On Orlicz Difference Sequence Spaces

Hemen Dutta
Gauhati University, Department of Mathematics, Kokrajhar Campus, Assam, INDIA
e-mail: hemen_dutta08@rediffmail.com

Received:13 November 2008, Accepted: 9 February 2010

Abstract

The main aim of this article is to generalize the famous Orlicz sequence space by using difference operators and a sequence of non-zero scalars and investigate some topological structure relevant to this generalized space.

Key words: Difference sequence space, multiplier sequence space, Orlicz function, $A K-B K$ space, topological isomorphism and Köthe-Toeplitz dual.

Orlicz Fark Dizi Uzayları Üzerine

Özet: Bu makalenin amacı, sıfırdan farklı skalerlerden oluşan bir diziyi ve fark operatörlerini kullanarak Orlicz dizi uzaylarını genelleştirmek ve bu yeni tanımladığımız uzayın topolojik yapısını incelemektir.

Anahtar kelimeler: Fark dizi uzayı, çok indisli dizi uzayı, Orlicz fonksiyonu, $A K$ - $B K$ uzayı, toplojik izomorfizm, Köthe-Toeplitz duali.

2000 Mathematics Subject Classification: 40A05, 40C05, 46A45.

1. Introduction

Throughout this paper $w, \ell_{\infty}, \ell_{1}, c$ and c_{\circ} denote the spaces of all, bounded, absolutely summable, convergent and null sequences $x=\left(x_{k}\right)$ with complex terms respectively. The notion of difference sequence space was introduced by Kizmaz [1], who studied the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$, where

$$
Z(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta x_{k}\right) \in Z\right\},
$$

where $\Delta x=\left(\Delta x_{k}\right)=\left(x_{k}-x_{k+1}\right)$ and $\Delta^{0} x_{k}=x_{k}$ for all k, for $Z=\ell_{\infty}, c$ and c_{0}.

An Orlicz function $M:[0, \infty) \rightarrow[0, \infty)$ is a function, which is continuous, non-decreasing and convex with $M(0)=0, M(x)>0$, for $x>0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$.

An Orlicz function M can always be represented in the following integral form:

$$
M(x)=\int_{0}^{x} p(t) d t
$$

where p, known as kernel of M, is right differentiable for $t \geq 0, p(0)=0, p(t)>0$ for $t>0, p$ is non-decreasing, and $p(t) \rightarrow \infty$ as $t \rightarrow \infty$.

H. Dutta

Consider the kernel $p(t)$ associated with the Orlicz function $M(t)$, and let

$$
q(s)=\sup \{t: p(t) \leq s\}
$$

Then q possesses the same properties as the function p. Suppose now

$$
\Phi(x)=\int_{0}^{x} q(s) d s
$$

Then Φ is an Orlicz function. The functions M and Φ are called mutually complementary Orlicz functions.

Now we state the following well known results which can be found in [2].
Let M and F are mutually complementary Orlicz functions. Then we have (Young's inequality)

$$
\begin{equation*}
\text { (i) For } x, y \geq 0, x y \leq M(x)+\Phi(y) \tag{1}
\end{equation*}
$$

We also have

$$
\begin{align*}
& \text { (ii) For } x \geq 0, x p(x)=M(x)+\Phi(p(x)) \tag{2}\\
& \text { (iii) } M(\lambda x)<\lambda M(x) \tag{3}
\end{align*}
$$

for all $x \geq 0$ and λ with $0<\lambda<1$.
An Orlicz function M is said to satisfy the Δ_{2}-condition for small x or at 0 if for each $k>0$ there exist $R_{\mathrm{k}}>0$ and $x_{\mathrm{k}}>0$ such that

$$
M(k x) \leq R_{\mathrm{k}} M(x)
$$

for all $x \in\left(0, x_{k}\right]$.
Moreover an Orlicz function M is said to satisfy the Δ_{2}-condition if and only if

$$
\lim _{x \rightarrow 0} \sup \frac{M(2 x)}{M(x)}<\infty .
$$

Two Orlicz functions M_{1} and M_{2} are said to be equivalent if there are positive constants α, β and x_{0} such that

$$
\begin{equation*}
M_{1}(\alpha x) \leq M_{2}(x) \leq M_{1}(\beta x) \tag{4}
\end{equation*}
$$

for all x with $0 \leq x \leq x_{0}$.
Lindenstrauss and Tzafriri [3] used the Orlicz function and introduced the sequence space ℓ_{M} as follows:

$$
\ell_{M}=\left\{\left(x_{k}\right) \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\} .
$$

For more details about Orlicz functions and sequence spaces associated with Orlicz functions one may refer to [2-5].

Let $\Lambda=\left(\lambda_{k}\right)$ be a sequence of non-zero scalars. Then for a sequence space E, the multiplier sequence space $E(\Lambda)$, associated with the multiplier sequence Λ is defined as

$$
E(\Lambda)=\left\{\left(x_{k}\right) \in w:\left(\lambda_{k} x_{k}\right) \in E\right\} .
$$

The scope for the studies on sequence spaces was extended by using the notion of associated multiplier sequences. Goes and Goes [6] defined the differentiated sequence space $d E$ and integrated sequence space $\int E$ for a given sequence space E, using the multiplier sequences $\left(k^{-1}\right)$ and (k) respectively. A multiplier sequence can be used to accelerate the convergence of the sequences in some spaces. In some sense, it can be viewed as a catalyst, which is used to accelerate the process of chemical reaction. Sometimes the associated multiplier sequence delays the rate of convergence of a sequence. Thus it also covers a larger class of sequences for study. In the present article we shall consider a general multiplier sequence $\Lambda=\left(\lambda_{\mathrm{k}}\right)$ of non-zero scalars.

The notion of duals of sequence spaces was introduced by Köthe and Toeplitz [7]. Later on it was studied by Kizmaz [1], Kamthan [8] and many others.

Let E and F be two sequence spaces. Then the F dual of E is defined as

$$
E^{\mathrm{F}}=\left\{\left(x_{\mathrm{k}}\right) \in w:\left(x_{\mathrm{k}} y_{\mathrm{k}}\right) \in F \text { for } \operatorname{all}\left(y_{\mathrm{k}}\right) \in E\right\} .
$$

For $F=\ell_{1}$, the dual is termed as Köthe-Toeplitz or α-dual of E and denoted by E^{α}. More precisely, we have the following definition of Köthe Toeplitz dual of E :

$$
E^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k}\left|a_{k} x_{k}\right|<\infty, \text { for all } x \in E\right\} .
$$

It is known that if $X \grave{\text { Ì }} Y$, then $Y^{u} \subset X^{\alpha}$. If $E^{F F}=E$, where $E^{F F}=\left(E^{F}\right)^{F}$, then E is said to be F-reflexive or F-perfect. In particular, if $E^{\alpha \alpha}=E$, then E is also said to be a Köthe space.

Let $\Lambda=\left(\lambda_{k}\right)$ be a sequence of non-zero scalars. Then we define the following spaces.
Definition 1.1. Let M be any Orlicz function. Then we define

$$
\tilde{\ell}_{M}(\Delta, \Lambda)=\left\{x \in w: \delta_{\Delta}^{\Lambda}(M, x)=\sum_{k=1}^{\infty} M\left(\left|\Delta \lambda_{k} x_{k}\right|\right)<\infty\right\},
$$

where $\Delta \lambda_{k} x_{k}=\lambda_{k} x_{k}-\lambda_{k+1} x_{k+1}$ for all $k \geq 1$.

