Conference Proceeding Science and Technology, 3(1), 2020, 19-23

Conference Proceeding of 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020)

Linear Codes over the Ring $\mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$

Basri Çalışkan*

Department of Mathematics, Faculty of Science and Arts, Osmaniye Korkut Ata University, Osmaniye, Turkey, ORCID:0000-0003-0512-4208 * Corresponding Author E-mail: bcaliskan@osmaniye.edu.tr

Abstract: In this paper, we introduce the ring $R = \mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$ where $u^2 = u, v^2 = v, uv = vu = 0$ over which the linear codes are studied. it's shown that the ring $R = \mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$ is a commutative, characteristic 8 ring with $u^2 = u$, $v^2 = v$, uv = vu = 0. Also, the ideals of $\mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$ are found. Moreover, we define the Lee distance and the Lee weight of an element of R and investigate the generator matrices of the linear code and its dual.

Keywords: Duality, Generator matrix, Lee weight, Linear codes over rings.

1 Introduction

In algebraic coding theory, the most important class of codes is the family of linear codes. A linear code of length n over \mathbb{F}_q is a linear subspace of the vector space \mathbb{F}_q^n where \mathbb{F}_q is the finite field with q elements. A linear code of length n over a ring R is an R-submodule of \mathbb{R}^n .

Codes over finite fields have been studied by many researchers. After the appearance of [1], a lot of researchers have considered codes over \mathbb{Z}_4 . Later, these studies were mostly generalized to several new families of rings such as finite chain rings and rings of the form $\mathbb{F}_2/\langle u^m \rangle$ [2]. There is a very interesting connection between \mathbb{Z}_4 and $\mathbb{F}_2 + u\mathbb{F}_2$. Both are commutative rings of size 4, they are both finite-chain rings. Some of the main differences between these two rings are that their characteristic is not the same, Gray images of \mathbb{Z}_4^2 -codes are usually not linear while the Gray images of $\mathbb{F}_2 + u\mathbb{F}_2$ -codes are linear.

Inspired by this similarity (and difference), in [3], Yildiz and Karadeniz considered linear self dual codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ and proved the MacWilliams identities for the weight enumerators of the codes involved. The authors defined a linear Gray map from $\mathbb{Z}_4 + u\mathbb{Z}_4$ to \mathbb{Z}_4^2 and a non-linear Gray map from $\mathbb{Z}_4 + u\mathbb{Z}_4$ to $(\mathbb{F}_2 + u\mathbb{F}_2)^2$, and used them to successfully construct formally self-dual codes over \mathbb{Z}_4 and good non-linear codes over $\mathbb{F}_2 + u\mathbb{F}_2$.

In [4] the authors derived the certain lower and upper bounds on the minimum distances of the binary images in terms of the parameters of the $\mathbb{Z}_4 + u\mathbb{Z}_4$ codes. They performed same analogous procedure on the ring $\mathbb{Z}_8 + u\mathbb{Z}_8$, where $u^2 = 0$, which is a commutative local Frobenius non-chain ring of order 64. Then, the method was generalized to the class of rings $\mathbb{Z}_{2^r} + u\mathbb{Z}_{2^r}$, where $u^2 = 0$, for any positive integer r. In [7] the linear codes over the ring $\mathbb{Z}_4 + u\mathbb{Z}_4 + v\mathbb{Z}_4 + uv\mathbb{Z}_4$ where $u^2 = u$, $v^2 = v$, uv = vu are introduced. Motivated by the works in [4] and [7], in this paper, the ring $R = \mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$ where $u^2 = u$, $v^2 = v$, uv = vu = 0 is introduced and

the Lee distance and the Lee weight of an element of R are defined, and the generator matrices of the linear code and its dual are investigated.

