

On Fuzzy δ -I-Open Sets and Decomposition of Fuzzy α -I-continuity

Şaziye Yüksel^{1,*}, Eser Gürsel Çaylak², Ahu Açıkgöz³

 ¹ Selçuk Universiy, Faculty of Science and Arts, Department of Mathematics 42031 Campus, Konya, TURKEY
² Selçuk Universiy, Faculty of Science and Arts, Department of Mathematics 42031 Campus, Konya, TURKEY
³ Aksaray Universiy, Faculty of Science and Arts, Department of Mathematics, 68100 Campus, Aksaray, TURKEY
* corresponding author e-mail: syuksel@selcuk.edu.tr

Received: 27 May 2008, Accepted: 16 April 2010

Abstract: We introduce the notions of fuzzy δ -I-open sets and fuzzy semi δ -I-continuos functions in fuzzy ideal topological space and investigate some of their properties. Additionaly, we obtain decompositions of fuzzy semi-I-continuous functions and fuzzy α -I-continuous functions by using fuzzy δ -I-open sets.

Key words: Fuzzy δ -I-open sets, fuzzy semi δ -I-continuity, fuzzy α -I-continuity

Bulanık Delta-I-Açık Kümeler ve Bulanık Alfa-I-Sürekliliğin Dağılımı Üzerine

Özet: Bulanık ideal topolojik uzaylarda bulanık delta-I-açık küme ve bulanık yarı delta-I-sürekli fonksiyon kavramlarını tanımladık ve bunların bazı özelliklerini araştırdık. Ayrıca, bulanık delta-I-açık kümeleri kullanarak bulanık alfa-I-sürekli ve bulanık yarı-I-sürekli fonksiyonların ayrışımını elde ettik.

Anahtar kelimeler: Bulanık delta-I-açık kümeler, bulanık yarı delta-I-süreklilik, bulanık alfa-I- süreklilik

1. Introduction

The fundamental concept of a fuzzy set was introduced by Zadeh [1]. Subsequently, Chang [2] defined the notion of fuzzy topology. An alternative definition of fuzzy topology was given by Lowen [3]. In general topolgy, by introducing the notion of ideal, Kuratowski [4], Vaidyanathaswamy [5,6] and several other authors carried out such analyses. There has been an extensive study on the importance of ideal in general topology in the paper of Janković and Hamlet [7]. Recently, in ideal topological spaces, new continuity types have been studied by Acikgoz [8-10]. Sarkar [11] introduced the notions of fuzzy ideal and fuzzy local function in fuzzy set theory. In Mahmoud [12] and Nasef [13,14], independently presented some of the ideal concepts in the fuzzy trend and studied many of their properties.

In this paper, we define fuzzy δ -I-open set and fuzzy strong β -I-open set via fuzzy ideal. Moreover, we obtain decompositions of fuzzy semi-I-opens set and fuzzy strong β -I-open sets.