We can write $\tilde{\ell}_{M}\left(\Delta^{0}, \Lambda\right)=\tilde{\ell}_{M}(\Lambda)$ and if $\lambda_{\mathrm{k}}=1$ for all $k \geq 1$, then we write

$$
\tilde{\ell}_{M}\left(\Delta^{0}, \Lambda\right)=\tilde{\ell}_{M} .
$$

Similarly we can define $\tilde{\ell}_{M}(\nabla, \Lambda)$, where $\nabla \lambda_{k} x_{k}=\lambda_{k} x_{k}-\lambda_{k-1} x_{k-1}$ for all $k \geq 1$.

Definition 1.2. Let M and Φ be mutually complementary functions. Then we define

$$
\ell_{M}(\Delta, \Lambda)=\left\{x \in w: \sum_{k=1}^{\infty}\left(\Delta \lambda_{k} x_{k}\right) y_{k} \text { converges for all } y \in \tilde{\ell}_{\Phi}\right\} .
$$

We call this sequence space as Orlicz difference sequence space associated with the multiplier sequence $\Lambda=\left(\lambda_{\mathrm{k}}\right)$.

We can write $\ell_{M}\left(\Delta^{0}, \Lambda\right)=\ell_{M}(\Lambda)$ and if $\lambda_{\mathrm{k}}=1$ for all $k \geq 1$, then we write

H. Dutta

$$
\ell_{M}\left(\Delta^{0}, \Lambda\right)=\ell_{M} .
$$

Similarly we can define $\ell_{M}(\nabla, \Lambda)$ where $\nabla \lambda_{k} x_{k}=\lambda_{k} x_{k}-\lambda_{k-1} x_{k-1}$ for all $k \geq 1$.

One can easily observe in the special case $M(x)=x^{p}$ with $0<p<\infty$ and $\Lambda=\left(\lambda_{k}\right)=(1,1,1, \ldots)=e$, the sequence space $\ell_{M}(\nabla, \Lambda)$ is reduced in the case $1 \leq p<\infty$ to the Banach space $b v_{p}$ introduced by Başar and Altay [9] and is reduced in the case $0<p<1$ to the p-normed complete space $b v_{p}$ introduced by Altay and Başar [10], where $b v_{p}$ denotes the space of all sequences $x=\left(x_{k}\right)$ such that

$$
\nabla x=\left(x_{k}-x_{k-1}\right) \in \ell_{p} .
$$

2. Main Results

In this section we investigate the main results of this article.
Proposition 2.1. For any Orlicz function M,
(i) $\tilde{\ell}_{M}(\Delta, \Lambda) \subset \ell_{M}(\Delta, \Lambda)$,
(ii) $\tilde{\ell}_{M}(\nabla, \Lambda) \subset \ell_{M}(\nabla, \Lambda)$.

Proof. (i) Let $x \in \tilde{\ell}_{M}(\Delta, \Lambda)$. Then $\sum_{k=1}^{\infty} M\left(\left|\Delta \lambda_{k} x_{k}\right|\right)<\infty$. Now using (1), we have

$$
\left|\sum_{k=1}^{\infty}\left(\Delta \lambda_{k} x_{k}\right) y_{k}\right| \leq \sum_{k=1}^{\infty}\left|\left(\Delta \lambda_{k} x_{k}\right) y_{k}\right| \leq \sum_{k=1}^{\infty} M\left(\left|\Delta \lambda_{k} x_{k}\right|\right)+\sum_{k=1}^{\infty} \Phi\left(\left|y_{k}\right|\right)<\infty,
$$

for every $y=\left(y_{\mathrm{k}}\right)$ with $y \in \tilde{\ell}_{\Phi}$. Thus $x \in \ell_{M}(\Delta, \Lambda)$.
(ii) Since the proof is similar to the proof of part (i), we omit it.

Proposition 2.2. (i) For each $x \in \ell_{M}(\Delta, \Lambda), \sup \left\{\left|\sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) y_{i}\right|: \delta(\Phi, y) \leq 1\right\}<\infty$,

$$
\text { (ii) For each } x \in \ell_{M}(\nabla, \Lambda) \text {, } \sup \left\{\left|\sum_{i=1}^{\infty}\left(\nabla \lambda_{i} x_{i}\right) y_{i}\right|: \delta(\Phi, y) \leq 1\right\}<\infty \text {. }
$$

Proof. (i) Suppose that the result is not true. Then for each $n \geq 1$, there exists y^{n} with $\delta\left(\Phi, y^{n}\right) \leq 1$ such that

$$
\left|\sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) y_{i}^{n}\right|>2^{\mathrm{n}} .
$$

Without loss of generality we may assume that $\left(\Delta \lambda_{i} x_{i}\right), y^{\mathrm{n}} \geq 0$. Now, we can define a sequence $z=\left\{z_{i}\right\}$ by

$$
z_{\mathrm{i}}=\sum_{n=1}^{\infty} \frac{1}{2^{n}} y_{i}^{n} .
$$

By the convexity of Φ,

$$
\Phi\left(\sum_{n=1}^{l} \frac{1}{2^{n}} y_{i}^{n}\right) \leq \frac{1}{2}\left[\Phi\left(y_{i}^{1}\right)+\Phi\left(\frac{y_{i}^{2}}{2}+\ldots+\frac{y_{i}^{l}}{2^{l-1}}\right)\right] \leq \ldots \leq \sum_{n=1}^{l} \frac{1}{2^{n}} \Phi\left(y_{i}^{n}\right)
$$

and hence, using the continuity of Φ, we have

$$
\delta(\Phi, z)=\sum_{i=1}^{\infty} \Phi\left(z_{i}\right) \leq \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{2^{n}} \Phi\left(y_{i}^{n}\right) \leq \sum_{n=1}^{\infty} \frac{1}{2^{n}}=1 .
$$

But for every $l \geq 1$,

$$
\sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) z_{i} \geq \sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) \sum_{n=1}^{l} \frac{1}{2^{n}} y_{i}^{n}=\sum_{n=1}^{l} \sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) \frac{y_{i}^{n}}{2^{n}} \geq l .
$$

Hence $\sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) z_{i}$ diverges and this implies that $x \notin \ell_{M}(\Delta, \Lambda)$. This contradiction leads us to the required result.
(ii) Proof is similar to that of part (i).

The preceding result encourage us to introduce the following norms $\|\cdot\|_{M}^{\Delta}$ and $\|.\|_{M}^{\nabla}$ on $\ell_{M}(\Delta, \Lambda)$ and $\ell_{M}(\nabla, \Lambda)$, respectively.

Proposition 2.3.

(i) $\ell_{M}(\Delta, \Lambda)$ is a normed linear space under the norm $\|.\|_{M}^{\Delta}$ defined by

$$
\begin{equation*}
\|x\|_{M}^{\Delta}=\left|\lambda_{1} x_{1}\right|+\sup \left\{\left|\sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) y_{i}\right|: \delta(\Phi, y) \leq 1\right\} \tag{5}
\end{equation*}
$$

(ii) $\ell_{M}(\nabla, \Lambda)$ is a normed linear space under the norm $\|.\|_{M}^{\nabla}$ defined by

$$
\begin{equation*}
\|x\|_{M}^{\nabla}=\sup \left\{\left|\sum_{i=1}^{\infty}\left(\nabla \lambda_{i} x_{i}\right) y_{i}\right|: \delta(\Phi, y) \leq 1\right\} . \tag{6}
\end{equation*}
$$

Proof. (i) It is easy to verify that $\ell_{M}(\Delta, \Lambda)$ is a linear space. Now we show that $\|.\|_{M}^{\Delta}$ is a norm on $\ell_{M}(\Delta, \Lambda)$.
If $x=\theta$, then obviously $\|x\|_{M}^{\Delta}=0$. Conversely assume $\|x\|_{M}^{\Delta}=0$. Then using the definition of norm, we have

$$
\left|\lambda_{1} x_{1}\right|+\sup \left\{\left|\sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) y_{i}\right|: \delta(\Phi, y) \leq 1\right\}=0 .
$$