2 The Ring $R = \mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$

The ring $R = \mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$ is a commutative, characteristic 8 ring with $u^2 = u$, $v^2 = v$, uv = vu = 0. It can be also viewed as the quotient ring $\frac{\mathbb{Z}_8[u,v]}{\langle u^2 - u, v^2 - v, uv = vu \rangle}$. Let r be any element of R, which can be expressed uniquely as r = a + ub + vc, where $a, b, c \in \mathbb{Z}_8$. Let $e_1 = 1 - u - v$, $e_2 = u$, $e_3 = v$, then e_1, e_2, e_3 are pairwise orthogonal non-zero idempotent elements over R, and the unit element

1 can be decomposed as $1 = e_1 + e_2 + e_3$. By the Chinese Remainder Theorem, we have $R = e_1R + e_2R + e_3R$, and r can be expressed uniquely as $r = e_1r_1 + e_2r_2 + e_3r_3$, where $r_1 = a$, $r_2 = a + b$, $r_3 = a + c$.

The ring R has the following properties:

- The finite ring R is with 512 elements.
- Its units are given by

 $S = \{a + ub + vc \mid a, \overline{a + b}, \overline{a + c} \in \{1, 3, 5, 7\}\}.$

• It has a total of 64 ideals. Let $S_1 = \{1, 3, 5, 7\}$, $S_2 = \{2, 6\}$ and $S_3 = \{0, 2, 4, 6\}$. The trivial ideals are

 $\langle 0 \rangle = \{0\}$ and $\langle r \rangle$, where $r \in S$.

The other non-trivial ideals of R is given the last page of the paper.

- *R* is a principal ideal ring.
- *R* is not a finite chain ring.

ISSN: 2651-544X http://dergipark.gov.tr/cpost **Definition 1.** A linear code C of length n over the ring R is a R-submodule of \mathbb{R}^n . A codeword is denoted as $\mathbf{c} = (c_1, c_2, \dots, c_n)$.

The Lee weights of $0, 1, 2, 3 \in \mathbb{Z}_4$ are defined by $w_L(0) = 0$, $w_L(1) = 1$, $w_L(2) = 2$ and $w_L(3) = 1$. In the case of $\mathbb{Z}_4 + u\mathbb{Z}_4 + v\mathbb{Z}_4$, the Lee weight was defined in [5] as

$$w_L(d) = w_L(a, a+b, a+c)$$

where $a, b, c \in \mathbb{Z}_4$. A similar technique is adopted here.

The Lee weight of a vector $\mathbf{v} = (v_0, v_1, \dots, v_{n-1}) \in (\mathbb{Z}_8)^n$ was defined as

$$\sum_{i=0}^{n-1} \min \left\{ |v_i|, |8 - v_i| \right\}$$

in [6].

Let r = a + ub + cv be an element of R, then we define the Lee weight of r as

$$w_L(r) = w_L\left(a, \overline{a+b}, \overline{a+c}\right)$$

where $a, b, c \in \mathbb{Z}_8$. The Lee weight of a vector $\mathbf{c} = (c_0, c_1, \dots, c_{n-1}) \in \mathbb{R}^n$ to be the sum of Lee weights its components:

$$w_L(r) = w_L\left(a, \overline{a+b}, \overline{a+c}\right) = w_L(a) + w_L(\overline{a+b}) + w_L(\overline{a+c}).$$

For any elements $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the Lee distance between \mathbf{x} and \mathbf{y} is given by

$$d_L(\mathbf{x} - \mathbf{y}) = w_L(\mathbf{x} - \mathbf{y})$$

The minimum Lee distance defined as

$$d_L(C) = \min \left\{ d_L(\mathbf{x} - \mathbf{y}) : \mathbf{x} \neq \mathbf{y}, \text{ for all } \mathbf{x}, \mathbf{y} \in C \right\}$$

Example 1. Let r = 2 + 6u + v and $r' = 1 + u + 4v \in R$. The Lee weights of r and r' as follows

$$w_L(r) = w_L\left(2, \overline{2+6}, \overline{2+1}\right) = w_L(2, 0, 3) = 5,$$

$$w_L(r') = w_L(1, \overline{1+1}, \overline{1+4}) = w_L(1, 2, 5) = 6.$$

The Lee distance between r and r' as follows

$$d_L(r - r') = w_L(r - r') = w_L(1 + 5u + 5v) = w_L(1, \overline{1 + 5}, \overline{1 + 5}) = 5$$

Let $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$, $\mathbf{y} = (y_0, y_1, \dots, y_{n-1})$ be two vectors in \mathbb{R}^n . The inner product between \mathbf{x} and \mathbf{y} is defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_0 y_0 + x_1 y_1 + \ldots + x_{n-1} y_{n-1}$$

where the operation are performed in the ring R.

