

International Journal of Engineering and Innovative Research

http://dergipark.gov.tr/ijeir

ANALYSIS OF A SIMULATED FLAT PLATE SOLAR COLLECTOR SYSTEM USING SOLIDWORKS FLOW SIMULATOR INTERFACE

Eghosa Omo-Oghogho^{1*}^(b), Ejuvwedia Godwin Sadjere ¹^(b)

¹ Department of Mechanical Engineering, University of Benin, P.M.B 1154, Ugbowo, Nigeria.

*Corresponding Author: eghosa.omo-oghogho@uniben.edu (**Received:** 26.04.2020; **Revised**: 01.06.2020; **Accepted:** 15.06.2020)

ABSTRACT: One of the promising source of renewable energy is solar energy. Water heating by solar energy for domestic use is one of the most successful and feasible applications of solar energy. Other areas of application of solar energy include solar drying, electricity generation using photovoltaic cells, solar cooling and refrigeration, solar still (or solar distillation) and solar cooking. In this study flat plate solar collector was simulated, a temperature of $58^{\circ}C$ and an efficiency of 51% was achieved respectively. Solar radiation being abundantly present in Nigeria is one area of focus among the renewable energy resources and this can be harnessed for heating water for both domestic and industrial purposes.

Keywords: Simulation, Solid works, Solar Collector, Flow Simulator, Ambient Condition.

1. INTRODUCTION

Solar flat plate collector is a type of solar thermal systems, it provides environmental friendly heat for industrial water heating, commercial building, space heating, hospital water, household water and the heating of swimming pools. Such systems collect the suns energy to heat a fluid. The heated water is then stored in a tank similar to a convectional gas or electric water tank and some systems use an electric pump to circulate the fluid through the collectors [1].

The analysis of thermal collectors is able to be done experimentally and by simulating the heat transfer phenomena within the system. Sopian et al. [2] conducted an experimental study on the thermal performance of a solar flat plate collector having a wooden case, no glass cover (unglazed) and a solar water heater integrated with a storage system.

Several studies which compare experimentally results with Computational Fluid Dynamics (CFDs) results are shown by [3, 4].

Farahat et al [5] and Chamoli [6] used MATLAB to optimize a flat plate collector considering its exergy analysis in order to improve the efficiency of the collectors by decreasing the losses. Garg and Rani [7] calculated the overall heat loss coefficient and the collector efficiency under different conditions such as the absence of cover, with single and double glazing under different ambient conditions, tilt angles, wind speeds, emissivity of both glass cover and absorber plate.

Pillai and Agarwal [8] discussed the influence of various parameters on the efficiency of solar collectors and concluded that at low solar insolation in the range of 200-600 W/m² with double glazed collectors are superior to single glazed collectors. Anderson et al [9] examined the performance by changing the colors of solar collector. Based on the transmittance-absorptance

result of various colored collectors the hypothetical performances of these collectors were calculated using the Hottel-Whillier-Bliss 1-D steady-state model given by Duffie and Beckmann [10].

This research helps to analyze and simulate the flat plate solar collector, in this study the computational tool is SolidWorks which gives many design opportunities. The design of the collector and the thermal simulation were made in the same environment by adding flow simulation tab.

2. MATERIALS AND METHOD

This simulation was done using Solidworks as a simulation tool. The initial conditions, boundary conditions and the control condition are shown in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and were selected based on the thermodynamic analysis done.

Flow Simulator software was the subprogram attached to Solidworks for the simulation of the flat plate solar collector. The initial/ambient conditions were selected based on the design consideration and parameters gotten from the thermodynamic analysis of the collector system.

Table 2, 3 and 4 are the ambient condition selected on the Flow Simulator bearing in mind the design and thermodynamic parameters gotten. Table 5, 6, 7, 8, 9, 10 are the control platforms on the Flow Simulator after the ambient conditions have been meet.