This implies

$$
\begin{equation*}
\left|\lambda_{1} x_{1}\right|=0 \tag{7}
\end{equation*}
$$

and

$$
\sup \left\{\left|\sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) y_{i}\right|: \delta(\Phi, y) \leq 1\right\}=0 .
$$

H. Dutta

This implies that $\left|\sum_{i=1}^{\infty}\left(\Delta \lambda_{i} x_{i}\right) y_{i}\right|=0$ for all y such that $\delta(\Phi, y) \leq 1$.
Now considering $y=\left\{e_{i}\right\}$ if $\Phi(1) \leq 1$ otherwise considering $y=\left\{e_{i} / \Phi(1)\right\}$ so that

$$
\begin{equation*}
\Delta \lambda_{i} x_{i}=0 \text { for all } i \geq 1 . \tag{8}
\end{equation*}
$$

Combining (7) and (8), we have $x_{\mathrm{i}}=0$ for all $i \geq 1$, since (λ_{k}) is a sequence of non-zero scalars and thus $x=\theta$.

It is easy to show

$$
\|\alpha x\|_{M}^{\Delta}=|\alpha|\|x\|_{M}^{\Delta} \text { and }\|x+y\|_{M}^{\Delta} \leq\|x\|_{M}^{\Delta}+\|x\|_{M}^{\Delta} .
$$

(ii) Let $x=\theta$, then obviously $\|x\|_{M}^{\nabla}=0$. Conversely assume $\|x\|_{M}^{\nabla}=0$. Then using the definition of norm, we have

$$
\sup \left\{\left|\sum_{i=1}^{\infty}\left(\nabla \lambda_{i} x_{i}\right) y_{i}\right|: \delta(\Phi, y) \leq 1\right\}=0 .
$$

This implies $\left|\sum_{i=1}^{\infty}\left(\nabla \lambda_{i} x_{i}\right) y_{i}\right|=0$ for all y such that $\delta(\Phi, y) \leq 1$.
Now considering $y=\left\{e_{\mathrm{i}}\right\}$ if $\Phi(1) \leq 1$ otherwise considering $y=\left\{e_{\mathrm{i}} / \Phi(1)\right\}$ so that

$$
\nabla \lambda_{i} x_{i}=0 \text { for all } i \geq 1 .
$$

Taking $i=1$, we have

$$
\nabla \lambda_{1} x_{1}=\lambda_{1} x_{1}-\lambda_{0} x_{0}=0
$$

This implies $\lambda_{1} x_{1}=0$, by taking $x_{0}=0$. Proceeding in this way we have $\lambda_{i} x_{i}=0$ for all $\geqq \geq 1$ and so $x_{\mathrm{i}}=0$ for all $i \geq 1$, since $\left(\lambda_{\mathrm{k}}\right)$ is a sequence of non-zero scalars. Thus $x=\theta$.
It is easy to show

$$
\|\alpha x\|_{M}^{\nabla}=|\alpha|\|x\|_{M}^{\nabla} \text { and }\|x+y\|_{M}^{\nabla} \leq\|x\|_{M}^{\nabla}+\|x\|_{M}^{\nabla} .
$$

This completes the proof.
Remark. $\sum_{k=1}^{\infty}\left(\Delta \lambda_{k} x_{k}\right) y_{k}<\infty$ for all $y \in \tilde{\ell}_{\Phi}$ if and only if $\sum_{k=1}^{\infty}\left(\nabla \lambda_{k} x_{k}\right) y_{k}<\infty$ for all $y \in \tilde{\ell}_{\Phi}$. Also it is obvious that the norms $\|.\|_{M}^{\Delta}$ and $\|\cdot\|_{M}^{\nabla}$ are equivalent.

Proposition 2.4. (i) $\ell_{M}(\Delta, \Lambda)$ is a Banach space under the norm $\|.\|_{M}^{\Delta}$,
(ii) $\ell_{M}(\nabla, \Lambda)$ is a Banach space under the norm $\|.\|_{M}^{\nabla}$.

Proof. We shall give proof of part (i). Proof of part (ii) is easy than part (i).
Let $\left(x^{\text {i }}\right)$ be any Cauchy sequence in $\ell_{M}(\Delta, \Lambda)$. Then for any $\varepsilon>0$, there exists a positive integer n_{0} such that

$$
\left\|x^{i}-x^{j}\right\|_{M}^{\Delta}<\varepsilon,
$$

for all $i, j \geq n_{0}$. Using the definition of norm, we get

$$
\left|\lambda_{1}\left(x_{1}^{i}-x_{1}^{j}\right)\right|+\sup \left\{\left|\sum_{k=1}^{\infty}\left(\Delta \lambda_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right) y_{k}\right|: \delta(\Phi, y) \leq 1\right\}<\varepsilon,
$$

for all $i, j \geq n_{0}$. This implies that $\left|\lambda_{1}\left(x_{1}^{i}-x_{1}^{j}\right)\right|<\varepsilon$, for all $i, j \geq n_{0}$. Thus $\left(\lambda_{1} x_{1}^{i}\right)$ is a Cauchy sequence in C and hence it is a convergent sequence in C.

Let

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \lambda_{1} x_{1}^{i}=z_{1} \tag{9}
\end{equation*}
$$

Again we have

$$
\sup \left\{\left|\sum_{k=1}^{\infty}\left(\Delta \lambda_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right) y_{k}\right|: \delta(\Phi, y) \leq 1\right\}<\varepsilon
$$

for all $i, j \geq n_{0}$ and so

$$
\left|\sum_{k=1}^{\infty}\left(\Delta \lambda_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right) y_{k}\right|<\varepsilon
$$

for all y with $\delta(\Phi, y) \leq 1$ and $i, j \geq n_{0}$.
Now considering $y=\left\{e_{\mathrm{i}}\right\}$ if $\Phi(1) \leq 1$ otherwise considering $y=\left\{e_{\mathrm{i}} / \Phi(1)\right\}$ we have $\left(\Delta \lambda_{k} x_{k}^{i}\right)$ is a Cauchy sequence in C for all $k \geq 1$ and hence it is a convergent sequence in C for all $k \geq 1$.

Let

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \Delta \lambda_{k} x_{k}^{i}=y_{\mathrm{k}} \tag{10}
\end{equation*}
$$

for all $k \geq 1$. Using (9) and (10) we have $\lim _{i \rightarrow \infty} \lambda_{k} x_{k}^{i}$ exists for each $k \geq 1$ and so $\lim _{i \rightarrow \infty} x_{k}^{i}=x_{\mathrm{k}}$, say exists for each $k \geq 1$.

Now

$$
\lim _{j \rightarrow \infty}\left|\lambda_{1}\left(x_{1}^{i}-x_{1}^{j}\right)\right|=\left|\lambda_{1}\left(x_{1}^{i}-x_{1}\right)\right|<\varepsilon
$$

for all $i \geq n_{0}$. Also we can have

$$
\sup \left\{\left|\sum_{k=1}^{\infty}\left(\Delta \lambda_{k}\left(x_{k}^{i}-x_{k}\right)\right) y_{k}\right|: \delta(\Phi, y) \leq 1\right\}<\varepsilon
$$

for all $i \geq n_{0}$ as $j \rightarrow \infty$. Thus

$$
\left|\lambda_{1}\left(x_{1}^{i}-x_{1}\right)\right|+\sup \left\{\left|\sum_{k=1}^{\infty}\left(\Delta \lambda_{k}\left(x_{k}^{i}-x_{k}\right)\right) y_{k}\right|: \delta(\Phi, y) \leq 1\right\}<2 \varepsilon
$$

for all $i \geq n_{0}$ and as $j \rightarrow \infty$. It follows that $\left(x^{\mathrm{i}}-x\right) \in \ell_{M}(\Delta, \Lambda)$ and $\ell_{M}(\Delta, \Lambda)$ is a linear space and hence $x=\left(x_{\mathrm{k}}\right) \in \ell_{M}(\Delta, \Lambda)$.

