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Abstract: We introduce the notions of fuzzy δ-I-open sets and fuzzy semi δ-I-continuos functions in 
fuzzy ideal topological space and investigate some of their properties. Additionaly, we obtain 
decompositions of fuzzy semi-I-continuous functions and fuzzy α-I-continuous functions by using fuzzy  
δ-I-open sets. 
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Bulanık Delta-I-Açık Kümeler ve Bulanık Alfa-I-Sürekliliğin 

Dağılımı Üzerine 
 

Özet: Bulanık ideal topolojik uzaylarda bulanık delta-I-açık küme ve bulanık yarı delta-I-sürekli 
fonksiyon kavramlarını tanımladık ve bunların bazı özelliklerini araştırdık. Ayrıca, bulanık delta-I-açık 
kümeleri kullanarak bulanık alfa-I-sürekli ve bulanık yarı-I-sürekli fonksiyonların ayrışımını elde ettik.   
 
Anahtar kelimeler: Bulanık delta-I-açık kümeler, bulanık yarı delta-I-süreklilik, bulanık alfa-I- süreklilik 
 
 
1. Introduction 

 
The fundamental concept of a fuzzy set was introduced by Zadeh [1]. Subsequently, 
Chang [2] defined the notion of fuzzy topology. An alternative definition of fuzzy 
topology was given by Lowen [3]. In general topolgy, by introducing the notion of 
ideal, Kuratowskı [4], Vaıdyanathaswamy [5,6] and several other authors carried out 
such analyses. There has been an extensive study on the importance of ideal in general 
topology in the paper of Jankovıć and Hamlet [7]. Recently, in ideal  topological spaces, 
new continuity types have been studied by Acıkgoz [8-10]. Sarkar [11] introduced the 
notions of fuzzy ideal and fuzzy local function in fuzzy set theory. In Mahmoud [12] 
and Nasef [13,14], independently presented some of the ideal concepts in the fuzzy 
trend and studied many of their properties.  
In this paper, we define fuzzy δ-I-open set and fuzzy strong β-I-open set via fuzzy ideal. 
Moreover, we obtain decompositions of fuzzy semi-I-opens set and fuzzy strong          
β-I-open sets.       
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2. Preliminaries 
 

Throughout this paper, X represents a nonempty fuzzy set and fuzzy subset A of X, 
denoted by A ≤ X, then is characterized by a membership function in the sense of Zadeh 
[1]. The basic fuzzy sets are the empty set, the whole set and the class of all fuzzy sets 
of X which will be denoted by 0, 1 and IX, respectively. A subfamily τ of IX is called a 
fuzzy topology due to Chang [2]. Morever, the pair (X,τ) will be meant by a fuzzy 
topological space, on which no separation axioms are assumed unless explicitly stated. 
The fuzzy closure, the fuzzy interior and the fuzzy complement of any set A in (X,τ) are 
denoted by Cl(A), Int(A) and 1-A, respectively. A fuzzy set which is a fuzzy point with 
support x∈X and value λ∈(0,1] will be designated by xλ [15].  Also, for a fuzzy point xλ 
and a fuzzy set A we shall write xλ ∈A to mean that λ ≤ A(x). The value of a fuzzy set A 
for some x∈X will be denoted by A(x). For any two fuzzy sets A and B in (X,τ), A≤B if 
and only if A(x)≤B(x) for each x∈X. A fuzzy set in (X,τ) is said to be quasi-coincident 
with a fuzzy set B, denoted by AqB, if there exists x∈X such that A(x) + B(x) >1 [16]. 
A fuzzy set V in (X,τ) is called a q-neighbourhood (q-nbd, for short) of a fuzzy point xλ 
if and only if there exists a fuzzy open set U such that xλ qU ≤ V [16, 17]. We will 
denote the set of all q-nbd of xλ in (X,τ) by N (xλ). A nonempty collection of fuzzy sets 
I of a set  X is called a fuzzy ideal on X, [11, 12], if and only if (1) A∈I and B ≤ A, then 
B∈I (heredity), (2) if A∈I and B∈I, then AVB∈I (finite additivity). The triple (X,τ,I) 
means fuzzy topological space with a fuzzy ideal I and fuzzy topology τ. For (X,τ,I), the 
fuzzy local function of A ≤ X with respect to τ and I is denoted by A*(τ,I) (briefly A*) 
[11]. The fuzzy local function A*(τ,I) of A is the union of all fuzzy points xλ such that if 
U∈N(xλ) and E∈I then there is at least one y∈X for which U(y)+A(y)-1 > E(y) [11]. 
Fuzzy closure operator of a fuzzy set A in (X,τ,I) is defined as C*(A) = AVA* [11]. In 
(X,τ,I), the collection τ*(I) means an extension of fuzzy topological space than τ via 
fuzzy ideal which is constructed by considering the class β = {U-E:U∈τ, E∈I} as a base 
[11]. A subset A of a fuzzy ideal topological space (X,τ,I) is called to be fuzzy α-I-open 
[18] (resp. fuzzy semi-I-open set [19], fuzzy pre-I-open set [14] if A ≤ Int(Cl*(Int(A))) 
(resp. A ≤ Cl*(Int(A)), A ≤ Int (Cl*(A))). 
 
