight function denoted by w(x), the corresponding weighted distribution is defined by
the following pmf:

f(x) = 1
E[w(X)]

w(x)f∗(x),

where E[w(X)] denotes the expectation of the random variable w(X). The most used
kind of weight function is the polynomial one, i.e., w(x) = x, w(x) = w(x; r) = xr or
w(x) = w(x; a, r) = (x+a)r, with success in count data modeling. On this topic, we again
refer to Castillo and Casany [6] for the Poisson distribution and Bhati and Joshi [4] for
the geometric distribution.

In this paper, we introduce a new generalization of the Poisson distribution with the
use of a cosine weight function defined by w(x) = w(x; β) = [cos(βx)]2, called the cosine
Poisson (CosPois) distribution. We thus follow the spirit of the cosine geometric distri-
bution introduced by Chesneau et al. [7], but with the Poisson distribution as a baseline.
The motivations behind this choice are as follows. Thanks to the oscillating nature of
the cosine function, we show that the desirable properties of the Poisson distribution are
significantly enriched. The CosPois distribution can be over-dispersed or under-dispersed,
unlike Poisson distribution. It can be more flexible than the Poisson distribution for mod-
eling practical data through this property. It is also observed that the CosPois distribution
is better for modeling the number of outbreaks of strikes (under-dispersed data) in UK
coal mining industries, as shall be seen later.

Regarding inference on the model parameters, we consider three methods such as maxi-
mum likelihood, proportion and moment estimators. Furthermore, two types of confidence
intervals (CIs) of parameters are discussed through asymptotic distributions of maximum
likelihood estimators and likelihood ratio statistic. The simulation study revealed that the
proportion type estimates are competitor to the others in terms of the mean square error
(MSE) criterion. The robustness of the proportion type estimates is detected. It is also
observed that the CIs based on likelihood ratio statistic behave like the MLE based CIs
in terms of the coverage probabilities through another simulation study.

Also, the CosPois distribution is adapted to a count regression analysis with the zero-
inflation procedure and it is applied to a practical data. It is demonstrated that the zero-
inflated CosPois count regression analysis can be an alternative to well-known zero-inflated
count regressions, such as Poisson and negative binomial via the Akaike’s Information
Criterion (AIC).

The rest of the article is summarized as follows. Section 2 presents the CosPois dis-
tribution, with expressions of the corresponding pmf, cumulative distribution and hazard
rate functions. Some mathematical properties complete this presentation in Section 3.
The data generation algorithm for the CosPois distribution is provided in Section 4. In
Section 5, five different estimators are studied and the estimation of the model parameters
with a simulation study is performed. Two interval estimation methods are discussed for
the parameters of the CosPois distribution in Section 6. A practical data analysis is also
presented in Section 7. In Section 8, a zero-inflated count regression analysis is introduced
and an illustrative example with practical data is presented to demonstrate the applicabil-
ity of the introduced regression analysis. The concluding remarks are provided in Section
9.

2. The CosPois distribution
Hereafter, let T be a random variable following the Poisson distribution with parameter

λ > 0, i.e., with pmf: f∗(x) = f∗(x; λ) = e−λλx/x!, x ∈ N and cumulative distribution
function (cdf) denoted by F∗(x; λ) = P (T ≤ x), x ∈ R. Let w(x) = w(x; β) = [cos(βx)]2.
Then, we define the CosPois distribution with parameters β ∈ (0, π/2) and λ > 0 by the
pmf given by
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f(x; θ) = Cθ[cos(βx)]2 λx

x!
, x ∈ N, (2.1)

where

Cθ = e−λ {E[w(T ; β)]}−1

= 2e−λ
{

1 + e−λ[1−cos(2β)] cos[λ sin(2β)]
}−1

, (2.2)

and θ=(β, λ).
The value of Cθ follows from Lemma 3.1 formulated later (with m = 0, t = β and

κ = λ). By taking β = 0, the CosPois distribution is reduced to the former Poisson
distribution with parameter λ. The distribution with pmf (2.1) is denoted by CosPois(θ)
for abbreviating. It is noticed here that the pmf (2.1) is valid for the case β > π/2 but
it exhibits the same pmf periodically. That is, CosPois(θ) =CosPois((k + 1)π − β, λ) , for
β ∈ (0, π/2) and k = 0, 1, . . . .
Furthermore, we have

f(x + 1; θ)
f(x; θ)

= λ

x + 1
{cos[β(x + 1)]}2

[cos(βx)]2
. (2.3)

Clearly, without restriction on β, this ratio is a non-monotonic function with respect to
x, implying the possible multimodality of the CosPois distribution. Some plots of the
pmf of the CosPois distribution are given in Figure 1 for selected values of parameters.
From Figure 1, it is observed that the pmf can be unimodal or periodically increasing and
decreasing. This implies that the CosPois distribution potentially becomes a candidate
for modeling the applications on count data.
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Figure 1. Pmf plot for selected parameter values

Also, by using the following formula: [cos(a)]2 = (1/2)[1 + cos(2a)], a ∈ R, the cdf of the
CosPois distribution can be expressed as

F (t; θ) = C∗
θ [F∗(t; λ) + Υ(t; θ)] , t ∈ R,

where
C∗

θ = Cθeλ2−1 =
{

1 + e−λ[1−cos(2β)] cos[λ sin(2β)]
}−1
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and Υ(t; θ) =Re
[
F∗(t; λe2iβ)

]
. After some algebraic manipulations, we can show that

Υ(t; θ) = e−λ
[t]∑

x=0

λx

x!
[cos(2β)]x

[x/2]∑
k=0

(
x

2k

)
(−1)k[tan(2β)]2k,

where [t] denotes the integer just less than or equal to t.

3. Mathematical properties
We first consider the following useful lemma.

Lemma 3.1. For any κ, m, t ∈ R, we have
+∞∑
x=0

{cos[t(x + m)]}2 κx

x!
= 1

2
eκ
{

1 + e−κ[1−cos(2t)] cos[κ sin(2t) + 2mt]
}

.

Proof. First of all, by using the following formula: [cos(a)]2 = (1/2)[1 + cos(2a)], a ∈ R,
and the series expansion of the exponential function, we get

+∞∑
x=0

{cos[t(x + m)]}2 κx

x!
= 1

2
eκ

(
1 + e−κ

+∞∑
x=0

cos[2t(x + m)]κ
x

x!

)
.

Now, remark that
+∞∑
x=0

cos[2t(x + m)]κ
x

x!
= Re

[
eim2t

+∞∑
x=0

(κei2t)x

x!

]
= Re

[
eim2teκei2t

]
= eκ cos(2t)Re

{
ei[κ sin(2t)+m2t]

}
= eκ cos(2t)Re {cos[κ sin(2t) + m2t] + i cos[κ sin(2t) + m2t]}

= eκ cos(2t) cos[κ sin(2t) + m2t].
The desired equality follows by combining the equalities above, ending the proof of Lemma
3.1. �

Hereafter, let X be a random variable following the CosPois distribution with parame-
ters β ≥ 0 and λ > 0.

The following proposition presents the probability generating function (pgf) of X.

Proposition 3.2. The probability generating function of X is given by

GX(s) = E(sX) = e−λ(1−s) 1 + e−sλ[1−cos(2β)] cos[sλ sin(2β)]
1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

, s ∈ R.