H. Dutta

From above proof we can easily conclude that $\left\|x^{i}\right\|_{M}^{\Delta} \rightarrow 0$ implies that $x_{k}^{i} \rightarrow 0$ for each $i \geq 1$. Hence we have the following Proposition.

Proposition 2.5. $\ell_{M}(\Delta, \Lambda)$ and $\ell_{M}(\nabla, \Lambda)$ are $B K$ spaces under the norms defined by (5) and (6), respectively.

Our next aim is to show that $\ell_{M}(\Delta, \Lambda)$ and $\ell_{M}(\nabla, \Lambda)$ can be made $B K$ spaces under different but equivalent norms.

Proposition 2.6.

(i) $\ell_{M}(\Delta, \Lambda)$ is a normed linear space under the norm $\left\|\|_{(M)}^{\Delta}\right.$ defined by

$$
\begin{equation*}
\|x\|_{(M)}^{\Delta}=\left|\lambda_{1} x_{1}\right|+\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{\rho}\right) \leq 1\right\} \tag{11}
\end{equation*}
$$

(ii) $\ell_{M}(\nabla, \Lambda)$ is a normed linear space under the norm $\|\cdot\|_{(M)}^{\nabla}$ defined by

$$
\begin{equation*}
\|x\|_{(M)}^{\nabla}=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{k} x_{k}\right|}{\rho}\right) \leq 1\right\} . \tag{12}
\end{equation*}
$$

Proof. (i) Clearly $\|x\|_{(M)}^{\Delta}=0$ if $x=\theta$. Next suppose $\|x\|_{(M)}^{\Delta}=0$. Then from (11) we have

$$
\begin{equation*}
\left|\lambda_{1} x_{1}\right|=0 \text { and so } \lambda_{1} x_{1}=0 . \tag{13}
\end{equation*}
$$

Again $\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{\rho}\right) \leq 1\right\}=0$. This implies that for a given $\varepsilon>0$, there exists some $\rho_{\varepsilon}\left(0<\rho_{\varepsilon}<\varepsilon\right)$ such that

$$
\sup _{k} M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{\rho_{\varepsilon}}\right) \leq 1
$$

This implies that $M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{\rho_{\varepsilon}}\right) \leq 1$ for all $k \geq 1$. Thus

$$
M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{\varepsilon}\right) \leq M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{\rho_{\varepsilon}}\right) \leq 1
$$

for all $k \geq 1$.
Suppose $\Delta \lambda_{n_{i}} x_{n_{i}} \neq 0$, for some i. Let $\varepsilon \rightarrow 0$, then $\frac{\left|\Delta \lambda_{n_{i}} x_{n_{i}}\right|}{\varepsilon} \rightarrow \infty$. It follows that $M\left(\frac{\left|\Delta \lambda_{n_{i}} x_{n_{i}}\right|}{\varepsilon}\right) \rightarrow \infty$ as $\varepsilon \rightarrow 0$ for some $n_{i} \in N$. This is a contradiction. Therefore

$$
\begin{equation*}
\Delta \lambda_{k} x_{k}=0 \tag{14}
\end{equation*}
$$

for all $k \geq 1$. Thus, by (13) and (14), it follows that $\lambda_{k} x_{k}=0$ for all $k \geq 1$. Hence $x=\theta$, since $\left(\lambda_{k}\right)$ is a sequence of non-zero scalars.

Let $x=\left(x_{\mathrm{k}}\right)$ and $y=\left(y_{\mathrm{k}}\right)$ be any two elements of $\ell_{M}(\Delta, \Lambda)$. Then there exist $\rho_{1}, \rho_{2}>0$ such that

$$
\sup _{k} M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{\rho_{1}}\right) \leq 1 \quad \text { and } \quad \sup _{k} M\left(\frac{\left|\Delta \lambda_{k} y_{k}\right|}{\rho_{2}}\right) \leq 1
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then by convexity of M, we have

$$
\sup _{k} M\left(\frac{\left|\Delta \lambda_{k}\left(x_{k}+y_{k}\right)\right|}{\rho}\right) \leq \frac{\rho_{1}}{\rho_{1}+\rho_{2}} \sup _{k} M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{\rho_{1}}\right)+\frac{\rho_{2}}{\rho_{1}+\rho_{2}} \sup _{k} M\left(\frac{\left|\Delta \lambda_{k} y_{k}\right|}{\rho_{2}}\right) \leq 1 .
$$

Hence we have

$$
\begin{aligned}
& \|x+y\|_{(M)}^{\Delta}=\left|\lambda_{1}\left(x_{1}+y_{1}\right)\right|+\inf \left\{\rho>0: \sup _{k} M\left(\frac{\left|\Delta \lambda_{k}\left(x_{k}+y_{k}\right)\right|}{\rho}\right) \leq 1\right\} \\
& \leq\left|\lambda_{1} x_{1}\right|+\inf \left\{\rho_{1}>0: \sup _{k} M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{\rho_{1}}\right) \leq 1\right\}+\left|\lambda_{1} y_{1}\right| \\
& +\inf \left\{\rho_{2}>0: \sup _{k} M\left(\frac{\left|\Delta \lambda_{k} y_{k}\right|}{\rho_{2}}\right) \leq 1\right\} .
\end{aligned}
$$

This implies $\|x+y\|_{(M)}^{\Delta} \leq\|x\|_{(M)}^{\Delta}+\|x\|_{(M)}^{\Delta}$.
Finally, let v be any scalar. Then

$$
\begin{aligned}
\|v x\|_{(M)}^{\Delta} & =\left|v \lambda_{1} x_{1}\right|+\inf \left\{\rho>0: \sup _{k} M\left(\frac{\left|\Delta v \lambda_{k} x_{k}\right|}{\rho}\right) \leq 1\right\} \\
& =|v|\left|\lambda_{1} x_{1}\right|+\inf \left\{r|v|>0: \sup _{k} M\left(\frac{\left|\Delta \lambda_{k} x_{k}\right|}{r}\right) \leq 1\right\} \\
& =|v|\|x\|_{(M)}^{\Delta}
\end{aligned}
$$

where $r=\frac{\rho}{|v|}$. This completes the proof.
(ii) Proof is easy than part (i).

Remark. It is obvious that the norms $\|.\|_{(M)}^{\Delta}$ and $\left\|\|_{(M)}^{\nabla}\right.$ are equivalent.

Proposition 2.7. For $x \in \ell_{M}(\nabla, \Lambda)$, we have

$$
\sum_{k=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{k} x_{k}\right|}{\|x\|_{(M)}^{\Delta^{-1}}}\right) \leq 1
$$

Proof. Proof is immediate from (12).
Now we show that the norms $\left\|\|_{(M)}^{\nabla}\right.$ and $\| . \|_{M}^{\nabla}$ are equivalent. To prove this some other results are required. First we prove those results.

Proposition 2.8. Let $x \in \ell_{M}(\nabla, \Lambda)$ with $\|x\|_{M}^{\nabla} \leq 1$. Then $\left\{p\left(\left|\nabla \lambda_{n} x_{n}\right|\right)\right\} \in \tilde{\ell}_{\Phi}$ and $\delta\left(\Phi,\left\{p\left(\left|\nabla \lambda_{n} x_{n}\right|\right)\right\}\right) \leq 1$.