3. Fuzzy δ-I-Open Sets 
 
Definition 1.1. A subset A of a fuzzy ideal topological space (X, τ, I) is called fuzzy     
δ-I-open (resp.fuzzy strong β-I-open) set if  

Int(Cl*(A))≤Cl*(Int(A)) (resp. A≤Cl*(Int(Cl*(A)))). 
The family of all fuzzy δ-I-open (resp.fuzzy strong β-I-open) sets of (X, τ, I) is denoted 
by FδIO(X) (resp. FSβIO(X)). A subset  A of a fuzzy ideal topological space  (X, τ, I) is 
said to be fuzzy δ-I-closed (resp.fuzzy strong β-I-closed) if its complement is fuzzy       
δ-I-open (resp. fuzzy strong β-I-open). 
 
Proposition 1.2. Let  (X, τ, I) be a fuzzy ideal topological space. Then a subset of X is 
fuzzy semi-I-open if and only if it is both  fuzzy δ-I-open and fuzzy strong β-I-open. 
 
Proof. Necessity. Let A be a fuzzy semi-I-open set, then we have  

A≤Cl*(Int(A))≤Cl*(Int(Cl*(A))). 
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This shows that A is fuzzy strong β-I-open. Moreover,  
Int(Cl*(A))≤Cl*(A)≤Cl*(Cl*(Int(A)))═Cl*(Int(A)). 

Therefore, A is fuzzy δ-I-open.  
 
Sufficiency. Let A be fuzzy δ-I-open and fuzzy strong β-I-open, then we have  

Int(Cl*(A))≤Cl*(Int(A)). 
Thus we obtain that  

Cl*(Int(Cl*(A))) ≤ Cl*(Cl*(Int(A))) = Cl*(Int(A)). 
Since A is fuzzy strong β-I-open, we have  

A ≤ Cl*(Int(Cl*(A))) ≤ Cl*(Int(A)) 
and  

A ≤ Cl*(Int(A)). 
Hence A is a fuzzy semi-I-open set. 
 
Proposition 1.3. Let  (X, τ, I) be a fuzzy ideal topological space. Then a subset of X is 
fuzzy α-I-open if and only if it is both fuzzy δ-I-open and fuzzy pre-I-open. 
 
Proof. Necessity. Let A be a fuzzy α-I-open set. Since every fuzzy α-I-open set is fuzzy 
semi-I-open, by Proposition 1,2. A is fuzzy δ-I-open set. Now we prove that  

A≤ Int(Cl*(A)). 
Since A is a fuzzy α-I-open, we have  

A ≤ Int(Cl*(Int(A))) ≤ Int(Cl*(A)). 
Hence A is a fuzzy pre-I-open set. 
 
Sufficiency. Let A be fuzzy δ-I-open and fuzzy pre-I-open set. Then we have  

Int(Cl*(A)) ≤ Cl*(Int(A)) 
and hence  

Int(Cl*(A)) ≤ Int(Cl*(Int(A))). 
Since A is fuzzy pre-I-open, we have A ≤ Int(Cl*(A)). Therefore we obtain that  

A ≤ Int(Cl*(Int(A))) 
and hence A is fuzzy α-I-open set. 
 
Remark 1.4. By the Example 1.4.1 and Example 1.4.2, we obtain the following results. 
 
    (1)  Fuzzy δ-I-openness and fuzzy strong β-I-openness are independent of each other, 
    (2)  Fuzzy δ-I-openness and fuzzy pre-I-openness are independent of eac other. 
 
Example 1.4.1. Let X={a,b,c} and A, B be fuzzy sets of X defined as follows:  

A(a) = 0.2,  A(b) = 0.7,  A(c) = 0.4 
      B(a) = 0.7,   B(b) = 0.9,   B(c) = 0.1  

We put τ = {0, A, 1} and I = {0}. Then B is fuzzy pre-I-open and fuzzy strong β-I-open, but B 
is not fuzzy δ-I-open. 
 
Example 1.4.2. Let X={a,b,c} and A, B be fuzzy sets of X defined as follows: 

A(a) = 0.7,  A(b) = 0.3,  A(c) = 0.4 
B(a) = 0.8,  B(b) = 0.4,   B(c) = 0.5 
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We put τ = {0, A, 1} and I = ℘(X). Then B is fuzzy δ-I-open, but B is neither fuzzy strong β-
I-open and nor fuzzy pre-I-open. 
 