Proof. It follows from Lemma 3.1 with m = 0, t = β and κ = sλ ∈ R that

GX(s) = Cθ

+∞∑
x=0

[cos(βx)]2 (sλ)x

x!

= Cθ
1
2

esλ
{

1 + e−sλ[1−cos(2β)] cos[sλ sin(2β)]
}

= e−λ(1−s) 1 + e−sλ[1−cos(2β)] cos[sλ sin(2β)]
1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

.

This ends the proof of Proposition 3.2. �
Remark 3.3. It follows from Proposition 3.2 that

GX(s) = GT (s)1 + e−sλ[1−cos(2β)] cos[sλ sin(2β)]
1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

, s ∈ R,

where GT (s) denotes the pgf of T . In this sense, GX(s) is a weighted version of GT (s).
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We deduce the moment generating function of X:

MX(t) = E(etX) = e−λ(1−et) 1 + e−etλ[1−cos(2β)] cos[etλ sin(2β)]
1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

.

Also, the characteristic function of X is given by

φX(t) = E(eitX) = e−λ(1−eit) 1 + e−eitλ[1−cos(2β)] cos[eitλ sin(2β)]
1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

.

The factorial moments of X are investigated in the following result.

Proposition 3.4. The rth factorial moment of X is given by

µ′
(r),X = E[X(X − 1) · · · (X − r + 1)]

= λr 1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 2rβ]
1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

.

Proof. It follows from some algebraic manipulations (mainly changes of indices) and
Lemma 3.1 with m = r, t = β and κ = λ that

µ′
(r),X = Cθ

+∞∑
x=r

x(x − 1) · · · (x − r + 1)[cos(βx)]2 λx

x!

= Cθ

+∞∑
x=r

[cos(βx)]2 λx

(x − r)!
= Cβ,λλr

+∞∑
x=0

{cos[β(x + r)]}2 λx

x!

= Cθλreλ 1
2

{
1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 2rβ]

}
= λr 1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 2rβ]

1 + e−λ[1−cos(2β)] cos[λ sin(2β)]
.

This ends the proof of Proposition 3.4. �

Remark 3.5. It follows from Proposition 3.4 that

µ′
(r),X = µ′

(r),T
1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 2rβ]

1 + e−λ[1−cos(2β)] cos[λ sin(2β)]
, (3.1)

where µ′
(r),T denotes the rth factorial moment of T . In this sense, µ′

(r),X is a weighted
version of µ′

(r),T .

Some important consequences of Proposition 3.4 are presented below. The mean of X is
given by

µ = E(X) = µ′
(1) = λ

1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 2β]
1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

. (3.2)

The other raw moments of X can be deduced from the factorial moments, the same for
the central moments.
In particular, the variance of X can be obtained by

σ2 = V ar(X) = E[(X − µ)2] = µ′
(2) + µ − µ2

= λ2 1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 4β]
1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

+ λ
1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 2β]

1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

−
(

λ
1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 2β]

1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

)2

. (3.3)
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The dispersion index is defined by

I(X) = σ2

µ
= 1+

λ

[
1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 4β]
1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 2β]

− 1 + e−λ[1−cos(2β)] cos[λ sin(2β) + 2β]
1 + e−λ[1−cos(2β)] cos[λ sin(2β)]

]
.

The sign of the bracket term is determinant to evaluate the dispersed nature of the
CosPois distribution; we can have I(X) < 1, I(X) = 1 (for β = 0) and I(X) > 1,
depending on the values of β and λ. This versatility is illustrated by Figure 2.

Figure 2. Contour plot for dispersion index

From Figure 2, it is observed that the dispersion index of the CosPois distribution can be
over-dispersed, under-dispersed or non-dispersed. Furthermore, we have

arg min
β∈(0, π

2 ),λ>0
I (X) = (0.2236301, 12.8414043) , arg max

β∈(0, π
2 ),λ>0

I (X) = (0.01221437, 127.93516246)

and
min

β∈(0, π
2 ),λ>0

I (X) = 0.4296437, max
β∈(0, π

2 ),λ>0
I (X) = 2.959501.

So the dispersion index lies between (0.4296437, 2.959501) for the CosPois distribution.
The final note on the dispersion index is that

lim
β→0

I (X) = 1 and lim
β→ π

2 ,λ→∞
I (X) = 1.

The range for the dispersion index is given above for the CosPois distribution and we
observe that it could be 1 (non-dispersed), less (under-dispersed) or greater than 1 (over-
dispersed). This indicates that the new distribution can be treated as a distribution of
a response variable in a count regression analysis. It can also be concluded that a count
regression constructed with the introduced distribution theory can be used to model all
types of response data, such as non-dispersed, over-dispersed and under-dispersed.
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4. Data generation algorithm
In this section, an algorithm is proposed to generate the data from the CosPois distri-

bution with pmf as given in (2.1). It is given as follows:

Step 1. i = 0,
Step 2. Generate a datum from the standard uniform distribution, say u,
Step 3. i = i + 1,

Step 4. If u >
i−1∑
j=0

f (j; θ) goto Step 3 else goto Step 5,

Step 5. x = i − 1.

This algorithm suggests that x is a realization of the random variable X which follows
from the CosPois distribution with pmf (2.1). In the data generating algorithm, one can
use the recurrence relation (2.3) to obtain the f (j; θ) in Step 4. Then, one simply has
to calculate the probability of zero value explicitly and then use the recursive formula to
determine all other probabilities without evaluating the x!.

5. Point estimators for unknown distribution parameters
In this section, the maximum likelihood, proportion types and moment estimators are

described for the parameter θ of the CosPois distribution. The bias and MSEs of these
estimators are also investigated through a simulation study.

5.1. Method of maximum likelihood
We can estimate the CosPois model parameters, i.e., β and λ, by the maximum like-

lihood method. Let x1, . . . , xn be n independent realizations of a random variable X
following the CosPois distribution with parameters β and λ. Then, by use of the pmf
given by (2.1), the log-likelihood function is defined by

ℓn(θ) = log
[

n∏
i=1

f(xi; θ)
]

= n log[Cβ,λ] + 2
n∑

i=1
log[cos(βxi)] + log(λ)

n∑
i=1

xi −
n∑

i=1
log(xi!), (5.1)

where θ = (β, λ) . Then, the maximum likelihood estimate (MLE) θ̂ =
(
β̂, λ̂

)
for θ is

defined by
θ̂ = arg max

(β,λ)∈[0, π
2 ]×(0,+∞)

ℓn(θ). (5.2)

Then, θ̂ is the solution of the following non-linear equations: ∂ℓn(θ)/∂β = 0 and ∂ℓn(θ)/∂λ =
0, with

∂ℓn(θ)
∂β

= n
∂Cβ,λ/∂β

Cβ,λ
− 2

n∑
i=1

xi
sin(βxi)
cos(βxi)

and
∂ℓn(θ)

∂λ
= n

∂Cθ/∂λ

Cβ,λ
+ 1

λ

n∑
i=1

xi,

where, by using (2.2),

∂Cθ

∂β
= 4λ sin [2β + λ sin(2β)] e−λ cos(2β){

e2λ[sin(β)]2 + cos[λ sin(2β)]
}2
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and

∂Cθ

∂λ
= −

2e−λ cos(2β)
(
e2λ[sin(β)]2 + cos[2β + λ sin(2β)]

)
{
e2λ[sin(β)]2 + cos[λ sin(2β)]

}2 .