Definition 2. Let C be a linear code over the ring R of length n, then we define the dual of C as

$$C^{\perp} = \left\{ \mathbf{y} \in \mathbb{R}^n | \langle \mathbf{x}, \mathbf{y} \rangle = 0, \text{ for all } \mathbf{x} \in C \right\}$$

Note that from the definition of inner product, it is clear that C^{\perp} is also a linear code over \mathbb{R}^n . A code C is said to be self-orthogonal if $C \subseteq C^{\perp}$, and self-dual if $C = C^{\perp}$.

3 Linear Codes over $\mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$

Let C be a linear code of length n over R, we denote C_i $(1 \le i \le 3)$ as:

$$C_{1} = \left\{ \mathbf{a} \in \mathbb{Z}_{8}^{n} \mid \exists \mathbf{b}, \mathbf{c} \in \mathbb{Z}_{8}^{n}, (1 - u - v)\mathbf{a} + u\mathbf{b} + v\mathbf{c} \in C \right\}$$

$$C_{2} = \left\{ \mathbf{b} \in \mathbb{Z}_{8}^{n} \mid \exists \mathbf{a}, \mathbf{c} \in \mathbb{Z}_{8}^{n}, (1 - u - v)\mathbf{a} + u\mathbf{b} + v\mathbf{c} \in C \right\}$$

$$C_{3} = \left\{ \mathbf{c} \in \mathbb{Z}_{8}^{n} \mid \exists \mathbf{a}, \mathbf{d} \in \mathbb{Z}_{8}^{n}, (1 - u - v)\mathbf{a} + u\mathbf{b} + v\mathbf{c} \in C \right\}$$

where C_1, C_2 and C_3 are linear codes over \mathbb{Z}_8^n of length n. And C can be uniquely expressed as

$$C = (1 - u - v)C_1 + uC_2 + vC_3.$$

According to the direct sum decomposition in above, we have $|C| = |C_1| |C_2| |C_3|$.

Theorem 1. Let C be a linear code of length n over R, then

1. $C = (1 - u - v)C_1 + uC_2 + vC_3$, where C_i $(1 \le i \le 3)$ is a linear code of length n over \mathbb{Z}_8 , and the direct sum decomposition is unique. 2. $C^{\perp} = (1 - u - v)C_1^{\perp} + uC_2^{\perp} + vC_3^{\perp}$, where C_i^{\perp} is the dual code of C_i $(1 \le i \le 3)$. 3. C is a self-orthogonal code if and only if C_i $(1 \le i \le 3)$ is a self-orthogonal code over \mathbb{Z}_8 . Furthermore, C is a self-dual code if and only if C_i $(1 \le i \le 3)$.

if C_i $(1 \le i \le 3)$ is a self-dual code over \mathbb{Z}_8 .

Proof: 1. Let $\mathbf{r} = (r^{(0)}, r^{(1)}, \dots, r^{(n-1)}) \in \mathbb{R}^n$, where $r^{(i)} = (1 - u - v)r_{i1} + ur_{i2} + vr_{i3}$ and $i = 0, 1, \dots, n-1$. It is clear that 1 - u - v, u and v are pairwise orthogonal non-zero idempotent elements over \mathbb{R} , then \mathbf{r} can be uniquely expressed as $\mathbf{r} = (1 - u - v)\mathbf{r}_1 + u\mathbf{r}_2 + v\mathbf{r}_3$, where $\mathbf{r}_j = (r_{0j}, r_{1j}, \dots, r_{n-1,j}) \in \mathbb{Z}_8^n$ and j = 1, 2, 3. Since a linear code C over \mathbb{R} is a subgroup of \mathbb{R}^n , then C can be uniquely expressed as $C = (1 - u - v)C_1 + uC_2 + vC_3$. 2. Let $D = (1 - u - v)C_1^{\perp} + uC_2^{\perp} + vC_3^{\perp}$, for any $\mathbf{d} = (1 - u - v)\mathbf{a} + u\mathbf{b} + v\mathbf{c} \in C$, $\mathbf{d}' = (1 - u - v)\mathbf{a}' + u\mathbf{b}' + v\mathbf{c}' \in D$, where $\mathbf{a}, \mathbf{b}, \mathbf{c} \in C$ and $\mathbf{a}', \mathbf{b}', \mathbf{c}' \in D$. Then we have

$$\mathbf{d} \cdot \mathbf{d}' = (1 - u - v)\mathbf{a}\mathbf{a}' + u\mathbf{b}\mathbf{b}' + v\mathbf{c}\mathbf{c}'.$$

