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Abstract: In this study, the Poisson distribution is used to add a new parameter to the exponential and 
Weibull distributions, and some results on survival distributions of the new extended distributions are 
given. 
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Üstel ve Weibull Dağılımlarının Bir Genişletmesi Üzerine 
 

Özet: Bu çalışmada Poisson dağılımı, üstel ve Weibull dağılımlarına yeni bir parametre eklenmesi 
amacıyla kullanılmış ve yeni genişletilen dağılımların sağkalım fonksiyonuna ilişkin bazı sonuçlara yer 
verilmiştir. 
 
Anahtar kelimeler: Sağkalım fonksiyonu, üstel, Weibull ve Poisson dağılımları. 
 
 
1. Introduction 

 
In survival analysis, the exponential and Weibull distributions are the most frequently 
used parametric models. The importance of the exponential distribution emerges from 
its lack of memory property and having a constant hazard rate function.  

 
The Weibull distribution contains the exponential distribution and constitutes a more 
general model for the survival analysis since it does not assume a constant hazard rate.  

 
In [1], a new method is given, which uses the geometric distribution for adding a new 
parameter to the families of exponential and Weibull distributions. A bivariate version 
is also considered in the same study. In this study, the Poisson distribution with drifted 
supporting set ,...}3,2,1{  is used for extending the families of exponential and Weibull 
distributions. 
 
2. The New Survival Function 
 
Let F  be a one-parameter survival function and N be a Poisson random variable with 
parameter λ, having the drifted supporting set {1,2,3,...}, or equivalently let M be a 
Poisson variable with parameter λ and  N = M + 1.  
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For all x∈R, define a new survival function by  
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For the new survival function, it is true that )x(G  is decreasing in λ, as λ becomes 
nearer 0, )x(G  takes after )x(F ,otherwise we have 

Rx),   x(F)x(G ∈≤ , 
or equivalently Rx),   x(F)x(G ∈≥  which means that in the new distribution much 
more portion of the corresponding random variable is cumulated on the “left side” of the 
distribution whatever the distribution is. In fact, it is easy to see that the equation (1) is 
the survival function of a random variable Xi having the shortest lifetime; i.e., 
 

      ( )xXMinP)x(G iNi1
>=

≤≤
.            (3) 

For this reason, as an example, over the integer values for λ, G may be thought to use as 
an approximation to the life of the  patient who has the shortest life among its “Poisson” 
sample peers and has been taking some therapy on a given disease. It is also known that 
the Poisson sampling preserves many basic properties of stochastic processes [2]. 
 
In this study, the survival function (1) will be used to obtain the new extended classes of 
exponential and Weibull distributions.   
 
 
3. Density and Hazard Rate Functions 
 
Let the distribution function F in (2) have a density function f and denote its hazard rate 
function by rF , and similarly of G by  rG. The density function corresponding to G is 
given by 
 

                ,0;   Rx,   e)x(f)]}x(F1[1{)x(g )x(F ≥λ∈−λ+= λ−            (4) 
 
and the hazard rate function is 
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Equation (5) states that the shape of the new hazard function n depends on the shapes of 
old density and old hazard rate function. In addition, we have ( ) ( ) , G Fr x r x x R≥ ∈ ; i.e., 
the new family has a failure rate at least as the old family.  
 
 
4. The New Extended Exponential Family 
 
When ( ) , 0 ; 0xF x e xγ γ−= > ≥ , (1.1) gives the survival function of a new two-
parametric exponential family as 
 
                   .0,   0,   0x}, xeexp{),;x(G x >γ≥λ≥λ−γ−λ=γλ γ−          (6) 

 
The corresponding density is given by 
 

,0,   0,   0x},   xeexp{)e1(),;x(g xx >γ≥λ≥λ−γ−λλ+γ=γλ γ−γ−  
 

and its hazard rate function and Laplace-Stieltjes transform are 
 

0,   0,   0x,   e),;x(r x
G >γ≥λ≥λγ+γ=γλ γ− , 

 

[ ] ( ) ( ) ( ) ( )[ ]