The MLEs β̂ and λ̂ have no closed forms. However, we use numerical methods to determine
them with a high level of numerical precision.

5.2. Method of proportions
Khan [10] proposed the proportions estimators (PEs) to estimate the unknown pa-

rameters of discrete Weibull distribution. The same idea is also used in Akdoğan et al.
[1] and Kuş et al. [11] and can be applied to estimate the CosPois parameters. Let
X1, X2, . . . , Xn be a random sample from the CosPois(θ) distribution. Furthermore, let
x1, x2, . . . , xm (m ≤ n) be the realization of this sample with frequencies b1, b2, . . . , bm,
respectively. Then, proportion type estimators can be defined by

θ̂2 = arg min
(β,λ)∈[0, π

2 ]×(0,+∞)

(
m∑

i=1

(
f (xi; θ) − bi

n

)2
)

, (5.3)

θ̂3 = arg min
(β,λ)∈[0, π

2 ]×(0,+∞)

(
m∑

i=1

∣∣∣∣f (xi; θ) − bi

n

∣∣∣∣
)

, (5.4)

and

θ̂4 = arg min
(β,λ)∈[0, π

2 ]×(0,+∞)

(
max

(∣∣∣∣f (x1; θ) − b1
n

∣∣∣∣ , . . . ,

∣∣∣∣f (xm; θ) − bm

n

∣∣∣∣)) , (5.5)

where f(x; θ) is the CosPois pmf given in (2.1). The PEs given in (5.3)-(5.5) can be
obtained by optim function in R with L-BFGS-B algorithm.

5.3. Method of moments
In this subsection, the moments estimates (MEs) are obtained based on a sample

X1, X2, . . . , Xn from the CosPois distribution with realization x1, x2, . . . , xm. Using (3.1),
the MEs of the parameter θ are obtained by solving the following simultaneous equations:

λ {1 + exp (−λ (1 − cos (2β))) cos (λ sin (2β) + 2β)}
1 + exp (−λ (1 − cos (2β))) cos (λ sin (2β))

− 1
n

n∑
i=1

xi = 0 (5.6)

and
λ2 {1 + exp (−λ (1 − cos (2β))) cos (λ sin (2β) + 4β)}

1 + exp (−λ (1 − cos (2β))) cos (λ sin (2β))

+ λ {1 + exp (−λ (1 − cos (2β))) cos (λ sin (2β) + 2β)}
1 + exp (−λ (1 − cos (2β))) cos (λ sin (2β))

− 1
n

n∑
i=1

x2
i = 0. (5.7)

Equations (5.6) and (5.7) can be solved numerically. The MEs can also be defined by

θ̂5 = arg min
(β,λ)∈[0, π

2 ]×(0,+∞)
(max (|m1 (θ)| , |m2 (θ)|)) , (5.8)

where m1 (θ) and m2 (θ) are left hand side of equations given in (5.6) and (5.7), respec-
tively. The MEs given in (5.8) can be obtained by optim function in R with L-BFGS-B
algorithm.
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5.4. Simulation study for the point estimates
In this subsection, the bias and MSEs of MLEs, PEs and MEs of parameters are esti-

mated with 5000 trials. The algorithm described in Section 4 is used to generate the data
from the CosPois(θ) distribution. The L-BFGS-B method is applied to get the estimates
given in (5.2)-(5.5) and (5.8) numerically. It is a quasi-Newton method which is available
in R function optim.

The numerical results of the simulation study reported in Tables 1-2 present the bias
and MSEs of estimates for the true parameter vectors θ = (1.1, 0.8) , (0.9, 0.7) , (1.5, 5)
and (0.4, 5). These tables indicate that the bias and MSEs of MLEs, PEs and MEs are
close to zero when n increases as expected. It can also be thought that all estimates are
asymptotically unbiased and consistent.

Now, we consider two cases to observe the performances of the estimates in the case of
an outlier. In Case 1 (Case 2), we simulate the data, and we add 50 (70) on the maximum
order statistics. The bias and MSEs of estimates in both cases are presented in Tables
3-4. It is observed that the MSEs of θ̂ and θ̂5 increase when the sample has an outlier.
It is noticed that β̂ is less negatively affected by outliers than λ̂ in terms of MSEs. In the
presence of an outlier, the proportion estimate θ̂3 performs better than any other estimate.
The moment estimate is the estimator most negatively affected by outliers. Tables 1-2
show that θ̂ and θ̂3 have almost the same performances based on the sample without an
outlier. From Tables 3-4, it is observed that θ̂3 is robust and it has better performance
than θ̂ based on a sample with an outlier.

Table 1. Average bias for selected parameters θ

True par. Estimators
n θ θ̂ θ̂2 θ̂3 θ̂4 θ̂5
100 1.1 0.8 -0.0108 0.0222 -0.0129 0.0216 -0.0124 0.0221 -0.0129 0.0254 -0.0111 0.0211
200 -0.0072 0.0177 -0.0078 0.0166 -0.0079 0.0168 -0.0080 0.0192 -0.0065 0.0175
400 -0.0062 0.0090 -0.0066 0.0087 -0.0068 0.0090 -0.0066 0.0093 -0.0063 0.0091
600 -0.0046 0.0112 -0.0050 0.0113 -0.0051 0.0113 -0.0051 0.0122 -0.0031 0.0105
800 -0.0041 0.0071 -0.0043 0.0072 -0.0042 0.0073 -0.0044 0.0076 -0.0039 0.0067

1000 -0.0035 0.0061 -0.0036 0.0060 -0.0035 0.0061 -0.0036 0.0064 -0.0035 0.0061

100 0.9 0.7 -0.0302 0.0224 -0.0196 0.0234 -0.0254 0.0175 -0.0138 0.0332 -0.0352 0.0070
200 -0.0181 0.0115 -0.0144 0.0110 -0.0176 0.0084 -0.0123 0.0160 -0.0181 0.0049
400 -0.0095 0.0078 -0.0087 0.0060 -0.0088 0.0056 -0.0081 0.0084 -0.0079 0.0065
600 -0.0066 0.0098 -0.0075 0.0090 -0.0075 0.0088 -0.0070 0.0097 -0.0044 0.0085
800 -0.0061 0.0072 -0.0066 0.0068 -0.0063 0.0069 -0.0063 0.0074 -0.0045 0.0061

1000 -0.0045 0.0064 -0.0057 0.0068 -0.0055 0.0067 -0.0054 0.0069 -0.0046 0.0054

100 1.5 5 -0.0001 0.0162 -0.0001 0.0282 -0.0004 0.0254 0.0021 0.0084 -0.0689 0.0121
200 0.0005 0.0022 0.0008 0.0017 0.0010 0.0072 0.0014 0.0059 -0.0772 -0.0013
400 0.0001 0.0011 0.0002 0.0037 0.0001 0.0041 0.0008 0.0052 -0.0621 0.0003
600 -0.0001 0.0020 0.0000 0.0039 -0.0001 0.0018 0.0003 0.0036 -0.0650 0.0007
800 0.0002 -0.0010 0.0002 -0.0009 0.0002 -0.0019 0.0006 0.0023 -0.0625 -0.0023