Proof. For any $z \in \widetilde{\ell}_{\Phi}$, we may write

$$
\left|\sum_{i=1}^{\infty}\left(\nabla \lambda_{i} x_{i}\right) z_{i}\right| \leq \begin{cases}\|x\|_{M}^{\nabla} & \text { if } \delta(\Phi, z) \leq 1 \tag{15}\\ \delta(\Phi, z)\|x\|_{M}^{\nabla} & \text { if } \delta(\Phi, z)>1\end{cases}
$$

Let now $x \in \ell_{M}(\nabla, \Lambda)$ with $\|x\|_{M}^{\nabla} \leq 1$. Also $x^{(\mathrm{n})}=\left(x_{1}, \ldots x_{\mathrm{n}}, 0,0, \ldots ..\right) \in \ell_{M}(\nabla, \Lambda)$ for $n \geq 1$. We observe that

$$
\|x\|_{M}^{\nabla} \geq\left|\sum_{i=1}^{\infty}\left(\nabla \lambda_{i} x_{i}\right) y_{i}^{(n)}\right|=\left|\sum_{i=1}^{\infty}\left(\nabla \lambda_{i} x_{i}^{(n)}\right) y_{i}\right|, \quad n \geq 1
$$

for every $y \in \tilde{\ell}_{\Phi}$ with $\delta(\Phi, y) \leq 1$ and thus

$$
\left\|x^{(n)}\right\|_{M}^{\nabla} \leq\|x\|_{M}^{\nabla} \leq 1
$$

Since

$$
\sum_{i=1}^{n} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}\right|\right)\right)=\sum_{i=1}^{\infty} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}^{(n)}\right|\right)\right)
$$

We find that $\left\{p\left(\left|\nabla \lambda_{i} x_{i}^{(n)}\right|\right)\right\} \in \tilde{\ell}_{\Phi} \quad$ for each $n \geq 1$. Let $l \geq 1$ be an integer such that

$$
\sum_{i=1}^{l} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}\right|\right)\right)>1
$$

Then $\sum_{i=1}^{\infty} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}^{(\nu)}\right|\right)\right)>1$. Using (2), we have

$$
\begin{aligned}
\Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}^{(l)}\right|\right)\right) & <M\left(\left|\nabla \lambda_{i} x_{i}^{(l)}\right|\right)+\Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}^{(l)}\right|\right)\right) \\
& =\left|\nabla \lambda_{i} x_{i}^{l}\right| p\left(\left|\nabla \lambda_{i} x_{i}^{l}\right|\right)
\end{aligned}
$$

for all $i, l \geq 1$. So by (15), we get

$$
\sum_{i=1}^{\infty} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}^{(l)}\right|\right)\right)<\left\|x^{(l)}\right\|_{M}^{\nabla} \delta\left(\Phi,\left\{p\left(\left|\nabla \lambda_{i} x_{i}^{l}\right|\right)\right\}\right)
$$

This implies that $\left\|x^{(l)}\right\|_{M}^{\nabla}>1$, a contradiction. This contradiction implies that

$$
\sum_{i=1}^{l} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}\right|\right)\right) \leq 1
$$

for all $l \geq 1$. Hence $\left\{p\left(\left|\nabla \lambda_{i} x_{i}\right|\right)\right\} \in \tilde{\ell}_{\Phi}$ and $\delta\left(\Phi,\left\{p\left(\left|\nabla \lambda_{i} x_{i}\right|\right)\right\}\right) \leq 1$.
Proposition 2.9. Let $x \in \ell_{M}(\nabla, \Lambda)$ with $\|x\|_{M}^{\nabla} \leq 1$. Then $x \in \tilde{\ell}_{M}(\nabla, \Lambda)$ and $\delta_{\nabla}^{\wedge}(M, x) \leq\|x\|_{M}^{\nabla}$.

Proof. Let $y=\left\{p\left(\left|\nabla \lambda_{i} x_{i}\right|\right) / \operatorname{sgn}\left(\nabla \lambda_{i} x_{i}\right)\right\}$. Then from Proposition 2.8, $y \in \tilde{\ell}_{\Phi}$ and $\delta(\Phi, y) \leq 1$. By (2), we get

$$
\begin{aligned}
\sum_{i=1}^{\infty} M\left(\left|\nabla \lambda_{i} x_{i}\right|\right) & \leq \sum_{i=1}^{\infty} M\left(\left|\nabla \lambda_{i} x_{i}\right|\right)+\sum_{i=1}^{\infty} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}\right|\right)\right) \\
& =\sum_{i=1}^{\infty}\left|\nabla \lambda_{i} x_{i}\right| p\left(\left|\nabla \lambda_{i} x_{i}\right|\right) \\
& =\left|\sum_{i=1}^{\infty}\left(\nabla \lambda_{i} x_{i}\right) y_{i}\right| \leq\|x\|_{M}^{\nabla} .
\end{aligned}
$$

This implies that $\delta_{\nabla}^{\wedge}(M, x) \leq\|x\|_{M}^{\nabla}$.
Proposition 2.10. For $x \in \ell_{M}(\nabla, \Lambda)$, we have $\sum_{k=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{k} x_{k}\right|}{\|x\|_{M}^{\nabla}}\right) \leq 1$.
Proof. Proof is immediate from Proposition 2.9.
Theorem 2.11. For $x \in \ell_{M}(\nabla, \Lambda),\|x\|_{(M)}^{\nabla} \leq\|x\|_{M}^{\nabla} \leq 2\|x\|_{(M)}^{\nabla}$.
Proof. We have

$$
\|x\|_{(M)}^{\nabla}=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{k} x_{k}\right|}{\rho}\right) \leq 1\right\} .
$$

Then using Proposition 2.10, we get

$$
\|x\|_{(M)}^{\nabla} \leq\|x\|_{M}^{\nabla} .
$$

Let us suppose that $x \in \ell_{M}(\nabla, \Lambda)$ with $\|x\|_{(M)}^{\nabla} \leq 1$. Then $x \in \tilde{\ell}_{M}(\nabla, \Lambda)$ and $\delta_{\nabla}^{\Lambda}(M, x) \leq 1$. Indeed,

$$
\frac{1}{\|x\|_{(M)}^{\nabla}} \sum_{i=1}^{\infty} M\left(\left|\nabla \lambda_{i} x_{i}\right|\right) \leq \sum_{i=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\|x\|_{(M)}^{\nabla}}\right) \leq 1
$$

by Proposition 2.7.

H. Dutta

Thus $\frac{x}{\|x\|_{(M)}^{\nabla}} \in \tilde{\ell}_{M}(\nabla, \Lambda)$ with $\delta\left(M, \frac{x}{\|x\|_{(M)}^{\nabla}}\right) \leq 1$. We further observe that for an arbitrary $z \in \tilde{\ell}_{M}(\nabla, \Lambda)$,

$$
\|z\|_{M}^{\nabla}=\sup \left\{\left|\sum_{i=1}^{\infty}\left(\nabla \lambda_{i} z_{i}\right) y_{i}\right|: \delta(\Phi, y) \leq 1\right\} \leq 1+\delta_{\nabla}^{\Lambda}(M, z)
$$

using (1). Hence taking $z=\frac{x}{\|x\|_{(M)}^{\nabla}}$, we have

$$
\left\|\frac{x}{\|x\|_{(M)}^{\nabla}}\right\|_{M}^{\nabla} \leq 1+\sum_{i=1}^{\infty} M\left(\frac{|x|}{\|x\|_{(M)}^{\nabla}}\right) \leq 2
$$

by Proposition 2.7. Thus $\|x\|_{M}^{\nabla} \leq 2\|x\|_{(M)}^{\nabla}$. This completes the proof.
Proposition 2.12. For any Orlicz function $M, \ell_{M}(\nabla, \Lambda)=\ell_{M}^{\prime}(\nabla, \Lambda)$, where

$$
\ell_{M}^{\prime}(\nabla, \Lambda)=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{k} x_{k}\right|}{\rho}\right)<\infty, \quad \text { for some } \rho>0\right\}
$$

Proof. Proof follows from Proposition 2.10.
In view of above Proposition we give the following definition.
Definition 2.13. For any Orlicz function M,

$$
h_{M}(\nabla, \Lambda)=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{k} x_{k}\right|}{\rho}\right)<\infty, \text { for each } \rho>0\right\} .
$$

Clearly $h_{M}(\nabla, \Lambda)$ is a subspace of $\ell_{M}(\nabla, \Lambda)$. Henceforth we shall write $\|$.$\| instead of$ $\|\cdot\|_{(M)}^{\nabla}$ provided it does not lead to any confusion. The topology of $h_{M}(\nabla, \Lambda)$ is the one it inherits from ||.|.