Hence, $\mathbf{d} \cdot \mathbf{d}' = 0$, so we have $D \subseteq C^{\perp}$. Moreover, the ring R is Frobenius ring [8], so $|C| |C^{\perp}| = |R|^n$ [8]. Thus

$$|D| = \left|C_1^{\perp}\right| \left|C_2^{\perp}\right| \left|C_3^{\perp}\right| = \frac{8^n}{|C_1|} \frac{8^n}{|C_2|} \frac{8^n}{|C_3|} = \frac{R^n}{|C|} = \left|C^{\perp}\right|,$$

therefore we have $D = C^{\perp}$.

3. According to (1) and (2), we have $C \subseteq C^{\perp}$ if and only if $C_i \subseteq C_i^{\perp}$ $(1 \le i \le 3)$ is a self-orthogonal code over \mathbb{Z}_8 . Similarly, C is a self-dual code if and only if $C_i \subseteq C_i^{\perp}$ $(1 \le i \le 3)$ is a self-dual code over \mathbb{Z}_8 .

Corollary 1. There are self-dual codes of arbitrary lengths over R.

Proof: From Theorem 1, there exists a self-dual code over R if and only if there exists a self-dual code over \mathbb{Z}_8 . Clearly, there exists a self-dual code over \mathbb{Z}_8 generated by

$$\left(\begin{array}{cc}4\\&\ddots\\&&4\end{array}\right)_{n\times n}.$$

We give the generator matrix of the linear codes over R. Let $C = (1 - u - v)C_1 + uC_2 + vC_3$, for C_i $(1 \le i \le 3)$ is a linear code over \mathbb{Z}_8 , then C_i is permutation-equivalent to a code generated by

$$G_i = \begin{pmatrix} I_{k_{i0}} & A_i & B_i & T_i \\ 0 & 2I_{k_{i1}} & 2D_i & 2E_i \\ 0 & 0 & 4I_{k_{i2}} & 4F_i \end{pmatrix} [9].$$

Thus, C is permutation-equivalent to a linear code generated by

$$G = \begin{pmatrix} (1-u-v)G_1 \\ uG_2 \\ vG_3 \end{pmatrix}.$$

The dual code C_i^{\perp} of the \mathbb{Z}_8 -linear code C_i has the generator matrix

$$H_{i} = \begin{pmatrix} -T_{i}^{t} + E_{i}^{t}A_{i}^{t} + F_{i}^{t}B_{i}^{t} - F_{i}^{t}D_{i}^{t}A_{i}^{t} & -E_{i}^{t} + F_{i}^{t}D_{i}^{t} & -F_{i}^{t} & I_{n-k_{i0}-k_{i1}-k_{i2}} \\ -2B_{i}^{t} + 2D_{i}^{t}A_{i}^{t} & -2D_{i}^{t} & 2I_{k_{i2}} & 0 \\ -4A_{i}^{t} & 4I_{k_{i1}} & 0 & 0 \end{pmatrix}$$

[9]. Then C^{\perp} is permutation-equivalent to a linear code generated by

$$H = \begin{pmatrix} (1-u-v)H_1 \\ uH_2 \\ vH_3 \end{pmatrix}.$$

H is called the party-check matrix of C.