Thermodynamic parameters	Static Pressure: 101325.00 Pa Temperature: 299.1 K
Velocity parameters	Velocity vector Velocity in X direction: 0.500 m/s Velocity in Y direction: 0.020 m/s Velocity in Z direction: 0.020 m/s
Solid parameters	Default material: Copper Initial solid temperature: 303.00 K Radiation Transparency: Opaque
Turbulence parameters	Turbulence intensity and length Intensity: 2.00 % Length: 0.007 m

Table 1. Initial conditions selected for the ambient state.
Ambient conditions generated from Solidworks

 Table 2 Initial conditions selected for inlet mass flow rate.

 Inlet Mass Flow 1

Infect Wass I fow 1				
Туре	Inlet Mass Flow			
Faces	Face<2> at Plate and tubes-1			
Coordinate system	Face Coordinate System			
Reference axis	Х			
	Flow vectors direction: Normal to face			
Flow parameters	Mass flow rate: 0.014 kg/s			
	Fully developed flow: No			
	Inlet profile: 0			
Thermodynamic parameters	Temperature: 299.1K			
	Turbulence intensity and length			
Turbulence parameters	Intensity: 2.00 %			
	Length: 0.007 m			
Boundary layer parameters	Boundary layer type: Turbulent			

Туре	Static Pressure			
Faces	Face<6> at Plate and tubes-1			
Coordinate system	Face Coordinate System			
Reference axis	X			
Thermodynamic parameters	Static pressure: 101325.00 Pa			
	Temperature: 299.1 K			
Turbulence parameters	Turbulence intensity and length			
	Intensity: 2.00 %			
	Length: 0.007 m			
Boundary layer parameters	Boundary layer type: Turbulent			

 Table 3. Initial conditions selected for static pressure conditions.

 Static Pressure 1

Table 4. Control conditions for temperature (1).

GG AV Temperature (Fluid) I				
Туре	Global Goal			
Goal type	Temperature (Fluid)			
Calculate	Average value			
Coordinate system	Global coordinate system			
Use in convergence	On			

Table 5. Control conditions for temperature (2).GG Av Temperature (Fluid) 2

Туре	Global Goal
Goal type	Temperature (Fluid)
Calculate	Average value
Coordinate system	Global coordinate system
Use in convergence	On

Table 6. Control conditions for temperature (3). GG Δy Temperature (Eluid) 3

GG Av Temperature (Fluid) 3				
Туре	Global Goal			
Goal type	Temperature (Fluid)			
Calculate	Average value			
Coordinate system	Global coordinate system			
Use in convergence	On			

Table 7. Control conditions for mass flow rate.GG Mass Flow Rate 1

Туре	Global Goal
Goal type	Mass Flow Rate
Coordinate system	Global coordinate system
Use in convergence	On

Table 8. Control conditions for net radiant flux (solar).GG Av Net Radiant Flux (solar) 1

Туре	Global Goal
Goal type	Net Radiant Flux (solar)
Calculate	Average value
Coordinate system	Global coordinate system
Use in convergence	On

GG Av Temperature (Solid) I				
Туре	Global Goal			
Goal type	Temperature (Solid)			
Calculate	Average value			
Coordinate system	Global coordinate system			
Use in convergence	On			

Table 9. Control conditions for the temperature (solid).

Table 9 presents the selected flat plate solar collector size on the design interface on Solidworks using the Flow Simulator program.

•					
	X min	-0.483 m			
	X max	1.265 m			
	Y min	-0.275 m			
	Y max	1.082 m			
	Z min	-1.282 m			
	Z max	0.398 m			

 Table 10. Size of computational domain.

The basic mesh dimensions applicable to the X, Y and Z coordinates of the flat plate solar collector was presented in Table 10. This was necessary in the simulation of the collector system, coarse mesh with large elements require less computation time which may result to inaccurate results. Mesh convergence obtained on X, Y and Z coordinates were 17, 12 and 17. The process was followed by mesh refinement which resolved the model with finer mesh sizes for accurate results.