Proposition 2.14. Let M be an Orlicz function. Then $\left(h_{M}(\nabla, \Lambda),\| \| \|\right)$ is an $A K-B K$ space.
Proof. First we show that $h_{M}(\nabla, \Lambda)$ is an $A K$ space. Let $x \in h_{M}(\nabla, \Lambda)$. Then for each ε, $0<\varepsilon<1$, we can find an n_{0} such that

$$
\sum_{i \geq n_{0}} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\varepsilon}\right) \leq 1
$$

Hence for $n \geq n_{0}$,

$$
\left\|x-x^{(\mathrm{n})}\right\|=\inf \left\{\rho>0: \sum_{i \geq n+1} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right) \leq 1\right\} \leq \inf \left\{\rho>0: \sum_{i \geq n} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right) \leq 1\right\}<\varepsilon .
$$

Thus we can conclude that $h_{M}(\nabla, \Lambda)$ is an $A K$ space.
Next to show $h_{M}(\nabla, \Lambda)$ is an $B K$ space it is enough to show $h_{M}(\nabla, \Lambda)$ is a closed subspace of $h_{M}(\nabla, \Lambda)$. For this let $\left\{x^{\mathrm{n}}\right\}$ be a sequence in $h_{M}(\nabla, \Lambda)$ such that

$$
\left\|x^{\mathrm{n}}-x\right\| \rightarrow 0
$$

where $x \in h_{M}(\nabla, \Lambda)$. To complete the proof we need to show that $x \in h_{M}(\nabla, \Lambda)$, i.e.,

$$
\sum_{i \geq 1} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right)<\infty
$$

for every $\rho>0$. To $\rho>0$ there corresponds an l such that $\left\|x^{l}-x\right\| \leq \frac{\rho}{2}$. Then using convexity of M,

$$
\begin{aligned}
\sum_{i \geq 1} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right) & =\sum_{i \geq 1} M\left(\frac{2\left|\nabla \lambda_{i} x_{i}^{l}\right|-2\left(\left|\nabla \lambda_{i} x_{i}^{l}\right|-\left|\nabla \lambda_{i} x_{i}\right|\right)}{2 \rho}\right) \\
& \leq \frac{1}{2} \sum_{i \geq 1} M\left(\frac{2\left|\nabla \lambda_{i} x_{i}^{l}\right|}{\rho}\right)+\frac{1}{2} \sum_{i \geq 1} M\left(\frac{2\left|\nabla \lambda_{i}\left(x_{i}^{l}-x_{i}\right)\right|}{\rho}\right) \\
& \leq \frac{1}{2} \sum_{i \geq 1} M\left(\frac{2\left|\nabla \lambda_{i} x_{i}^{l}\right|}{\rho}\right)+\frac{1}{2} \sum_{i \geq 1} M\left(\frac{2\left|\nabla \lambda_{i}\left(x_{i}^{l}-x_{i}\right)\right|}{\left\|x^{l}-x\right\|}\right)<\infty
\end{aligned}
$$

by proposition 2.7. Thus $x \in h_{M}(\nabla, \Lambda)$ and consequently $h_{M}(\nabla, \Lambda)$ is a $B K$ space.
Proposition 2.15. Let M be an Orlicz function. If M satisfies the Δ_{2}-condition at 0 , then $\ell_{M}(\nabla, \Lambda)$ is an $A K$ space.

Proof. In fact we shall show that if M satisfies the Δ_{2}-condition at 0 , then $\ell_{M}(\nabla, \Lambda)=h_{M}(\nabla, \Lambda)$ and the result follows. Therefore it is enough to show that $\ell_{M}(\nabla, \Lambda) \subset h_{M}(\nabla, \Lambda)$. Let $x \in \ell_{M}(\nabla, \Lambda)$, then $\rho>0$,

$$
\sum_{i \geq 1} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right)<\infty .
$$

This implies that

$$
\begin{equation*}
M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right) \rightarrow 0 \text { as } i \rightarrow \infty . \tag{16}
\end{equation*}
$$

Choose an arbitrary $l>0$. If $\rho \leq l$, then $\sum_{i \geq 1} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{l}\right)<\infty$. Let now $l<\rho$ and put $k=\frac{\rho}{l}$.
Since M satisfies Δ_{2}-condition at 0 , there exist $R \equiv R_{\mathrm{k}}>0$ and $r \equiv r_{\mathrm{k}}>0$ with $M(k x) \leq R M(x)$ for all $x \in(0, r]$. By (16) there exists a positive integer n_{1} such that

$$
M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right)<\frac{1}{2} r p\left(\frac{r}{2}\right)
$$

H. Dutta

for all $i \geq n_{1}$. We claim that $\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho} \leq r$ for all $i \geq n_{1}$. Otherwise, we can find $j>n_{1}$ with $\frac{\left|\nabla \lambda_{j} x_{j}\right|}{\rho}>r$, and thus

$$
M\left(\frac{\left|\nabla \lambda_{j} x_{j}\right|}{\rho}\right) \geq \int_{r / 2}^{\frac{\left|\nabla \lambda_{j} x_{j}\right|}{\rho}} p(t) d t>\frac{1}{2} r p\left(\frac{r}{2}\right)
$$

Is a contradiction. Hence our claim is true. Then we can find that

$$
\sum_{i \geq n_{1}} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{l}\right) \leq \sum_{i \geq n_{1}} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right),
$$

and hence

$$
\sum_{i \geq 1} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{l}\right)<\infty
$$

for every $l>0$. This completes our proof.
Proposition 2.16. Let M_{1} and M_{2} be two Orlicz functions. If M_{1} and M_{2} are equivalent then $\ell_{M_{1}}(\nabla, \Lambda)=\ell_{M_{2}}(\nabla, \Lambda)$ and the identity map

$$
I:\left(\ell_{M_{1}}(\nabla, \Lambda),\| \| \|_{M_{1}}^{\nabla}\right) \rightarrow\left(\ell_{M_{2}}(\nabla, \Lambda),\| \| \|_{M_{2}}^{\nabla}\right)
$$

is a topological isomorphism.
Proof. Let M_{1} and M_{2} are equivalent and so satisfy (4). Suppose $x \in \ell_{M_{2}}(\nabla, \Lambda)$, then

$$
\sum_{i=1}^{\infty} M_{2}\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right)<\infty
$$

for some $\rho>0$. Hence for some $l \geq 1, \frac{\left|\nabla \lambda_{i} x_{i}\right|}{l \rho} \leq x_{0}$ for all $i \geq 1$. Therefore,

$$
\sum_{i=1}^{\infty} M_{1}\left(\frac{\alpha\left|\nabla \lambda_{i} x_{i}\right|}{l \rho}\right) \leq \sum_{i=1}^{\infty} M_{2}\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\rho}\right)<\infty .
$$