2. Preliminaries

Throughout this paper, X represents a nonempty fuzzy set and fuzzy subset A of X, denoted by $A \leq X$, then is characterized by a membership function in the sense of Zadeh [1]. The basic fuzzy sets are the empty set, the whole set and the class of all fuzzy sets of X which will be denoted by 0, 1 and I^X, respectively. A subfamily τ of I^X is called a fuzzy topology due to Chang [2]. Morever, the pair (X,τ) will be meant by a fuzzy topological space, on which no separation axioms are assumed unless explicitly stated. The fuzzy closure, the fuzzy interior and the fuzzy complement of any set A in (X,τ) are denoted by Cl(A), Int(A) and 1-A, respectively. A fuzzy set which is a fuzzy point with support $x \in X$ and value $\lambda \in (0,1]$ will be designated by x^{λ} [15]. Also, for a fuzzy point x^{λ} and a fuzzy set A we shall write $x^{\lambda} \in A$ to mean that $\lambda \leq A(x)$. The value of a fuzzy set A for some $x \in X$ will be denoted by A(x). For any two fuzzy sets A and B in (X,τ) , A \leq B if and only if $A(x) \leq B(x)$ for each $x \in X$. A fuzzy set in (X,τ) is said to be quasi-coincident with a fuzzy set B, denoted by AqB, if there exists $x \in X$ such that A(x) + B(x) > 1 [16]. A fuzzy set V in (X,τ) is called a q-neighbourhood (q-nbd, for short) of a fuzzy point x^{λ} if and only if there exists a fuzzy open set U such that $x^{\lambda} qU \leq V$ [16, 17]. We will denote the set of all q-nbd of x^{λ} in (X,τ) by N (x^{λ}) . A nonempty collection of fuzzy sets I of a set X is called a fuzzy ideal on X, [11, 12], if and only if (1) $A \in I$ and $B \leq A$, then $B \in I$ (heredity), (2) if $A \in I$ and $B \in I$, then $AVB \in I$ (finite additivity). The triple (X, τ, I) means fuzzy topological space with a fuzzy ideal I and fuzzy topology τ . For (X, τ ,I), the fuzzy local function of $A \le X$ with respect to τ and I is denoted by $A^*(\tau,I)$ (briefly A^*) [11]. The fuzzy local function $A^*(\tau, I)$ of A is the union of all fuzzy points x^{λ} such that if $U \in N(x^{\lambda})$ and $E \in I$ then there is at least one $y \in X$ for which U(y) + A(y) - 1 > E(y) [11]. Fuzzy closure operator of a fuzzy set A in (X,τ,I) is defined as $C^*(A) = AVA^*$ [11]. In (X,τ,I) , the collection $\tau^*(I)$ means an extension of fuzzy topological space than τ via fuzzy ideal which is constructed by considering the class $\beta = \{U-E: U \in \tau, E \in I\}$ as a base [11]. A subset A of a fuzzy ideal topological space (X,τ,I) is called to be fuzzy α -I-open [18] (resp. fuzzy semi-I-open set [19], fuzzy pre-I-open set [14] if $A \leq Int(Cl^{(Int(A))})$ (resp. $A \le Cl^*(Int(A)), A \le Int(Cl^*(A)))$.

3. Fuzzy &-I-Open Sets

Definition 1.1. A subset A of a fuzzy ideal topological space (X, τ, I) is called fuzzy δ -I-open (resp.fuzzy strong β -I-open) set if

 $Int(Cl^{*}(A)) \leq Cl^{*}(Int(A)) \text{ (resp. } A \leq Cl^{*}(Int(Cl^{*}(A)))).$

The family of all fuzzy δ -I-open (resp.fuzzy strong β -I-open) sets of (X, τ, I) is denoted by F δ IO(X) (resp. FS β IO(X)). A subset A of a fuzzy ideal topological space (X, τ, I) is said to be fuzzy δ -I-closed (resp.fuzzy strong β -I-closed) if its complement is fuzzy δ -I-open (resp. fuzzy strong β -I-open).

Proposition 1.2. Let (X, τ, I) be a fuzzy ideal topological space. Then a subset of X is fuzzy semi-I-open if and only if it is both fuzzy δ -I-open and fuzzy strong β -I-open.

Proof. Necessity. Let A be a fuzzy semi-I-open set, then we have $A \leq Cl^*(Int(A)) \leq Cl^*(Int(Cl^*(A))).$

This shows that A is fuzzy strong β -I-open. Moreover, Int(Cl*(A)) \leq Cl*(A) \leq Cl*(Cl*(Int(A)))=Cl*(Int(A)). Therefore, A is fuzzy δ -I-open and fuzzy strong β -I-open, then we have Int(Cl*(A)) \leq Cl*(Int(A)). Thus we obtain that Cl*(Int(Cl*(A))) \leq Cl*(Cl*(Int(A))) = Cl*(Int(A)). Since A is fuzzy strong β -I-open, we have A \leq Cl*(Int(Cl*(A))) \leq Cl*(Int(A))) and A \leq Cl*(Int(Cl*(A))). Hence A is a fuzzy semi-I-open set. *Proposition 1.3.* Let (X, τ , I) be a fuzzy ideal topological space. Then a subset of X is fuzzy α -I-open if and only if it is both fuzzy δ -I-open and fuzzy pre-I-open.