1000 0.0001 -0.0025 0.0003 -0.0027 0.0002 -0.0009 0.0006 0.0008 -0.0543 -0.0031

100 0.4 5 -0.0003 0.0283 0.0001 0.0411 0.0001 0.0330 -0.0018 0.0791 0.0041 0.0349
200 -0.0001 0.0095 0.0004 0.0168 0.0005 0.0153 -0.0001 0.0280 0.0036 0.0156
400 -0.0004 -0.0052 -0.0001 -0.0021 -0.0002 0.0021 -0.0004 0.0086 0.0027 0.0023
600 -0.0002 0.0041 0.0002 0.0057 0.0002 0.0061 0.0001 0.0037 0.0020 0.0078
800 -0.0001 0.0041 0.0001 0.0054 0.0001 0.0054 0.0001 0.0017 0.0011 0.0072

1000 -0.0002 0.0012 -0.0001 0.0029 -0.0001 0.0017 -0.0002 0.0014 0.0011 0.0041
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Table 2. Average MSEs for selected parameters θ

True par. Estimators
n θ θ̂ θ̂2 θ̂3 θ̂4 θ̂5
100 1.1 0.8 0.0020 0.0075 0.0024 0.0092 0.0031 0.0101 0.0023 0.0084 0.0023 0.0071
200 0.0010 0.0041 0.0013 0.0049 0.0013 0.0052 0.0012 0.0045 0.0008 0.0039
400 0.0005 0.0020 0.0006 0.0023 0.0007 0.0025 0.0006 0.0021 0.0005 0.0019
600 0.0003 0.0012 0.0004 0.0015 0.0004 0.0016 0.0004 0.0014 0.0002 0.0011
800 0.0002 0.0009 0.0003 0.0011 0.0003 0.0012 0.0003 0.0010 0.0002 0.0008
1000 0.0002 0.0007 0.0002 0.0009 0.0002 0.0009 0.0002 0.0008 0.0002 0.0007

100 0.9 0.7 0.0056 0.0099 0.0071 0.0106 0.0089 0.0116 0.0060 0.0099 0.0203 0.0140
200 0.0024 0.0052 0.0029 0.0056 0.0050 0.0067 0.0026 0.0054 0.0082 0.0064
400 0.0006 0.0023 0.0011 0.0025 0.0016 0.0027 0.0009 0.0024 0.0014 0.0021
600 0.0004 0.0015 0.0008 0.0016 0.0011 0.0017 0.0006 0.0016 0.0006 0.0013
800 0.0003 0.0013 0.0006 0.0014 0.0006 0.0014 0.0005 0.0013 0.0005 0.0011
1000 0.0002 0.0009 0.0004 0.0010 0.0005 0.0010 0.0004 0.0010 0.0004 0.0008

100 1.5 5 0.0001 0.0498 0.0001 0.0818 0.0001 0.0617 0.0004 0.0504 0.0485 0.0531
200 0.0000 0.0254 0.0001 0.0397 0.0001 0.0285 0.0002 0.0259 0.0524 0.0269
400 0.0000 0.0128 0.0000 0.0208 0.0000 0.0129 0.0001 0.0124 0.0406 0.0133
600 0.0000 0.0094 0.0000 0.0140 0.0000 0.0098 0.0000 0.0076 0.0424 0.0102
800 0.0000 0.0060 0.0000 0.0105 0.0000 0.0071 0.0000 0.0055 0.0418 0.0063
1000 0.0000 0.0050 0.0000 0.0078 0.0000 0.0052 0.0000 0.0038 0.0340 0.0053

100 0.4 5 0.0001 0.0398 0.0002 0.0561 0.0002 0.0524 0.0009 0.0734 0.0005 0.0274
200 0.0000 0.0206 0.0001 0.0262 0.0001 0.0204 0.0001 0.0219 0.0002 0.0146
400 0.0000 0.0095 0.0000 0.0122 0.0000 0.0100 0.0001 0.0078 0.0001 0.0068
600 0.0000 0.0066 0.0000 0.0084 0.0000 0.0065 0.0001 0.0038 0.0001 0.0049
800 0.0000 0.0052 0.0000 0.0066 0.0000 0.0049 0.0000 0.0035 0.0000 0.0040
1000 0.0000 0.0040 0.0000 0.0053 0.0000 0.0035 0.0000 0.0025 0.0000 0.0032

Table 3. Average bias for some choice of parameter θ = (0.9, 10) when included
an outlier sample

Estimators
n Case θ̂ θ̂2 θ̂3 θ̂4 θ̂5
100 1 -0.0029 0.4019 0.0001 -0.0172 -0.0002 -0.0001 0.0010 -0.0164 -0.0037 1.7438
200 -0.0030 0.1934 -0.0002 -0.0131 -0.0002 -0.0048 0.0003 -0.0116 0.0209 0.9186
400 -0.0018 0.0969 0.0001 -0.0006 0.0000 0.0004 0.0006 0.0025 0.0247 0.4795
600 -0.0011 0.0700 0.0000 -0.0005 0.0000 -0.0033 0.0004 0.0003 0.0099 0.3329
800 -0.0008 0.0453 -0.0002 -0.0069 -0.0001 -0.0039 0.0001 -0.0043 0.0085 0.2445
1000 -0.0005 0.0403 -0.0002 0.0013 -0.0001 0.0008 -0.0001 0.0014 0.0094 0.2015

100 2 -0.0005 0.5937 -0.0002 -0.0115 -0.0004 0.0065 0.0001 -0.0135 -0.0304 2.8931
200 -0.0006 0.3012 -0.0002 -0.0015 -0.0002 -0.0046 0.0005 -0.0064 0.0212 1.5631
400 -0.0002 0.1489 0.0000 0.0016 0.0001 0.0006 0.0005 -0.0096 0.0227 0.8248
600 -0.0001 0.1005 -0.0001 0.0036 0.0000 0.0000 0.0001 0.0007 0.0299 0.5643
800 -0.0001 0.0679 0.0000 -0.0106 -0.0001 -0.0037 0.0002 -0.0094 0.0194 0.4212
1000 -0.0001 0.0591 -0.0001 -0.0024 -0.0001 -0.0016 0.0001 0.0027 0.0093 0.3446

6. Interval estimation for unknown distribution parameters
In this section, asymptotically normal (AN) and uncorrected likelihood ratio (ULR)

CIs are discussed for the parameters β and λ. In general, the CIs of the distribution pa-
rameters are usually calculated by using a pivotal quantity based on MLEs of parameters.
This method is well-known by statisticians and it is used without any hesitation. It is
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Table 4. Average MSEs for some choice of parameter θ = (0.9, 10) when included
an outlier sample