+Γ+Γ−λ−+Γ−λ−Γλ−
λ

==γ γγ
+γ

γγ
+γγ

−
λ−− ssss

s
sX

G 2,2,)(e1eE)s( , 

respectively, where (.,.)Γ  is the upper incomplete gamma function. rG(x;λ,γ) is 
decreasing for all x≥0, rG(x;0,γ) = γ, and is a Gompertz-Makeham hazard function with 
ρ0 = γ, ρ1 = λγ and ρ2 = -γ  and is as a compound exponential distribution in [3]. The 
compound exponential distributions are geometric infinitely divisible and hence 
infinitely divisible, and satisfy the stability equation of the form  

)SX(BX d +=  
where S is a R+-valued random variable, B is a mixed Bernoulli variable with mixing 
variable W  taking values in (0,1), all of the variables X, B and S are independent [4] 
and  = d shows the equality of distributions. As stated in [5], the distribution functions 
having decreasing hazard rate are new worse than used, we have 
 

)vX(P)uX|vuX(P >≥>+> . 
It is also easy to show that   

),,e;v(G)uX|vuX(P u γλ=>+> γ−  
i.e., in the conditional survival probability λ is replaced by ue γλ −  which tends to λ as 
u→0 and tends to 0 as u→∞, which means that as u→∞ the new distribution behaves as 
its original distribution, i.e. as the exponential distribution.  

 
The new exponential distribution has a mode at 0, and for any fixed value of λ its 
median decreases as γ increases, and conversely the same property holds for increasing 
values of λ versus any fixed value γ as seen in Table 1. In fact, the median value is 
completely indirectly proportional to γ for any fixed value of λ, i.e., the median value 
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can be predicted from any of its given value versus any fixed λ. As an example, from 
Table 1, for λ = 1 fixed, and γ = 10, the median value is 0,038 while it is  
2x0,038 = 0,076 for γ = 5.     
  
 
        Table 1. Median values of  X  for various values of  λ  and  γ . 
 

  γ 
λ 0,2 0,5 1 5 10 20 

0,2 3,013 1,205 0,603 0,121 0,060 0,030 
0,5 2,486 0,994 0,497 0,099 0,050 0,025 
1 1,891 0,756 0,378 0,076 0,038 0,019 
5 0,607 0,243 0,121 0,024 0,012 0,006 

10 0,324 0,130 0,065 0,013 0,006 0,003 
20 0,168 0,067 0,034 0,007 0,003 0,002 

 
 
 
The moments of the new extended exponential distribution are given by 
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since λ<λ e!nn  gives ( ) )r()1r(]X[E rr ζγ+Γ< , where ζ(r) is the real Riemann zeta 
function. The real Riemann zeta function ζ(r) is a regular function for all values of  r 
except for a simple pole at r = 1 with residue 1. Some additional properties of the real 
Riemann zeta function ζ(r) can be found in [6] and [7]. 
 
From another point of view, the variance of this distribution can be written as 
 

[ ]21
2

2
2 ]N[E1]N[E2)X(Var −−

γ
−

γ
=                                            (8) 

by (7). For fixed values of γ, numerical computations showed that E[X] attains its 
maximum value  at λ=1 over the integers for λ. It is also true for this distribution that  
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Note that )1(),;x(rlim G0x
λ+γ=γλ

→
 while ;),;x(rlim Gx

γ=γλ
∞→

 i.e., the new distribution 

behaves like its successor, exponential distribution.  
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Figure 1. The density functions for the new exponential family. 

 
 
For some values of λ, γ  and  β, the density functions are drawn for the new exponential 
distribution in Figure 1 and their hazard rate functions are drawn in Figure 2. Their 
graphics show that the shapes of the new densities take after the exponential 
distribution. As λ→0, it is seen that this similarity increases. The shapes of hazard 
functions of the new family seem like their density functions.  
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 Figure 2. The hazard rate functions for the new exponential distribution. 

 
 
5. The New Extended Weibull Distribution 

 
If the Weibull survival function 
 

0,   0,   0x},   )x(exp{)x(F >β>γ≥γ−= β         (9) 
 

is substituted in (1.2) we have the new three-parameter survival function  
 

0,   0,,   0x},   )x(eexp{),,;x(G )x( ≥λ>βγ≥λ−γ−λ=βγλ ββγ− .      (10) 
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If X has an exponential distribution with parameter 1, then X1/β/γ has the survival 
function (9), i.e., X1/β/γ has the Weibull distribution with parameter  γ  and β, so (10) 
may also be obtained from (6) using the transformation X1/β/γ.  
 