Proof. Necessity. Let A be a fuzzy α -I-open set. Since every fuzzy α -I-open set is fuzzy semi-I-open, by Proposition 1,2. A is fuzzy δ -I-open set. Now we prove that $A \le Int(Cl^*(A)).$

Since A is a fuzzy α -I-open, we have

 $A \leq Int(Cl^{*}(Int(A))) \leq Int(Cl^{*}(A)).$

Hence A is a fuzzy pre-I-open set.

Sufficiency. Let A be fuzzy δ -I-open and fuzzy pre-I-open set. Then we have $Int(Cl^*(A)) \leq Cl^*(Int(A))$

and hence

 $Int(Cl^{*}(A)) \leq Int(Cl^{*}(Int(A))).$ Since A is fuzzy pre-I-open, we have A \leq Int(Cl^{*}(A)). Therefore we obtain that A \leq Int(Cl^{*}(Int(A)))

and hence A is fuzzy α -I-open set.

Remark 1.4. By the Example 1.4.1 and Example 1.4.2, we obtain the following results.

(1) Fuzzy δ -I-openness and fuzzy strong β -I-openness are independent of each other,

(2) Fuzzy δ -I-openness and fuzzy pre-I-openness are independent of eac other.

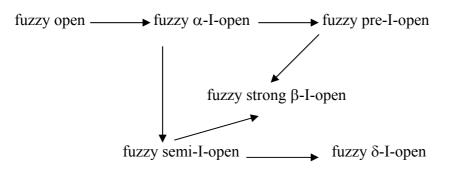
Example 1.4.1. Let X={a,b,c} and A, B be fuzzy sets of X defined as follows: A(a) = 0.2, A(b) = 0.7, A(c) = 0.4 B(a) = 0.7, B(b) = 0.9, B(c) = 0.1

We put $\tau = \{0, A, 1\}$ and I = $\{0\}$. Then B is fuzzy pre-I-open and fuzzy strong β -I-open, but B is not fuzzy δ -I-open.

Example 1.4.2. Let X={a,b,c} and A, B be fuzzy sets of X defined as follows:

A(a) = 0.7, A(b) = 0.3, A(c) = 0.4B(a) = 0.8, B(b) = 0.4, B(c) = 0.5 We put $\tau = \{0, A, 1\}$ and $I = \wp(X)$. Then B is fuzzy δ -I-open, but B is neither fuzzy strong β -I-open and nor fuzzy pre-I-open.

Remark 1.5. By Proposition 1.2, Remark 1.4 and [18], we have the following diagram:



Proposition 1.6. Let A, B be subsets of a fuzzy ideal topological space (X, τ , I). If $A \le B \le Cl^*(A)$ and $A \in F\delta IO(X)$, then $B \in F\delta IO(X)$.

Proof. Suppose that $A \le B \le Cl^*(A)$ and $A \in F\delta IO(X)$. Then, since $A \in F\delta IO(X)$, we have $Int(Cl^*(A)) \le Cl^*(Int(A))$.

Since $A \leq B$, we have

 $\operatorname{Cl}^{*}(\operatorname{Int}(A)) \leq \operatorname{Cl}^{*}(\operatorname{Int}(B))$

and

 $Int(Cl^{*}(A)) \leq Cl^{*}(Int(B)).$

Since $B \le Cl^*(A)$, we have

 $Cl^{*}(B) \le Cl^{*}(Cl^{*}(A)) = Cl^{*}(A)$

and

 $Int(Cl^{*}(B)) \leq Int(Cl^{*}(A)).$

Therefore, we obtain that $Int(Cl^*(B)) \le Cl^*(Int(B))$. This shows that B is fuzzy δ -I-open.