Estimators
n Case θ̂ θ̂2 θ̂3 θ̂4 θ̂5
100 1 0.0000 0.2566 0.0001 0.1907 0.0001 0.0848 0.0001 0.1011 0.0078 3.1280
200 0.0000 0.0870 0.0000 0.0862 0.0000 0.0352 0.0001 0.0446 0.0042 0.8910
400 0.0000 0.0350 0.0000 0.0424 0.0000 0.0170 0.0000 0.0218 0.0043 0.2557
600 0.0000 0.0223 0.0000 0.0308 0.0000 0.0130 0.0000 0.0167 0.0016 0.1283
800 0.0000 0.0150 0.0000 0.0236 0.0000 0.0086 0.0000 0.0122 0.0010 0.0731
1000 0.0000 0.0109 0.0000 0.0181 0.0000 0.0055 0.0000 0.0103 0.0011 0.0502

100 2 0.0000 0.4522 0.0001 0.1758 0.0001 0.0704 0.0008 0.1079 0.0093 8.4530
200 0.0000 0.1386 0.0000 0.0919 0.0000 0.0407 0.0001 0.0539 0.0065 2.4860
400 0.0000 0.0462 0.0000 0.0426 0.0000 0.0174 0.0000 0.0228 0.0046 0.7034
600 0.0000 0.0262 0.0000 0.0307 0.0000 0.0124 0.0000 0.0166 0.0055 0.3347
800 0.0000 0.0171 0.0000 0.0205 0.0000 0.0078 0.0000 0.0108 0.0034 0.1898
1000 0.0000 0.0141 0.0000 0.0177 0.0000 0.0060 0.0000 0.0104 0.0016 0.1291

established that, under some conditions, the AN of MLEs can be formulated as

θ̂
d→ N2

(
θ, I−1 (θ)

)
,

where θ̂ is the MLE of θ given in (5.2) and I (θ) is Fisher Information matrix. This matrix
can be estimated by negative Hessian matrix at θ̂ and it is denoted by Î

(
θ̂
)

. Using this
result, the 100 × (1 − α) % AN CIs of theparameters β and λ are constructed, respectively,
by

β̂ ± z1− α
2

× se
(
β̂
)

, (6.1)

λ̂ ± z1− α
2

× se
(
λ̂
)

, (6.2)

where za, is the ath quantile of the standard normal distribution, se
(
β̂
)

and se
(
λ̂
)

are

the roots of the diagonal member of Î−1
(
θ̂
)

and the se (·) stands for standard error of an
estimate.

By the way, there is another method called ULR, which is not used in most of the
statistical software, but it has interesting properties. This method can be described as
follows: Under usual regularity assumptions on the likelihood function, if the β is true
parameter, then −2 log

(
ℓ
(
β, λ̃

)
− ℓ

(
θ̂
))

distributed as χ2 with degrees of freedom 1,
where λ is the nuisance parameters, ℓ is the log-likelihood function as in (5.1), θ̂ is the
MLE of θ given in (5.2) and λ̃ is the restricted MLEs of λ given a fixed value of β. Using
this fact, 100 × (1 − α) % ULR CI limits (βL, βU ) that satisfy

ℓ
(
β, λ̃

)
= ℓ

(
θ̂
)

− 1
2

χ2
(1) (1 − α) (6.3)

with βL < β̂ and βU > β̂, where χ2
(1) (a) is the ath quantile of the χ2 distribution with 1

degree of freedom. The 100 × (1 − α) % ULR CIs can be produced in the same manner
for λ.

Due to Fraser [8], the ULR and AN CIs are asymptotically equivalent. The ULR CIs
are transformation invariant, unlike AN method. ULR CIs always produce limits inside
of the parameter space. There is no need to calculate the variances of the estimates using
second derivatives of likelihood, unlike to AN.
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6.1. Simulation study for the CIs
In this simulation study, 2000 trials are conducted to predict the overage probabil-

ities(CPs) of the AN and ULR CIs. The BFGS method is used in all maximization
procedures. The nominal level is fixed at 0.95. To obtain CPs of ULR CIs, there is no
need to get the CIs limits. It is possible that the CPs of ULR CIs can be simulated by
a likelihood ratio test on the true parameter. In this case, the simulation can be com-
pleted in a short time. The simulated CPs of these intervals are presented in Table 5 for
θ= (0.5, 2), (1.2, 1), (0.2, 10) and (1.5, 4). From Table 5, we observe that the CPs of the
ULRs and AN CIs reach the desired level, even for small samples.

Table 5. The CPs of AN and ULR CIs

AN ULR
θ n β λ β λ
(0.5,2) 50 0.9545 0.9410 0.9495 0.9475

100 0.9610 0.9400 0.9540 0.9415
250 0.9545 0.9480 0.9495 0.9480
500 0.9595 0.9485 0.9545 0.9500
1000 0.9510 0.9495 0.9510 0.9485

(1.2,1) 50 0.9580 0.9665 0.9560 0.9520
100 0.9550 0.9665 0.9525 0.9530
250 0.9530 0.9585 0.9490 0.9520
500 0.9485 0.9540 0.9460 0.9495
1000 0.9440 0.9575 0.9435 0.9540

(0.2,10) 50 0.9595 0.9630 0.9540 0.9520
100 0.9530 0.9480 0.9515 0.9435
250 0.9530 0.9575 0.9490 0.9545
500 0.9505 0.9515 0.9480 0.9505
1000 0.9520 0.9490 0.9510 0.9480

(1.5,4) 50 0.9330 0.9435 0.9405 0.9475
100 0.9440 0.9445 0.9490 0.9415
250 0.9545 0.9495 0.9580 0.9530
500 0.9490 0.9480 0.9485 0.9485
1000 0.9405 0.9570 0.9405 0.9580

7. Modeling practical data with analysis
In this section, we present data modeling analysis for the number of strike outbreaks

in the coal mining industry in the UK. The data set of this number is given by Table 6.
It was analyzed by Castillo and Casany [6], noting that they reported it from Kendall
[9]. For the comparison issue, we consider some well-known discrete distributions, such
as geometric, Poisson and negative binomial distributions. The MLEs of the parameters,
the chi-square test statistics with p-values, AIC, Bayesian information criterion (BIC),
corrected Akaike’s information criterion (CAIC) and HannanQuinn information criterion
(HQIC) are given in Table 7. From Table 7, the best model is the CosPois distribution
according to all the criteria.

The 95% ULR CIs of β and λ are given, respectively, by (0.1504693, 0.3675793) and
(1.021822, 1.704162) . It is noticed that R functions nlm and uniroot are used to get
these intervals.
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Table 6. Number of strike outbreaks in the coal mining industry in the UK

Count 0 1 2 3 4 Total
Observed frequencies 46 76 24 9 1 156

Table 7. Distribution modeling results for the UK coal data

CosPois Geometric Poisson Negative Binomial
ℓ -189.1211 -215.5672 -191.9362 -191.9723

−2ℓ 378.2422 431.1343 383.8724 383.9446
AIC 382.2422 433.1343 385.8724 387.9446
BIC 388.3419 436.1842 388.9223 394.0443

CAIC 382.3206 433.1603 385.8984 388.0230
HQIC 384.7196 434.3731 387.1111 390.4220

β̂ 0.3081 0.5016 0.9935 0.0017
λ̂ 1.3630 572.1488

Chi-Square 5.0785 134.6523 9.9362 9.4912
df 2 3 3 2

p value 0.0789 0.0000 0.0191 0.0020

The observed Fisher information matrix is computed by

Î−1
(
θ̂
)

=
(

0.001867 0.005376
0.005376 0.03037

)
. (7.1)

Using (6.1)-(6.2) and (7.1), the 95% AN CIs of β and λ are given, respectively, by
(0.2234658, 0.3928478) and (1.021510, 1.704632) .