Thus $\ell_{M_{2}}(\nabla, \Lambda) \subset \ell_{M_{1}}(\nabla, \Lambda)$. Similarly $\ell_{M_{1}}(\nabla, \Lambda) \subset \ell_{M_{2}}(\nabla, \Lambda)$. Let us abbreviate here $\|\cdot\|_{M_{1}}^{\nabla}$ and $\|\cdot\|_{M_{2}}^{\nabla}$ by $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, respectively. For $x \in \ell_{M_{2}}(\nabla, \Lambda)$,

$$
\sum_{i=1}^{\infty} M_{2}\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\|x\|_{2}}\right) \leq 1
$$

One can find $\mu>1$ with $\left(\frac{x_{0}}{2}\right) \mu p_{2}\left(\frac{x_{0}}{2}\right) \geq 1$, where p_{2} is the kernel associated with M_{2}. Hence

$$
M_{2}\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\|x\|_{2}}\right) \leq\left(\frac{x_{0}}{2}\right) \mu p_{2}\left(\frac{x_{0}}{2}\right)
$$

for all $i \geq 1$. This implies that $\frac{\left|\nabla \lambda_{i} x_{i}\right|}{\mu\|x\|_{2}} \leq x_{0}$ for all $i \geq 1$. Therefore

$$
\sum_{i=1}^{\infty} M_{1}\left(\frac{\alpha\left|\nabla \lambda_{i} x_{i}\right|}{\mu\|x\|_{2}}\right)<1
$$

and so $\|x\|_{1} \leq\left(\frac{\mu}{\alpha}\right)\|x\|_{2}$. Similarly we can show $\|x\|_{2} \leq \beta \gamma\|x\|_{1}$ by choosing γ with $\gamma \beta>1$ such that $\gamma \beta\left(\frac{x_{0}}{2}\right) p_{1}\left(\frac{x_{0}}{2}\right) \geq 1$. Thus $\alpha \mu^{-1}\|x\|_{1} \leq\|x\|_{2} \leq \beta \gamma\|x\|_{1}$ which establishes that I is a topological isomorphism.

Proposition 2.17. (i) $\ell_{M}(\Lambda) \subset \ell_{M}(\nabla, \Lambda)$,

$$
\text { (ii) } \ell_{M}(\Lambda) \subset \ell_{M}(\Delta, \Lambda)
$$

Proof. (i) Proof follows from the following inequality:

$$
\sum_{i=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{i} x_{i}\right|}{2 \rho}\right) \leq \frac{1}{2} \sum_{i=1}^{\infty} M\left(\frac{\left|\lambda_{i} x_{i}\right|}{\rho}\right)+\frac{1}{2} \sum_{i=1}^{\infty} M\left(\frac{\left|\lambda_{i-1} x_{i-1}\right|}{\rho}\right)
$$

(ii) Proof is similar to that of part (i).

Proposition 2.18. Let M be an Orlicz function and p the corresponding kernel. If $p(x)=0$ for all x in $\left[0, x_{0}\right]$ where x_{0} is some positive number, then $\ell_{M}(\nabla, \Lambda)$ is topologically isomorphic to $\ell_{\infty}(\nabla, \Lambda)$ and $h_{M}(\nabla, \Lambda)$ is topologically isomorphic to $c_{0}(\nabla, \Lambda)$.

Proof. Let $p(x)=0$ for all x in $\left[0, x_{0}\right]$. If $y \in \ell_{\infty}(\nabla, \Lambda)$, then we can find a $\rho>0$ such that $\frac{\left|\nabla \lambda_{i} y_{i}\right|}{\rho} \leq x_{0}$ for $i \geq 1$, and so $\sum_{i=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{i} y_{i}\right|}{\rho}\right)<\infty$, giving thus $y \in \ell_{M}(\nabla, \Lambda)$. On the other hand let $y \in \ell_{M}(\nabla, \Lambda)$, then $\sum_{i=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{i} y_{i}\right|}{\rho}\right)<\infty$, for some $\rho>0$ and so $\left|\nabla \lambda_{i} y_{i}\right|<\infty$ for all $i \geq 1$, giving thus $y \in \ell_{\infty}(\nabla, \Lambda)$. Hence $y \in \ell_{\infty}(\nabla, \Lambda)$ if and only if $y \in \ell_{M}(\nabla, \Lambda)$. We can easily find an x_{1} with $M\left(x_{1}\right) \geq 1$. Let $y \in \ell_{\infty}(\nabla, \Lambda)$ and $\alpha=\|y\|_{\infty}=\sup _{i}\left(\left|\nabla \lambda_{i} y_{i}\right|\right)>0$. (It is easy to show that $\|y\|_{\infty}=\sup _{i}\left(\left|\nabla \lambda_{i} y_{i}\right|\right)$ is a norm on $\left.\ell_{\infty}(\nabla, \Lambda)\right)$. For every $\varepsilon, 0<\varepsilon<\alpha$, we can determine y_{j} with $\left|\nabla \lambda_{j} y_{j}\right|>\alpha-\varepsilon$ and so

$$
\sum_{i=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{i} y_{i}\right| x_{1}}{\alpha}\right) \geq M\left(\frac{(\alpha-\varepsilon) x_{1}}{\alpha}\right)
$$

Since M is continuous, we find $\sum_{i=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{i} y_{i}\right| x_{1}}{\alpha}\right) \geq 1$, and so $\|y\|_{\infty} \leq x_{1}\|y\|$, for otherwise $\sum_{i=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{i} y_{i}\right|}{\|y\|}\right)>1$ is a contradiction by Proposition 2.7. Again, $\sum_{i=1}^{\infty} M\left(\frac{\left|\nabla \lambda_{i} y_{i}\right| x_{0}}{\alpha}\right)=0$ and it follows that $\|y\| \leq \frac{1}{x_{0}}\|y\|_{\infty}$. Thus the identity map

$$
I:\left(\ell_{M}(\nabla, \Lambda),\| \|\right) \rightarrow\left(\ell_{\infty}(\nabla, \Lambda),\| \|\right)
$$

is a topological isomorphism.
For the last part, let $y \in h_{M}(\nabla, \Lambda)$, then for any $\varepsilon>0,\left|\nabla \lambda_{i} y_{i}\right| \leq \varepsilon x_{1}$, for all sufficiently large i, where x_{1} is some positive number with $p\left(x_{1}\right)>0$. Hence $y \in c_{0}(\nabla, \Lambda)$. Next let $y \in c_{0}(\nabla, \Lambda)$. Then for any $\rho>0, \frac{\left|\nabla \lambda_{i} y_{i}\right|}{\rho}<\frac{1}{2} x_{0}$ for all sufficiently large i. Thus $M\left(\frac{\left|\nabla \lambda_{i} y_{i}\right|}{\rho}\right)<\infty$ for all $\rho>0$ and so $y \in h_{M}(\nabla, \Lambda)$. Hence $h_{M}(\nabla, \Lambda)=c_{0}(\nabla, \Lambda)$ and we are done.

Corollary 2.19. Let M be an Orlicz function and p the corresponding kernel. If $p(x)=0$ for all x in $\left[0, x_{0}\right]$ where x_{0} is some positive number, then $\ell_{M}(\nabla, \Lambda)$ is topologically isomorphic to ℓ_{∞} and $h_{M}(\nabla, \Lambda)$ is topologically isomorphic to c_{0}.