Remark 1.5. By Proposition 1.2, Remark 1.4 and [18],  we have the following diagram: 
 
 
     fuzzy open                 fuzzy α-I-open                  fuzzy pre-I-open 
                         
  
 
                                                     fuzzy strong β-I-open       
 
  
                                fuzzy semi-I-open                       fuzzy δ-I-open 
 
 
Proposition 1.6. Let A, B be subsets of a fuzzy ideal topological space (X, τ, I). If        
A ≤ B ≤ Cl*(A) and A∈FδIO(X), then B∈ FδIO(X). 
 
Proof. Suppose that A ≤ B ≤ Cl*(A) and A∈FδIO(X). Then, since A∈FδIO(X), we have   

Int(Cl*(A)) ≤ Cl*(Int(A)). 
Since A ≤ B, we have 

Cl*(Int(A)) ≤ Cl*(Int(B)) 
and  

Int(Cl*(A)) ≤ Cl*(Int(B)). 
Since B ≤ Cl*(A), we have  

Cl*(B) ≤ Cl*(Cl*(A)) = Cl*(A) 
and  

Int(Cl*(B)) ≤ Int(Cl*(A)). 
Therefore, we obtain that Int(Cl*(B)) ≤ Cl*(Int(B)). This shows that B is fuzzy δ-I-open. 
 
Definition 1.7. A subset A of a fuzzy ideal topological space (X, τ, I) is called fuzzy    
τ*-dense set if  Cl*(A) = X. 
  
Corollary 1.8. Let  (X, τ, I) be a fuzzy ideal topological space. If A ≤ X is fuzzy δ-I-open 
and fuzzy τ*-dense, then every subset of X containing A is fuzzy δ-I-open. 
 
Proof. The proof is obvious by Proposition 1.6. 
 
4. On Decomposition of Fuzzy α-I-continuity and Fuzzy Semi-I-Continuity 
 
Definition 1.9. A function f : (X, τ, I)→ (Y, ϕ) is called fuzzy strong β-I-continuous (resp. 
fuzzy α-I-continuous [18], fuzzy semi-I-continuous [19], fuzzy pre-I-continuous [14] if 
for every V∈ϕ, f -1(V) is fuzzy strong β-I-open (resp. fuzzy α-I-open, fuzzy semi-I-
open, fuzzy pre-I-open) in (X, τ, I).  
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Remark 1.10. By Definition 1.9, we have the following diagram in which none of the 
implications is reversible as shown by Example 1.10.1 and Example 1.10.2. 
 
 
 
    fuzzy continuous                 fuzzy α-I-continuous                  fuzzy pre-I-continuous 
                         
  
                      
                                 fuzzy semi-I-continuous                       fuzzy strong β-I-continuous  
 
 
Example 1.10.1. Let X={a,b,c}, Y={0.1, 0.3, 0.7}, τ={0, A, 1}, ϕ={0, B, 1} and  I={0}. A is 
a fuzzy set of  X and B is a fuzzy set of Y defined as follows: 

A(a)=0.2,  A(b)=0.7,  A(c)=0.4 
     B(0.1)=0.6,  B(0.3)=0.3,  B(0.7)=0.8  

Let f : (X, τ, I) →  (Y, ϕ) be a function defined as follows:  
f(a)=0.1,  f(b)=0.7,  f(c)=0.3. 

Then f is fuzzy pre-I-continuous, but it is not fuzzy semi-I-continuous. 
     (1) For B∈ϕ, we have  

f -1(B)(a)=B(f(a))=B(0.1)=0.6, 
f -1(B)(b)=B(f(b))=B(0.7)=0.8, 
f -1(B)(c)=B(f(c))=B(0.3)=0.3. 

Set f -1(B) = D. Since D≤ Int(Cl*(D)), D is fuzzy pre-I-open. 
     (2) For 1∈ϕ, we have f -1(1) = 1. It is obvious that 1 is fuzzy pre-I-open. 
     (3) For 0∈ϕ, we have f -1(0) = 0. It is obvious that 0 is fuzzy pre-I-open. 
By (1), (2), (3); f  is fuzzy pre-I-continuous. Since Int(D) = 0 and Cl*(D) = 1, D is not 
fuzzy δ-I-open and hence not fuzzy semi-I-open. Thus f is not fuzzy semi-I-continuous. 
 
Example 1.10.2. Let X={a,b,c}, Y={0.3, 0.5, 0.7}, τ={0, A, 1}, ϕ={0, B, 1} and  I={0}. A is 
a fuzzy set of  X and B is a fuzzy set of Y defined as follows: 

A(a)=0.2,  A(b)=0.4,  A(c)=0.1 
        B(0.3)=0.6,  B(0.5)= 0.4,  B(0.7)=0.7  

Let f : (X, τ, I) →  (Y, ϕ) be a function defined as follows:  
f(a)=0.7, f(b)=0.5, f(c)=0.3. 