In order to observe the robustness property of the proportion type estimates, we include
a value "100" with frequency 1 as an outlier in the practical data and we refer to this data
as “modified data”. All the estimates given in (5.2)-(5.5) and (5.8) based on practical data
and modified data (practical data with an outlier) are given in Table 8. The fitted and
observed frequencies are also presented in Figures 3-4 based on practical data and modified
data. It is noticed that the fitted frequencies are calculated based the on estimates θ̂ and
θ̂3. From Figure 3, it is observed that there is no significant difference between the observed
and fitted frequencies when the data do not contain an outlier. From Figure 4, it can be
concluded that the fitted frequencies with estimate θ̂3 based on the modified data do not
change and they are compatible with the observed frequencies. However, it is also observed
from Figure 4 that the fitted frequencies with estimate θ̂ based on the modified data are
negatively affected by an outlier. Table 8 shows that θ̂3 is not affected by an outlier unlike
θ̂. In addition, while the estimate θ̂3 is almost unaffected by the presence of an outlier,
the estimate θ̂ is negatively affected by the presence of an outlier. In this discussion, we
conclude that the proportion type estimate θ̂3 can be a good robust alternative to θ̂.

Table 8. All estimates for θ under practical and modified data

θ̂ θ̂2 θ̂3 θ̂4 θ̂5
Based on UK coal data (0.3081, 1.3630) (0.4669, 1.8075) (0.4485, 1.8562) (0.4400, 1.7266) (0.2987, 1.3037)

Based on modified data (0.3730, 2.5052) (0.4687, 1.8187) (0.4492, 1.8676) (0.4257, 1.6041) (0.0272, 7.3394)
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Figure 3. Observed and fitted frequencies with θ̂ and θ̂3 for UK coal data
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Figure 4. Observed and fitted frequencies with θ̂ and θ̂3 based on modified
data(included an outlier to practical data)

8. Count regression analysis
In many disciplines, the researchers investigate the effects of covariates on the response

variable. If the response is observed by counting, ordinary regression analysis can not
be applied to the data. In this case, count regression analysis should be used to get a
decision on the covariates effects on the response. The Poisson and negative binomial
regression models are most popular in count regression analysis. The Poisson regression
model can not be used when the count data have an inflated number of zeros. The zero-
inflated Poisson, the zero-inflated negative binomial, Hurdle-Poisson and Hurdle-negative
binomial regression models can be used for analyzing this type of data. In this section, we
provide a count regression analysis by using the CosPois distribution to be an alternative
the popular ones.
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Let us define a random variable

Y =


0, U = 0

X, U = 1,
(8.1)

where U is Bernoulli random variable with success probability 1−π and X is the CosPois(θ)
random variable as well as U and X are independent. Then, the zero-inflated CosPois
distribution defined by pmf of random variable Y in (8.1)

P (Y = y) =


π + (1 − π) Cβ,λ, y = 0

(1 − π) Cβ,λ[cos(βy)]2 λy

y! , y > 0,
(8.2)

where π ∈ (0, 1) and it is denoted by ZICosPois(β, λ, π). It is noticed that the random
variable given in (8.1) can be represented by Y = UX, where U and X are independent
random variables from Bernoulli(1 − π) and CosPois(θ), respectively. Using this relation,
the mean and variance ZICosPois(β, λ, π) distribution are obtained by

E (Y ) = (1 − π) µ

and
V ar (Y ) = (1 − π)

(
σ2 + µ2π

)
,

respectively, where µ and σ2 are mean and variance of CosPois(θ) given in (3.2) and (3.3).
Let Yi, (i = 1, 2, . . . , n) be a ZICosPois(λi, β, πi) random variable with pmf given in (8.2)

and Y1, Y2, . . . , Yn be independent. The ZICosPois count regression model is given by the
following functional expressions:

log (λi) = xT
i β, (8.3)

and
log

(
πi

1 − πi

)
= zT

i γ, (8.4)

where β = (β1, β2, . . . , βp)T ∈ Rp, γ = (γ1, γ2, . . . , γq)T ∈ Rq, p + q + 1 < n. In addi-
tion, xT

i = (xi1, xi2, . . . , xip) and zT
i = (zi1, zi2, . . . , ziq) are known values on covariates.

Moreover, we assume that the matrices X = (x1, x2, . . . , xp)T and Z = (z1, z2, . . . , zq)T

have rank p and q, respectively. It should be take xi1 = zi1 = 1 (for i = 1, ..., n) to
include intercepts in a model. It is noticed that the covariates in Z can be a subset of the
covariates in X.

8.1. Parameter estimation on the ZICosPois regression parameters
Let Y1, Y2, . . . , Yn be n independent random variables but non identically distributed as

ZICosPois (β, λ1, π1) , ZICosPois(β, λ2, π2), . . . , ZICosPois(β, λn, πn) , respectively. Using
the expressions given in (8.3)-(8.4) and the pmf given by (8.2), the log-likelihood function
can be written by

ℓ (ϕ) ∝
∑

i∈{j:yj=0,j=1,2,...,n}
log (πi + (1 − πi) Cβ,λi

) +

∑
i∈{j:yj>0,j=1,2,...,n}

{log (1 − πi) + log (Cβ,λi
) + 2 log[cos(βyi)] + yi log (λi)} , (8.5)

where ϕ = (β, γ, β) ,

πi =
exp

(
zT

i γ
)

1 + exp
(
zT

i γ
)
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and
λi = exp

(
xT

i β
)

,

for i = 1, . . . , n. The MLE of ϕ (it is denoted by ϕ̂) can be defined by

ϕ̂ = arg max
ϕ

(ℓ (ϕ))

and it can be obtained by optim function in R with different algorithms. Under some
mild regularity conditions

ϕ̂
d→ Np+q+1

(
ϕ, I−1 (ϕ)

)
,

where ℓ (ϕ) is log-likelihood given in (8.5) and I (·) is Fisher information matrix. This
matrix it can be estimated by the negative Hessian matrix of ℓ (ϕ) at ϕ̂. Using the existing
theory, the approximate CIs for all regression parameters can easily be constructed.