Example 2. Let $C = (1 - u - v)C_1 + uC_2 + vC_3$, where C_1, C_2 and C_3 are linear codes over \mathbb{Z}_8^2 generated by

$$G_1 = (\begin{array}{cc} 4 & 0 \end{array}), \ G_2 = (\begin{array}{cc} 4 & 4 \end{array}), \ G_3 = (\begin{array}{cc} 4 & 0 \end{array}).$$

Then C is generated by

$$G = \left(\begin{array}{rrr} 4 - 4u - 4v & 0\\ 4u & 4v\\ 4v & 0 \end{array}\right).$$

The dual codes C_1, C_2 and C_3 have the generator matrix

$$H_1 = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, H_2 = \begin{pmatrix} 7 & 1 \\ 2 & 0 \end{pmatrix}, H_3 = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}.$$

Then the dual code C^{\perp} is generated by

$$H = \begin{pmatrix} 0 & 1 - u - v \\ 2 - 2u - 2v & 0 \\ 7u & u \\ 2u & 0 \\ 0 & v \\ 2v & 0 \end{pmatrix}.$$

	$\{a + ub + vc \mid a = b = 0, c = 4\}$	$\{a + ub + vc \mid a = c = 0, b = 4\}$
ideals with 2 elements	$\{a + ub + vc \mid b = c = 0, a = 4\}$	$\{a + ub + vc \mid a = b = 4, c = 0\}$
	$\{a + ub + vc \mid a = c = 4, b = 0\}$	$\{a + ub + vc \mid b = c = 4, a = 0\}$
ideals with 4 elements	$\{a + ub + vc \mid a = b = 0, c \in S_2\}$	$\{a + ub + vc \mid a = c = 0, b \in S_2\}$
	$[a + ub + vc b - c - b, u \in S_2]$	$\{a + ub + vc \mid a = c = 0, b \in S_1\}$
	$\{a + ub + vc \mid b = c = 0, a \in S_1\}$	$\{a + ub + vc \mid a = 0, b = 4, c \in S_2\}$
ideals with 8 elements	$\{a + ub + vc \mid a = 0, c = 4, b \in S_2\}$	$\left\{a + ub + vc \mid a \in S_2, \overline{a + b} = 0, \overline{a + c} = 4\right\}$
	$\left\{a + ub + vc \mid a \in S_2, \overline{a+b} = 4, \overline{a+c} = 0\right\}$	$\left\{a + ub + vc \mid a = 4, \overline{a + b} \in S_2, \overline{a + c} = 0\right\}$
	$\left\{a+ub+vc \mid a=4, \overline{a+b}=0, \overline{a+c} \in S_2\right\}$	$\left\{a + ub + vc \mid a = \overline{a + b} = \overline{a + c} = 4\right\}$
	$\{a + ub + vc \mid a = 0, b \in S_1, c = 4\}$	$\{a + ub + vc \mid a = 0, b = 4, c \in S_1\}$
	$\{a + ub + vc \mid a = 0, b, c \in S_2\}$	$\left\{a + ub + vc \mid a = \overline{a + b} = 4, c \in S_2\right\}$
ideals with 16 elements	$\left\{a + ub + vc \mid a = \overline{a + c} = 4, b \in S_2\right\}$	$\left\{a + ub + vc \mid a \in S_2, \overline{a + b} = \overline{a + c} = 4, \right\}$
	$\left\{a + ub + vc \mid a = \overline{a + b} \in S_2, \overline{a + c} = 0, \right\}$	$\left\{a + ub + vc \mid a = \overline{a + c} \in S_2, \overline{a + b} = 0\right\}$
	$\left\{a+ub+vc \mid a=4, \overline{a+b} \in S_1, \overline{a+c}=0\right\}$	$\left\{a+ub+vc \mid a=4, \overline{a+b}=0, \overline{a+c} \in S_1\right\}$
	$\left\{a + ub + vc \mid a \in S_1, \overline{a + b} = 4, \overline{a + c} = 0\right\}$	$\left\{a + ub + vc \mid a \in S_1, \overline{a + b} = 0, \overline{a + c} = 4\right\}$
ideals with 32 elements	$\left\{a + ub + vc \mid a = 0, \overline{a + b} \in S_1, \overline{a + c} \in S_2\right\}$	$\left\{a+ub+vc \mid a=0, \overline{a+b} \in S_2, \overline{a+c} \in S_1\right\}$
	$\left\{a + ub + vc \mid a \in S_1, \overline{a + b} \in S_2, \overline{a + c} = 0\right\}$	$\left\{a + ub + vc \mid a \in S_1, \overline{a + b} = 0, \overline{a + c} \in S_2\right\}$