The new extended Weibull distribution has the density given by 
 

1( ; , , ) (1 exp{ ( ) }) ( ) exp{ exp{ ( ) } ( ) }g x x x x xβ β β βλ γ β λ γ βγ γ λ γ γ λ−= + − − − −  
 

for  0, , 0, 0,x γ β λ≥ > ≥ and the hazard rate function is 
 

1( ; , , ) (1 exp{ ( ) }) ( ) ; 0, , 0, 0.Gr x x x xβ βλ γ β λ γ βγ γ γ β λ−= + − ≥ > ≥  
 

Notice that 0),,;x(rlim Gx
=βγλ

∞→
 for β<1, and ∞=βγλ

∞→
),,;x(rlim Gx

 for β>1. The new 

Weibull distribution has median values increasing as β increases, decreasing as λ and γ 
increases. For fixed λ = γ = 1, the median value tends to 1 as β → ∞. Similarly, for fixed 
β=1, λ → ∞  ( fixed  γ ) or  γ → ∞  ( fixed λ ) the median value tends to 0. The moments 
of the new Weibull distribution are given by     
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and these moments cannot be put in a simpler form. These moments have also a similar 
form given in (7). As an example, for the same parametric values in Table 2, the 
expected values of X are given in Table 3. Similar to (7) we have an upper bound for 
the moments related to the real Riemann zeta function as follows 
 

( )[ ] ( )ββ ζγ+Γ< rrrr 1]X[E . 
 

As it is expected, the expected values of X show the same behavior as its median values 
in respect of the proportionality to γ for fixed values of λ and β. The expected and 
median values show the same behavior as the expected and median values of the new 
exponential distribution. 

 
 
   Table 2. Median values of  X  for various values of λ,γ and β . 
 
λ→ 0,05 0,2 0,5 1 

γ β 
↓ 0,5 1 1,5 0,5 1 1,5 0,5 1 1,5 0,5 1 1,5 

0,5 0,894 0,447 0,298 0,726 0,363 0,242 0,496 0,248 0,165 0,286 0,143 0,095
1 1,338 0,669 0,446 1,205 0,603 0,402 0,994 0,497 0,331 0,756 0,378 0,252

1,5 1,529 0,765 0,510 1,427 0,713 0,476 1,255 0,628 0,418 1,046 0,523 0,349
2 1,636 0,818 0,545 1,553 0,776 0,516 1,410 0,705 0,470 1,230 0,615 0,410
5 1,845 0,923 0,615 1,807 0,904 0,602 1,739 0,870 0,579 1,647 0,823 0,549
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    Table 3. Expected values of  X  for various values of λ, γ and β . 
 

λ→ 0,05 0,2 0,5 1 

γ β 
↓ 0,5 1 1,5 0,5 1 1,5 0,5 1 1,5 0,5 1 1,5 

0,5 3,853 1,927 1,284 3,446 1,723 1,149 2,767 1,383 0,922 1,939 0,970 0,646
1 1,951 0,975 0,650 1,813 0,906 0,604 1,574 0,787 0,525 1,264 0,632 0,421

1,5 1,773 0,886 0,591 1,679 0,840 0,560 1,516 0,758 0,505 1,298 0,649 0,433
2 2,640 1,320 0,880 2,530 1,265 0,843 2,336 1,168 0,779 2,071 1,036 0,690
5 1,825 0,912 0,608 1,791 0,895 0,597 1,730 0,865 0,577 1,645 0,823 0,548

  
When the graphics of the densities and hazard rate functions of the new Weibull family 
are drawn, it is seen that the shapes of the density functions resemble the corresponding 
hazard rate functions. When the β value exceeds 1, the density and hazard rate functions 
leave the simple exponentialwise form.  
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Figure 3. The density functions for the new Weibull distribution. 
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     Figure 4. The hazard rate functions for the new Weibull distribution. 
 
 
 
6. Conclusion 
 
The new exponential and Weibull distributions given in this study are extended versions 
of these distributions, and have some nice properties. These distributions can be seen as 
the distribution of first order statistic of a random sample which is drawn from the same 
exponential or Weibull distribution, having a random sample size, and consequently can 
be used as an approximation to the lifetimes of patients who are subject to the same 
disease.  
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