Та	bl	e	11.	Basic	Mesh	Dim	ensions.
	-	-	-				

Number of cells in X	17
Number of cells in Y	12
Number of cells in Z	17

The mesh properties employed in modelling of the flat plate solar collector are presented in Table 11. This shows the values of the total cell count, fluid cells, solids cells, etc as shown in Table 12. This mesh analysis was gotten after using the mesh dimensions and the sizes of the computational domain.

Table 12.Analysis of Mesh.				
Total cell count	79740			
Fluid cells	20139			
Solid cells	13480			
Partial cells	46121			
Trimmed cells	0			
Heat transfer analysis	Heat conduction in solids			
Flow type	Laminar and turbulent			
Time- dependent analysis	Off			
Gravity	On			
Radiation	On			
Humidity	50.0%			
Default Wall Roughness	1.0 micrometer			

3. RESULTS AND DISCUSSION

The collector system where simulated using Flow Simulator on Solidworks interface, the input parameters were estimated from system design and thermodynamic analysis and some of the input parameters are designed conditions set by the Flow Simulator considering ambient and boundary conditions.

Table 13. Input/output parameters.				
Name	Input	Output		
Pressure [Pa]	101291.63	107615.07		
Temperature [K]	299.08	331		
Density (Fluid) [kg/m^3]	1.15	995.74		
Velocity [m/s]	0	6.790		
Velocity (X) [m/s]	-4.487	5.470		
Velocity (Y) [m/s]	-5.760	2.214		
Velocity (Z) [m/s]	-4.716	3.292		
Mass Fraction of Steam []	0	0.0041		
Mass Fraction of Air []	0	0.9959		
Mass Fraction of Water []	0	1.0000		
Volume Fraction of Water []	0	1.0000		
Temperature (Fluid) [K]	299.08	315.56		
Temperature (Solid) [K]	299.13	327.88		
Mass Fraction of Condensate []	0	0		
Mass Fraction of Vapour []	0	0		
Volume Fraction of Vapour []	0	0		
Density (Solid) [kg/m^3]	2600.00	8960.00		
Mach Number []	0	0.02		
Vorticity [1/s]	0.031	1037.197		
Shear Stress [Pa]	0	1.80		
Relative Pressure [Pa]	-33.37	6290.07		
Prandtl Number []	0.6956699	5.8635293		
Efficiency [%]	0	0.51		
Relative Humidity [%]	0	20.02		
Heat Transfer Coefficient [W/m^2/K]	0.001	6620.796		
Surface Heat Flux [W/m^2]	-520.709	18453.624		
Heat Flux [W/m^2]	0.032 1450886.			
Overheat above Melting Temperature [K]	-1053.927	-765.702		

Table 13 shows the input parameters and the output parameters used during the simulation of the flat plate solar collector on the Solidworks interface. The output parameters are then compared with results gotten from the collector thermodynamic analysis results, which is then validated using the developed model with the experimental results.

Figure 1. Glass Temperature after Simulation.

Figure 1 indicates that the glass did not lose much heat to the atmosphere, it acts as a thermal cover to protect the flat plate solar collector against heat loss. The blue colour around the mid area indicates that there was no heat loss around that region, as it moves towards the edge of the collector it shows a mixture of colour showing little heat loss at the edge.

Figure 2. Plate Temperature after Simulation.

Figure 2 indicates that the plate temperature after simulation shows a mixture of colours and also show red which is the colour code form the maximum temperature achieved at the inlet temperature of $299.13^{\circ}C$, it acts as a thermal cover to protect the flat plate solar collector against heat loss. This means the absorber plate efficiently passed the heat to the heat pipe.

Day	Inlet	10am	11am	12:00NOO	1:00PM	2:00PM	3:00PM
-	temp (K)	Outlet	Outlet	N outlet	outlet	outlet	outlet
		Temp (K)					
17th Jan	295	305	313	321	324	326	328
16th Feb	295	303	310	318	320	322	325
16th Mar	295	303	310	316	319	322	324
15th Apr	295	300	304	310	305	304	304
15th May	295	300	303	302	305	302	302
11th Jun	295	297	302	299	297	300	299
17th Jul	295	297	301	300	299	297	301
16th Aug	295	299	302	306	308	310	310
15th Sep	295	302	302	305	310	312	315
15th Oct	295	304	308	318	320	322	322
14th Nov	295	304	310	318	318	324	326
10th Dec	295	305	310	319	322	325	330

Table 14. Temperatures gotten from simulation without preheat.