Definition 1.7. A subset A of a fuzzy ideal topological space (X, τ, I) is called fuzzy τ^* -dense set if $Cl^*(A) = X$.

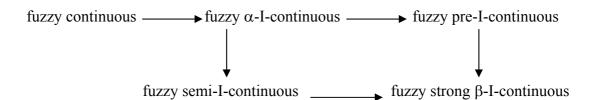
Corollary 1.8. Let (X, τ, I) be a fuzzy ideal topological space. If $A \le X$ is fuzzy δ -I-open and fuzzy τ^* -dense, then every subset of X containing A is fuzzy δ -I-open.

Proof. The proof is obvious by Proposition 1.6.

4. On Decomposition of Fuzzy α-I-continuity and Fuzzy Semi-I-Continuity

Definition 1.9. A function $f: (X, \tau, I) \rightarrow (Y, \phi)$ is called fuzzy strong β -I-continuous (resp. fuzzy α -I-continuous [18], fuzzy semi-I-continuous [19], fuzzy pre-I-continuous [14] if for every $V \in \phi$, $f^{-1}(V)$ is fuzzy strong β -I-open (resp. fuzzy α -I-open, fuzzy semi-I-open, fuzzy pre-I-open) in (X, τ, I) .

Remark 1.10. By Definition 1.9, we have the following diagram in which none of the implications is reversible as shown by Example 1.10.1 and Example 1.10.2.



Example 1.10.1. Let X={a,b,c}, Y={0.1, 0.3, 0.7}, τ ={0, A, 1}, ϕ ={0, B, 1} and I={0}. A is a fuzzy set of X and B is a fuzzy set of Y defined as follows: A(a)=0.2, A(b)=0.7, A(c)=0.4

B(0.1)=0.6, B(0.3)=0.3, B(0.7)=0.8

Let $f: (X, \tau, I) \rightarrow (Y, \phi)$ be a function defined as follows:

f(a)=0.1, f(b)=0.7, f(c)=0.3.

Then f is fuzzy pre-I-continuous, but it is not fuzzy semi-I-continuous.

(1) For $B \in \varphi$, we have

 $f^{-1}(B)(a)=B(f(a))=B(0.1)=0.6,$ $f^{-1}(B)(b)=B(f(b))=B(0.7)=0.8,$ $f^{-1}(B)(c)=B(f(c))=B(0.3)=0.3.$

Set $f^{-1}(B) = D$. Since $D \le Int(Cl^*(D))$, D is fuzzy pre-I-open.

(2) For $1 \in \varphi$, we have $f^{-1}(1) = 1$. It is obvious that 1 is fuzzy pre-I-open.

(3) For $0 \in \varphi$, we have $f^{-1}(0) = 0$. It is obvious that 0 is fuzzy pre-I-open.

By (1), (2), (3); f is fuzzy pre-I-continuous. Since Int(D) = 0 and $Cl^*(D) = 1$, D is not fuzzy δ -I-open and hence not fuzzy semi-I-open. Thus f is not fuzzy semi-I-continuous.

Example 1.10.2. Let X={a,b,c}, Y={0.3, 0.5, 0.7}, τ ={0, A, 1}, ϕ ={0, B, 1} and I={0}. A is a fuzzy set of X and B is a fuzzy set of Y defined as follows:

A(a)=0.2, A(b)=0.4, A(c)=0.1

B(0.3)=0.6, B(0.5)=0.4, B(0.7)=0.7

Let $f: (X, \tau, I) \rightarrow (Y, \phi)$ be a function defined as follows: f(a)=0.7, f(b)=0.5, f(c)=0.3.

Then f is fuzzy semi-I-continuous, but it is not fuzzy pre-I-continuous.

(1) For $B \in \phi$, we have

 $f^{-1}(B)(a)=B(f(a))=B(0.7)=0.7,$ $f^{-1}(B)(b)=B(f(b))=B(0.5)=0.4,$ $f^{-1}(B)(c)=B(f(c))=B(0.3)=0.6.$

Set $f^{-1}(B) = D$. Since $D \le Cl^*(Int(D))$, D is fuzzy semi-I-open.