Proof. Let us define the mapping for $Z=\ell_{\infty}, c_{0}$

$$
T: Z(\nabla, \Lambda) \rightarrow Z
$$

by $T x=\left(\nabla \lambda_{k} x_{k}\right)$, for every $x \in Z(\nabla, \Lambda)$. Then clearly T is a linear homeomorphism.
Hence the proof follows from Proposition 2.18.
Lemma 2.20. Let M be an Orlicz function. Then $x \in \ell_{M}(\Delta, \Lambda) \operatorname{implies}\left(k^{-1} \lambda_{k} x_{k}\right) \in \ell_{\infty}$.
Proof. Let $x \in \ell_{M}(\Delta, \Lambda)$. Then, one can easily prove that $\left(\Delta \lambda_{k} x_{k}\right) \in \ell_{\infty}$ which gives the result $\left(k^{-1} \lambda_{k} x_{k}\right) \in \ell_{\infty}$.

Proposition 2.21. Let M be an Orlicz function and p be the corresponding kernel of M. If $p(x)=0$ for all x in $\left[0, x_{0}\right]$, where x_{0} is some positive number, then
(i) Köthe-Toeplitz dual of $\ell_{M}(\Delta, \Lambda)$ is D_{1}, where

$$
D_{1}=\left\{\left(a_{k}\right): \sum_{k=1}^{\infty} k\left|\lambda_{k}^{-1} a_{k}\right|<\infty\right\},
$$

(ii) Köthe-Toeplitz dual of D_{1} is D_{2}, where

$$
D_{2}=\left\{\left(b_{k}\right): \sup _{k} k^{-1}\left|\lambda_{k} b_{k}\right|<\infty\right\} .
$$

Proof. (i) Let $a \in D_{1}$ and $x \in \ell_{M}(\Delta, \Lambda)$. Then

$$
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|=\sum_{k=1}^{\infty} k\left|\lambda_{k}^{-1} a_{k}\right| k^{-1}\left|\lambda_{k} x_{k}\right| \leq \sup _{k} k^{-1}\left|\lambda_{k} x_{k}\right| \sum_{k=1}^{\infty} k\left|\lambda_{k}^{-1} a_{k}\right|<\infty .
$$

Hence $a \in\left[\ell_{M}(\Delta, \Lambda)\right]^{\alpha}$. Thus, the inclusion $D_{1} \subset\left[\ell_{M}(\Delta, \Lambda)\right]^{\alpha}$ holds.
Conversely suppose that $a \in\left[\ell_{M}(\Delta, \Lambda)\right]^{\alpha}$. Then $\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|<\infty$ for every $x \in \ell_{M}(\Delta, \Lambda)$.
So we can take $x_{k}=\lambda_{k}^{-1} k$ for all $k \geq 1$, because then $\left(x_{\mathrm{k}}\right) \in \ell_{\infty}(\Delta, \Lambda)$ and hence $\left(x_{\mathrm{k}}\right) \in \ell_{M}(\Delta, \Lambda)$ as shown in Proposition 2.18.

Now $\sum_{k=1}^{\infty} k\left|\lambda_{k}^{-1} a_{k}\right|=\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|<\infty$ and thus $a \in D_{1}$. Hence, the inclusion $\left[\ell_{M}(\Delta, \Lambda)\right]^{\alpha} \subset D_{1}$ holds.
(ii) Proof follows by similar arguments used in the prove of case (i).

Proposition 2.22. Let M be an Orlicz function and p be the corresponding kernel of M. If $p(x)=0$ for all x in $\left[0, x_{0}\right]$, where x_{0} is some positive number, then Köthe-Toeplitz dual of $h_{M}(\Delta, \Lambda)$ is D_{1}, where D_{1} is defined as in Proposition 2.21.

Proof. Let $a \in D_{1}$ and $x \in h_{M}(\Delta, \Lambda)$. Then

$$
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|=\sum_{k=1}^{\infty} k\left|\lambda_{k}^{-1} a_{k}\right| k^{-1}\left|\lambda_{k} x_{k}\right| \leq \sup _{k} k^{-1}\left|\lambda_{k} x_{k}\right| \sum_{k=1}^{\infty} k\left|\lambda_{k}^{-1} a_{k}\right|<\infty .
$$

Hence $a \in\left[h_{M}(\Delta, \Lambda)\right]^{\alpha}$, that is the inclusion $D_{1} \subset\left[h_{M}(\Delta, \Lambda)\right]^{\alpha}$ holds.
Conversely suppose that $a \in\left[h_{M}(\Delta, \Lambda)\right]^{\alpha}$ and $a \notin D_{1}$. Then there exists a strictly increasing sequence (n_{i}) of positive integers such that $n_{1}<n_{2}<\ldots$, such that

$$
\sum_{k=n_{i}+1}^{n_{i+1}}\left|\lambda_{k}\right|^{-1} k\left|a_{k}\right|>i .
$$

Define $\left(x_{\mathrm{k}}\right)$ by

$$
x_{k}= \begin{cases}0 & 1 \leq k \leq n_{1} \\ k \lambda_{k}^{-1} \operatorname{sgn} a_{k} / i, & n_{i}<k \leq n_{i+1}\end{cases}
$$

Then $\left(x_{\mathrm{k}}\right) \in c_{0}(\Delta, \Lambda)$ and so by Proposition 2.18, $\left(x_{\mathrm{k}}\right) \in h_{M}(\Delta, \Lambda)$. Then we have

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right| & =\sum_{k=n_{1}+1}^{n_{2}}\left|a_{k} x_{k}\right|+\ldots+\sum_{k=n_{i}+1}^{n_{i+1}}\left|a_{k} x_{k}\right|+\ldots \\
& =\sum_{k=n_{1}+1}^{n_{2}} k\left|\lambda_{k}^{-1} a_{k}\right|+\ldots+\frac{1}{i} \sum_{k=n_{i}+1}^{n_{i+1}} k\left|\lambda_{k}^{-1} a_{k}\right|+\ldots>1+1+\ldots=\infty .
\end{aligned}
$$

This contradicts to a I $\left[h_{M}(\Delta, \Lambda)\right]^{\alpha}$. Hence $a \in D_{1}$, i.e. the inclusion $\left[h_{M}(\Delta, \Lambda)\right]^{\alpha} \subset D_{1}$ also holds. This completes the proof.

References

[1] Kizmaz H., 1981. On certain sequence spaces, Canadian Mathematical Bulletin, 24 (2): 169-176.
[2] Kamthan P.K., Gupta M., 1981. Sequence Spaces and Series, Marcel Dekker Inc., New York, USA, p. 368.
[3] Lindenstrauss J., Tzafriri L., 1971. On Orlicz sequence spaces, Israel Journal of Mathematics, 10: 379-390.
[4] Gribanov Y., 1957. On the theory of $\ell_{M^{-}}$-spaces(Russian), Ucenyja Zapiski Kazansk un-ta, 117: 62-65.
[5] Krasnoselskii M.A., Rutitsky Y.B., 1961. Convex functions and Orlicz spaces, Groningen, Netherlands, p. 249.
[6] Goes G., Goes S., 1970. Sequences of bounded variation and sequences of Fourier coefficients, Mathematische_Zeitschrift, 118 (2): 93-102.
[7] Köthe G., Toeplitz O., 1934. Linear Raume mit unendlichvielen koordinaten and Ringe unendlicher Matrizen, Journal Für Die Reine und Angewandte Mathematik, 1934 (171): 193-226.
[8] Kamthan P.K., 1976. Bases in a certain class of Frechet spaces, Tamkang Journal of Mathematics, 7 (1): 41-49.
[9] Başar F., Altay B., 2003. On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Mathematical Journal, 55 (1): 136-147.
[10] Altay B., Başar F., 2007. The fine spectrum and the matrix domain of the difference operator Δ on the sequence space $\ell_{p},(0<p<1)$, Communications in Mathematical Analysis, 2 (2): 1-11.