Table 14 shows the temperature that was gotten from the simulation, the inlet water was allowed to flow into the system from 10am to 3pm. At an interval of one hour, it was also observed that the temperature was highest for January, December and lowest for June, July respectively.

Day	Inlet temp (K)	12:00NOON outlet temp (K)	1:00PM outlet temp	2:00PM outlet temp	3:00PM outlet temp
			(K)	(K)	(K)
17th Jan	295	343	343	344	348
16th Feb	295	338	338	339	341
16th Mar	295	333	332	333	333
15th Apr	295	327	325	326	323
15th May	295	322	322	320	318
11th Jun	295	320	319	317	314
17th Jul	295	321	320	319	316
16th Aug	295	325	324	324	322
15th Sep	295	330	330	330	330
15th Oct	295	336	336	337	338
14th Nov	295	341	342	343	346
10th Dec	295	344	344	346	350

 Table 15. Temperatures gotten from simulation with preheat.

Table 15 shows the temperature that was gotten after preheating the flat plate solar collector from 9am to 12noon. It shows an increase in temperature when compared to the temperatures gotten without preheating.

Figure 3. A graph of temperature against days in the month.

The graph shown in figure 3 indicates that the outlet temperatures increases in the beginning of the year with the first few months (dry season) and it goes down towards the middle of the year (raining season) and rises again towards the last few months of the year (dry season).

4. CONCLUSION

The flat plate solar collector was simulated using SolidWorks, an output temperature of $58^{\circ}C$ and an efficiency of 51% was achieved respectively. The obtained temperature can be used for domestic and some industrial applications. The analysis was done for both preheat and without preheat, preheat occurs when the flat plate collector system is place outside under open sky for direct contact with the sun for some hours before passing water through the system. The condition for without preheat involves passing water from the supply tank into the collector without allowing the flat plate solar collected to be heated before opening the water supply tank.

REFERENCES

- [1] Dimitrios P. (2001): Solar water heating systems study reliability, quantitative survey and life cost method, MSC. Thesis, Department of Mechanical Engineering, University of Strathelyde in Glasgow.
- [2] Sopian, K., Syahri, M., Abdullah, S., Othman, M.Y. and B. Yatim, B (2004)" Performance of a non-metallic unglazed solar water heater with integrated storage system", Renewable Energy, volume 29: pp 1421–1430.
- [3] Selmi, M., Al-Khawaja, M.J., and Marafia, A. (2008) "Validation of CFD simulation for flat plate solar energy collector" Renewable Energy, volume 33: pp 383-387.
- [4] Vettrivel, H and Mathiaragan, P (2013) Experimental Study on a Flat Plate Solar Collector, International Journal of Mechanical Engineering and Research, volume 3(6): pp 641-646.
- [5] Farahat, S., Sarhaddi, F. and Ajam H., (2009) "Exergetic optimization of flat plate solar collectors", Renewable Energy, volume 34, pp1169–1174.
- [6] Chamoli, S., (2013) Exergy analysis of a flat plate solar collector, Journal energy South. Afr., vol.24 no.3 Cape Town.
- [7] Garg, H.P. and Rani, U. (2016) Loss Coefficients from Solar Flat-Plate applied Energy, volume 7, pp 109 117.
- [8] Agarwal, V.K. and Larson D.C. (200) Calculation of top heat loss coefficient of a flat-plate solar collector. Solar Energy, volume 27, pp 69-71.
- [9] Anderson T., Duke M., and Carson J. (2010) The effect of color on the thermal performance of building integrated solar collectors, Solar Energy Materials and solar cells, volume 94, pp 350-354.
- [10] Duffie J. and Beckmann W. (2013) solar engineering of thermal processes, 3rd edition (Wiley Interscience, New York).