(2) For $1 \in \varphi$, we have $f^{-1}(1)=1$. It is obvious that 1 is fuzzy semi-I-open.

(3) For $0 \in \varphi$, we have $f^{-1}(0)=0$. It is obvious that 0 is fuzzy semi-I-open.

By (1), (2), (3); f is fuzzy semi-I-continuous. Since $Int(Cl^*(D))=A$ and $A\leq D$, D is not fuzzy pre-I-open. Thus f is not fuzzy pre-I-continuous.

Definition 1.11. A function $f:(X, \tau, I) \rightarrow (Y, \phi)$ is called fuzzy semi- δ -I-continuous if for every $V \in \phi$, $f^{-1}(V) \in F \delta IO(X)$.

Theorem 1.12. For a function $f:(X, \tau, I) \rightarrow (Y, \phi)$, the following properties are equivalent: (a) f is fuzzy semi-I-continuous,

(b) f is fuzzy strong β -I-continuous and fuzzy semi- δ -I-continuous.

Proof. The proof is obvious by Proposition 1.2.

- *Theorem 1.13.* For a function $f:(X, \tau, I) \rightarrow (Y, \phi)$, the following properties are equivalent: (a) f is fuzzy α -I-continuous.
 - (b) f is fuzzy pre-I-continuous and fuzzy semi-I-continuous.
 - (c) f is fuzzy pre-I-continuous and and fuzzy semi- δ -I-continuous.

Proof. The proof is obvious by Proposition 1.2. and Proposition 1.3.

Remark 1.14. By Example 1.14.1. and Example 1.14.2. we can realize the following properties:

(a) fuzzy strong β -I-continuity and fuzzy semi- δ -I-continuity are independent of each other.

(b) fuzzy pre-I-continuity and and fuzzy semi- δ -I-continuity are independent of each other.

Example 1.14.1. Let (X, τ, I) be the same fuzzy ideal topological space and A the subset of X as in Example 1.10.2. We obtain that A is a fuzzy pre-I-open set which is not fuzzy semi-I-open. Thus f is a fuzzy pre-I-continuous function which is not fuzzy semi- δ -I-continuous.

Example 1.14.2. Let X={a,b,c}, Y={0.1, 0.5, 0.7}, τ ={0, A, 1}, ϕ ={0, B, 1} and I= \wp (X). A is a fuzzy set of X and B is a fuzzy set of Y defined as follows: A(a)=0.8, A(b)=0.2, A(c)=0.4 B(0.1)=0.9, B(0.5)=0.4, B(0.7)=0.7

Let $f:(X, \tau, I) \rightarrow (Y, \phi)$ be a function defined as follows:

$$f(a)=0.1, f(b)=0.5, f(c)=0.7.$$

Then f is fuzzy semi- δ -I-continuous, but it is not fuzzy strong β -I-continuous.

(1) For $B \in \varphi$, we have

 $f^{-1}(B)(a)=B(f(a))=B(0.1)=0.9,$ $f^{-1}(B)(b)=B(f(b))=B(0.5)=0.4,$ $f^{-1}(B)(c)=B(f(c))=B(0.7)=0.7.$

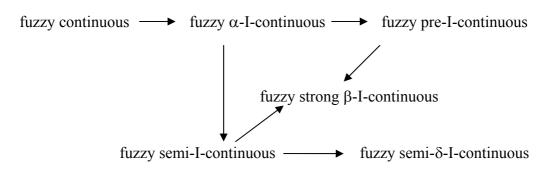
Set $f^{-1}(B) = D$. Since $Int(Cl^*(D)) \le Cl^*(Int(D))$, D is fuzzy δ -I-open.

(2) For $1 \in \varphi$, we have $f^{-1}(1) = 1$. It is obvious that 1 is fuzzy δ -I-open.