Then f is fuzzy semi-I-continuous, but it is not fuzzy pre-I-continuous. 
     (1) For B∈ϕ, we have  

f -1(B)(a)=B(f(a))=B(0.7)=0.7, 
f -1(B)(b)=B(f(b))=B(0.5)=0.4, 
f -1(B)(c)=B(f(c))=B(0.3)=0.6. 

Set f -1(B) = D. Since D ≤ Cl*(Int(D)), D is fuzzy semi-I-open. 
     (2)  For 1∈ϕ, we have f -1(1)=1. It is obvious that 1 is fuzzy semi-I-open. 
     (3)  For 0∈ϕ, we have f -1(0)=0. It is obvious that 0 is fuzzy semi-I-open. 
By (1), (2), (3); f  is fuzzy semi-I-continuous. Since Int(Cl*(D))=A and A≤D, D is not  
fuzzy pre-I-open. Thus f is not fuzzy pre-I-continuous. 
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Definition 1.11. A function f:(X, τ, I)→ (Y, ϕ) is called fuzzy semi-δ-I-continuous if for 
every V∈ϕ, f -1(V)∈FδIO(X). 
 
Theorem 1.12. For a fuction f:(X, τ, I)→ (Y, ϕ), the following properties are equivalent: 
     (a) f is fuzzy semi-I-continuous, 
     (b)f is fuzzy strong β-I-continuous and fuzzy semi-δ-I-continuous. 
 
Proof. The proof is obvious by Proposition 1.2. 
 
Theorem 1.13. For a fuction f:(X, τ, I)→ (Y, ϕ), the following properties are equivalent: 
    (a) f is fuzzy α-I-continuous. 
    (b) f is fuzzy pre-I-continuous and fuzzy semi-I-continuous. 
    (c) f is fuzzy pre-I-continuous and and fuzzy semi-δ-I-continuous. 
 
Proof. The proof is obvious by Proposition 1.2. and Proposition  1.3. 
 
Remark 1.14. By Example 1.14.1. and Example 1.14.2. we can realize the following 
properties: 
    (a) fuzzy strong β-I-continuity and fuzzy semi-δ-I-continuity are independent of each  
other. 
    (b)fuzzy pre-I-continuity and and fuzzy semi-δ-I-continuity are independent of each 
other. 
 
Example 1.14.1. Let (X, τ, I) be the same fuzzy ideal topological space and A the subset 
of X as in Example 1.10.2. We obtain that A is a fuzzy pre-I-open set which is not fuzzy 
semi-I-open. Thus f is a fuzzy pre-I-continuous function which is not fuzzy              
semi-δ-I-continuous.  
 
Example 1.14.2. Let X={a,b,c}, Y={0.1, 0.5, 0.7}, τ={0, A, 1}, ϕ={0, B, 1} and  I=℘(X). A 
is a fuzzy set of  X and B is a fuzzy set of Y defined as follows: 

A(a)=0.8,  A(b)=0.2,  A(c)=0.4 
       B(0.1)=0.9,  B(0.5)=0.4,  B(0.7)=0.7  

Let f:(X, τ, I)→ (Y, ϕ) be a function defined as follows: 
f(a)=0.1,  f(b)=0.5,  f(c)=0.7. 

Then f is fuzzy semi-δ-I-continuous, but it is not fuzzy strong β-I-continuous. 
    (1) For B∈ϕ, we have  

f -1(B)(a)=B(f(a))=B(0.1)=0.9, 
f -1(B)(b)=B(f(b))=B(0.5)=0.4, 
f -1(B)(c)=B(f(c))=B(0.7)=0.7. 

Set f -1(B) = D. Since Int(Cl*(D))≤Cl*(Int(D)), D is fuzzy δ-I-open. 
    (2) For 1∈ϕ, we have f -1(1) = 1. It is obvious that 1 is fuzzy δ-I-open. 
    (3) For 0∈ϕ, we have f -1(0) = 0. It is obvious that 0 is fuzzy δ-I-open. 
By (1), (2), (3); f  is fuzzy semi-δ-I-continuous. Since Int(D)=A and A≤D, D is not 
fuzzy strong β-I-open. Thus f is not fuzzy strong β-I-continuous. 
   
Remark 1.15. By Definition 1.9, Definition 1.11. and Remark 1.14., we have the 
following diagram: 
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fuzzy continuous               fuzzy α-I-continuous              fuzzy pre-I-continuous 
                         
  
 
                                                            fuzzy strong β-I-continuous       
 
  
                         fuzzy semi-I-continuous                     fuzzy semi-δ-I-continuous 
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