8.2. Goodness-of-fit and residuals analysis
Evaluating a fitted model is an important part of data analysis, especially in regres-

sion models, and residual analysis is a useful tool to validate a fitted model. The pres-
ence of outlier observations, model misspecifications or incorrect specification of the error
distribution can be detected by residuals. In this regard, it is important to diagnose
the abnormal residuals in count regression models with over-dispersed or under-dispersed
model. However, the distribution of error terms are unknown in count regression analysis
and the classical normal QQ-plots do not work in these models. Fortunately, [2] suggests
a methodology to construct the simulated envelopes for unknown distributed residuals.
In order to perform the residual analysis, the following standardized ordinary residuals
(Pearson residuals) can be used:

ei =

(
yi − Ê (Yi|X, Z)

)
V̂ ar (Yi|X, Z)

, i = 1, 2, . . . , n

with
Ê (Yi|X, Z) = (1 − π̂i) µ̂i,

V̂ ar (Yi|X, Z) = (1 − π̂i)
(
σ2 + µ̂2

i π̂i

)
,

µ̂i = λ̂i
1 + e−λ̂i[1−cos(2β̂)] cos[λ̂i sin(2β̂) + 2β̂]

1 + e−λ̂i[1−cos(2β̂)] cos[λ̂i sin(2β̂)]
,

π̂i =
exp

(
zT

i γ̂
)

1 + exp
(
zT

i γ̂
) ,

and
λ̂i = exp

(
xT

i β̂
)

,

where β̂, γ̂ and β̂ denote the MLE of β, γ and β, respectively. Since the distribution
of the standardized residuals are unknown, the methodology proposed by Atkinson [2]
methodology is used to construct the simulated envelope. Simulated envelopes can be used
to detect the incorrect specification of the error distribution or the presence of possible
outliers. The observations corresponding to the residuals outside of the simulated envelope
should be re-examined. Furthermore, if a considerable proportion of points falls outside
the envelope, then there is evidence against the adequacy of the fitted model.
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8.3. Count regression example with the ZICosPois distribution
In this subsection, an example with practical data is provided to show the applicability

of the CosPois distribution to count regression. We illustrate the application of CosPois
regression by considering the data set obtained from the Journal of Applied Econometrics
1997. The data was obtained from the survey conducted by the Australian Health Survey
between 1977-1978. The data set is available at: http://qed.econ.queensu.ca/jae/1997-
v12.3/cameron-johansson/.

In this example, the number of appointments in the past 2 weeks with a doctor or
specialist is considered as a response variable (doctorco). We interest to model the response
variable by using the following 12 covariates:

(a) Four socioeconomic variables: sex, age, agesq, income,
(b) Three health insurance status indicators: levyplus, freepoor, freerepa,
(c) Two recent health status measures: illness, actdays,
(d) Three long-term health status measures: hscore, chcond1, chcond2.
Details for these 12 covariates can be found in Cameron et al. [5]. The high proportion

of zeros (about 80%) leading to acceptance of the proposed ZICosPois model (see Figure
5). We give the results on this data by the previously proposed models, such as negative
binomial, zero-inflated Poisson, zero-inflated negative binomial, zero-inflated geometric,
Hurdle-Poisson and Hurdle-negative binomial regression model beside our model. Because
they are suitable choices for regression modeling when the response variable contains zeros
with high frequency. It is noticed that the R functions zeroinfl and hurdle (in library
pscl) can be used to perform these all count regression analyses. Tables 9-10 present the
maximum likelihood estimates of all models, including an intercept. The ℓ

(
θ̂
)
, AIC and

BIC are also presented in these tables to compare the models. Tables 9-10 show that
ZICospois regression model is superior over the other well-known count regression models
in terms of all criteria.

The QQ-plots and simulated envelopes for the Pearson residuals of the ZICospois, ZIP
and ZINB regression models are given in Figure 6. The lines in the graphics represent
the 5th percentile, the mean, and the 95th percentile of 500 simulated points for each
observation. Simulated envelopes for the Pearson residuals under ZICosPois model are
plotted by using the algorithm in Lemonte et al. [12]. This algorithm is also adopted
from Atikson [2]. The other simulated envelops are plotted by the R function hnp in
library hnp. In Figure 6, the observation outside of the envelopes are presented with red
points. The proportion of red points are 0.40462%, 3.4104 % and 5.7225% for ZICospois,
ZIP and ZINB regression models, respectively. Figure 6 demonstrates that the ZICosPois
regression model provides a better fit to the survey data set than the ZIP and the ZINB
regression models. Moreover, there is no evidence of lacks of fit for the ZICosPois model.
The high proportion of points falls outside the envelopes against the adequacy of the fitted
ZIP and the ZINB regression models.

9. Concluding remarks
In this paper, a new discrete distribution is introduced. Some distributional properties

are discussed. The moment generation function, the expected value and variance of the
new distribution are derived in explicit form. Some estimators are suggested to estimate
the model parameters. It is observed that one of the proportion type estimates for the
CosPois parameters is a competitor with MLEs based on a sample without an outlier. It
is also observed that the proportion type estimates have a robustness property when an
outlier is being in a sample. A new count regression analysis is also introduced using a zero-
inflation framework. The applicability of our count regression analysis is demonstrated
based on practical data.
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Figure 5. Relative frequency of response variable

Table 9. The MLEs with standard errors (SEs) of zero-inflated CosPois, Poisson
and negative binomial models parameters based on 1977-1978 data set from the
Australian Health Survey

Zero-inflated CosPois Zero-inflated Poisson Zero-inflated negative binomial model
Estimate (SE) z value p value Estimate (SE) z value p value Estimate (SE) z value p value

(Intercept) -0.1484(0.2210) -0.671 0.5019 -1.0503(0.2550) -4.118 0.0000 -1.2334(0.2956) -4.172 0.0000
Sex -0.0185(0.0613) -0.302 0.7628 -0.0269(0.0715) -0.377 0.7059 0.0102(0.0838) 0.123 0.9023
Age 2.3269(1.0968) 2.122 0.0339 3.1283(1.2970) 2.412 0.0158 2.1026(1.5414) 1.364 0.1725
Agesq -2.5469(1.1609) -2.194 0.0282 -3.4092(1.3735) -2.482 0.0130 -2.1868(1.6389) -1.334 0.1821
Income -0.2183(0.0974) -2.241 0.0250 -0.2949(0.1129) -2.612 0.0090 -0.2142(0.1326) -1.615 0.1064
Levyplus -0.0351(0.0813) -0.432 0.6659 -0.0337(0.0964) -0.350 0.7263 -0.0950(0.1144) -0.831 0.4060
Freepoor -0.2337(0.2105) -1.110 0.2669 -0.3769(0.2389) -1.578 0.1146 -0.4812(0.2825) -1.703 0.0886
Freerepa -0.1775(0.0990) -1.793 0.0730 -0.2152(0.1171) -1.837 0.0662 -0.1894(0.1401) -1.351 0.1766
Illness 0.0295(0.0205) 1.439 0.1501 0.0486(0.0245) 1.978 0.0478 0.0515(0.0293) 1.753 0.0795
Actdays 0.0516(0.0052) 9.923 0.0000 0.0826(0.0059) 13.943 0.0000 0.1038(0.0077) 13.314 0.0000
Hscore 0.0101(0.0096) 1.052 0.2928 0.0178(0.0113) 1.579 0.1143 00234(0.0137) 1.711 0.0871
Chcond1 -0.0153(0.0801) -0.191 0.8485 -0.0133(0.0923) -.0145 0.8848 -0.0002(0.1080) -0.0003 0.9979
Chcond2 -0.0375(0.0885) -0.424 0.6718 -0.0340(0.1027) -0.332 0.7401 0.0549(0.1206) 0.455 0.6490
β 2.6821(0.0050) 536.420 0.0000 0.5484(0.1377) 3.981 0.0000