(3) For $0 \in \varphi$, we have $f^{-1}(0) = 0$. It is obvious that 0 is fuzzy δ -I-open.

By (1), (2), (3); f is fuzzy semi- δ -I-continuous. Since Int(D)=A and A \leq D, D is not fuzzy strong β -I-open. Thus f is not fuzzy strong β -I-continuous.

Remark 1.15. By Definition 1.9, Definition 1.11. and Remark 1.14., we have the following diagram:



References

- [1] Zadeh L.A., 1965. Fuzzy sets, Inform Control, 8: 338-53.
- [2] Chang C.L., 1968. Fuzzy topological spaces, Journal Mathematic Analysis Applied, 24: 182-90.
- [3] Lowen R., 1976. Fuzzy topological spaces and fuzzy compactness, *Journal Mathematic Analysis Applied*, 56: 621-633.
- [4] Kuratowski K., 1966. Topology, Vol. 1, Academic Press, New York, USA, p. 309.
- [5] Vaidyanathaswamy R., 1960. Set Topology, Chelsea Publishing Company, New York, USA, p.135.
- [6] Vaidyanathaswamy R., 1945. The localization theory in set topology, *Proceedings of the Indian Academy of Sciences*, 20: 51-61.
- [7] Janković D., Hamlett T.R., 1990. New topologies from old via ideals, *American Mathematic Monthly*, 97 (4): 295-310.
- [8] Açıkgöz A., Yüksel Ş., 2007. Some new sets and decompositions of AI-R continuity, α-I-continuity, continuity via idealization, Acta Mathematica Hungaria, 114: 79-89.
- [9] Açıkgöz A., Noiri T., Yüksel Ş., 2004. A decomposition of continuity in ideal topological spaces, *Acta Mathematica Hungaria*, 105 (4): 285-289.
- [10] Açıkgöz A., Noiri T., Yüksel Ş., 2004. On α-I-continuous and α-I-open functions, Acta Mathematica Hungaria, 105 (1-2): 27-37.
- [11] Sarkar D., 1997. Fuzzy ideal theory, fuzzy local function and generated fuzzy topology, *Fuzzy Sets and Systems*, 87: 117-23.
- [12] Mahmoud R.A., 1997. Fuzzy ideals, fuzzy local functions and fuzzy topology, *Journal Fuzzy* Mathematic Los Angels, 5 (1): 165-172.
- [13] Nasef A.A., Mahmoud R.A., 2002. Some topological applications via fuzzy ideals, Chaos, Solitons & Fractals, 13: 825-831.
- [14] Nasef A.A., Hatır E., 2009. On fuzzy pre-I-open sets and a decomposition of fuzzy I-continuity, *Chaos, Solitons & Fractals*, 40: 1185-1189.
- [15] Wong C.K., 1974. Fuzzy points and local properties of fuzzy topology, *Journal Mathematic Analysis Applied*, 46: 316-28.
- [16] Pau P.M., Liu Y.M., 1980. Fuzzy topology I, neighbourhood structure of a fuzzy point and Moore-Smith convergence, *Journal Mathematic Analysis Applied*, 76 (2): 571-599.
- [17] Chankraborty M.K., Ahsanullah T.M.G., 1991. Fuzzy topology on fuzzy sets and tolerance topology, *Fuzzy Sets and Systems*, 45: 189-97.
- [18] Yüksel Ş., Gürsel Çaylak E., Açıkgöz A., 2009. On fuzzy α-I-continuous and fuzzy α-I-open functions, *Chaos, Solitons and Fractal*, 41: 1691-1696.
- [19] Hatır E., Jafari S., 2007. Fuzzy semi-I-open sets and fuzzy semi-I-continuity via fuzzy idealization, Chaos, Solitans & Fractals, 34: 1220-1224.

Eser Gürsel Çaylak e-mail: esergursel@mynet.com Ahu Açıkgöz e-mail: ahuacikgoz@aksaray.edu.tr