Zero-inflation model coefficients (binomial with logit link):
(Intercept) 1.4271(0.4412) 3.235 0.0012 0.7863(0.5717) 1.375 0.1692 0.6218(0.7525) 0.826 0.4086
Sex -0.3751(0.1307) -2.870 0.0041 -0.4884(0.1714) -2.848 0.0043 -0.5918(0.2283) -2.592 0.0095
Age 7.1672(2.4945) 2.873 0.0041 10.4961(3.2709) 3.209 0.0013 10.6764(4.3860) 2.434 0.0149
Agesq -9.3217(2.7833) -3.349 0.0008 -13.3374(3.6899) -3.615 0.0003 -13.8207(5.0017) -2.763 0.0057
Income -0.2169(0.2045) -1.061 0.2889 -0.4366(0.2645) -1.651 0.0987 -0.3653(0.3459) -1.056 0.2910
Levyplus -0.4012(0.1539) -2.607 0.0091 -0.4331(0.1967) -2.202 0.0276 -0.6401(0.2642) -2.422 0.0154
Freepoor 0.5536(0.4121) 1.343 0.1792 0.3080(0.5078) 0.607 0.5441 0.1106(0.6590) 0.168 0.8666
Freerepa -0.8847(0.2227) -3.973 0.0001 -1.1490(0.3049) -3.768 0.0001 -1.3751(0.4473) -3.074 0.0021
Illness -0.3477(0.0553) -6.288 0.0000 -0.4158(0.0807) -5.150 0.0000 -0.6716(0.1560) -4.303 0.0000
Actdays -1.0338(0.1494) -6.920 0.0000 -1.2560(0.2380) -5.275 0.0000 -1.7873(0.6531) -2.736 0.0062
Hscore -0.1016(0.0300) -3.387 0.0007 -0.0974(0.0385) -2.528 0.0114 -0.1045(0.0558) -1.872 0.0616
Chcond1 -0.1313(0.1469) -0.894 0.3714 -0.1271(0.1990) -0.639 0.5229 -0.1190(0.2792) -0.426 0.6698
Chcond2 -0.5241(0.2239) -2.341 0.0192 -0.6037(0.3060) 1.973 0.0485 -0.4889(0.4144) -1.180 0.2380

ℓ -3104.838 -3174.185 -3107.593
AIC 6263.677 6400.370 6269.187
BIC 6440.648 6570.787 6446.158
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Table 10. The MLEs with standard errors (SEs) of zero-Hurdle and zero-inflated
geometric models parameters based on 1977-1978 Australian Health Survey data
set

Zero-inflated geometric Zero-Hurdle-Poisson model Zero-Hurdle-negative binomial model
Estimate (SE) z value p value Estimate (SE) z value p value Estimate (SE) z value p value

(Intercept) -1.3991(0.2928) -4.778 0.0000 -1.1738(0.3122) -3.760 0.0001 -3.7683(1.8830) -2.001 0.0454
Sex 0.0438(0.0850) 0.516 0.6060 0.0004(0.0900) 0.005 0.9963 0.0152(0.1581) 0.096 0.9231
Age 1.5964(1.5490) 1.031 0.3027 3.9598(1.5979) 2.478 0.0132 4.4780(2.9247) 1.531 0.1257

Agesq -1.4679(1.6609) -0.884 0.3768 -4.2481(1.6976) -2.502 0.0123 -4.7754(3.1730) -1.505 0.1323
Income -0.1727(0.1328) -1.301 0.1933 -0.5177(0.1529) -3.385 0.0071 -0.4759(0.2473) -1.924 0.0544

Levyplus -0.1102(0.1138) -0.969 0.3327 -0.1524(0.1192) -1.279 0.2010 -0.3018(0.2088) -1.446 0.1483
Freepoor -0.5447(0.2705) -2.013 0.0441 0.0350(0.2643) 0.133 0.8945 0.0458(0.5180) 0.089 0.9295
Freerepa -0.1412(0.1428) -0.989 0.3227 -0.4389(0.1458) -3.008 0.0026 -0.4954(0.2683) -1.846 0.0649

Illness 0.0591(0.0292) 2.021 0.0432 0.0787(0.0298) 2.639 0.0083 0.0795(0.0550) 1.447 0.1479
Actdays 0.1161(0.0081) 14.321 0.0000 0.1143(0.0071) 16.091 0.0000 0.1574(0.0164) 9.547 0.0000

Hscore 0.0270(0.1458) 1.852 0.0640 0.0045(0.0146) 0.310 0.7566 0.0068(0.0285) 0.240 0.8101
Chcond1 -0.0158(0.1063) -0.149 0.8818 0.0237(0.1160) 0.204 0.8382 0.0185(0.1893) 0.098 0.9219
Chcond2 0.0958(0.1224) 0.789 0.4339 -0.0001(0.1309) -0.001 0.9992 0.1528(0.2296) 0.666 0.5057

log (β) -2.5198(1.9617) -1.284 0.1990
Zero-inflation model coefficients (binomial with logit link): Zero-Hurdle model coefficients (binomial with logit link):
(Intercept) 0.5707(0.8758) 0.652 0.5146 -2.2899(0.2772) -8.259 0.0000 -2.2899(0.2772) -8.259 0.0000

Sex -0.6757(0.2676) -2.525 0.0115 0.2606(0.0823) 3.166 0.0015 0.2606(0.0823) 3.166 0.0015
Age 11.0850(5.2032) 2.130 0.0331 -1.9760(1.5271) -1.294 0.1956 -1.9760(1.5271) -1.294 0.1956

Agesq -14.1677(5.9656) -2.375 0.1755 2.7366(1.6806) 1.628 0.1034 2.7366(1.6806) 1.628 0.1034
Income -0.3300(0.3991) -0.827 0.4083 0.0074(0.1273) 0.059 0.9533 0.0074(0.1273) 0.059 0.9533

Levyplus -0.8634(0.3113) -2.773 0.0055 0.2670(0.1006) 2.654 0.0079 0.2670(0.1006) 2.654 0.0079
Freepoor -0.1122(0.7263) -0.155 0.8771 -0.6803(0.2610) -2.606 0.0091 -0.6803(0.2610) -2.606 0.0091
Freerepa -1.4768(0.5452) -2.708 0.0067 0.4162(0.1398) 2.976 0.0029 0.4162(0.1398) 2.976 0.0029

Illness -1.0110(0.2246) -4.501 0.0000 0.2634(0.0289) 9.096 0.0000 0.2634(0.0289) 9.096 0.0000
Actdays -15.5567(1386.8329) -0.011 0.9910 0.1580(0.0119) 13.259 0.0000 0.1580(0.0119) 13.259 0.0000

Hscore -0.1197(0.0756) -1.583 0.1133 0.0634(0.0174) 3.644 0.0002 0.0634(0.0174) 3.644 0.0002
Chcond1 -0.2281(0.3319) -0.687 0.4918 0.1020(0.0913) 1.117 0.2641 0.1020(0.0913) 1.117 0.2641
Chcond2 -0.3563(0.4948) -0.720 0.4714 0.2667(0.1259) 2.118 0.0341 0.2667(0.1259) 2.118 0.0341

ℓ -3117.022 -3212.58 -3144.939
AIC 6286.043 6477.160 6343.877
BIC 6456.460 6647.577 6520.848
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Figure 6. QQ-plots and simulated envelopes for the Pearson residuals
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