	$\left\{a + ub + vc \mid a \in S_1, \overline{a + b} = \overline{a + c} = 4\right\}$	$\left\{a + ub + vc \mid a \in S_2, \overline{a + b} = 0, \overline{a + c} \in S_1\right\}$
	$\left\{a + ub + vc \mid a \in S_2, \overline{a + b} \in S_1, \overline{a + c} = 0\right\}$	$\left\{a + ub + vc \mid a = \overline{a + b} \in S_2, \overline{a + c} = 4\right\}$
	$\left\{a + ub + vc \mid a = \overline{a + c} \in S_2, \overline{a + b} = 4\right\}$	$\left\{a+ub+vc \mid a=4, \overline{a+b}=\overline{a+c} \in S_2, \right\}$
	$\left\{a + ub + vc \mid a = \overline{a + b} = 4, \overline{a + c} \in S_1, \right\}$	$\left\{a + ub + vc \mid a = \overline{a + c} = 4, \overline{a + b} \in S_1, \right\}$
ideals with 64 elements	$\left\{a + ub + vc \mid a = 0, \overline{a + b} = \overline{a + c} \in S_1\right\}$	$\left\{a + ub + vc \mid a = \overline{a + b} \in S_1, \overline{a + c} = 0\right\}$
	$\left\{a + ub + vc \mid a \in S_1, \overline{a + b} \in S_2, \overline{a + c} = 4\right\}$	$\left\{a + ub + vc \mid a \in S_2, \overline{a + b} \in S_1, \overline{a + c} = 4\right\}$
	$\left\{a + ub + vc \mid a = 4, \overline{a + b} \in S_1, \overline{a + c} \in S_2\right\}$	$\left\{a + ub + vc \mid a = 4, \overline{a + b} \in S_2, \overline{a + c} \in S_1\right\}$
	$\left\{a + ub + vc \mid a = \overline{a + b} = \overline{a + c} \in S_2\right\}$	$\left\{a + ub + vc \mid a = \overline{a + c} \in S_1, \overline{a + b} = 0\right\}$
	$\left\{a + ub + vc \mid a \in S_1, \overline{a + b} = 4, \overline{a + c} \in S_2\right\}$	$\left\{a + ub + vc \mid a \in S_2, \overline{a + b} = 4, \overline{a + c} \in S_1\right\}$
ideals with 128	$\left\{a + ub + vc \mid a = 4, \overline{a + b} = \overline{a + c} \in S_1\right\}$	$\left\{a + ub + vc \mid a = \overline{a + b} \in S_1, \overline{a + c} = 4\right\}$
elements	$\left\{a + ub + vc \mid a = \overline{a + c} \in S_1, \overline{a + b} = 4\right\}$	$\left\{a + ub + vc \mid a \in S_2, \overline{a + b} = \overline{a + c} \in S_1\right\}$
	$\left\{a + ub + vc \mid a = \overline{a + c} \in S_2, \overline{a + b} \in S_1\right\}$	$\left\{a + ub + vc \mid a \in S_1, \overline{a + b} = \overline{a + c} \in S_2\right\}$
ideals with 256	$\left\{a + ub + vc \mid a = \overline{a + b} \in S_1, \overline{a + c} \in S_3\right\}$	$\left\{a+ub+vc \mid a = \overline{a+c} \in S_1, \overline{a+b} \in S_3\right\}$
ciemento	$\left\{ a + ub + vc \mid a \in S_2, \overline{a + b} = \overline{a + c} \in S_1 \right\}$	

Table 1 Ideals of R

4 Conclusion

In this work, it's shown that the ring $R = \mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$ is a commutative, characteristic 8 ring with $u^2 = u$, $v^2 = v$, uv = vu = 0. Moreover, the ideals of $\mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$ are found and the Lee weight is defined on $\mathbb{Z}_8 + u\mathbb{Z}_8 + v\mathbb{Z}_8$. In the last part the generator matrices of the linear code and its dual are obtained.

5 References

1 A.R. Hammons, V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, The Z₄-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301–319.

- 2
- S.T.Dougherty, P. Gaborit, M. Harada, P.Solé, *Type II codes over* $\mathbb{F}_2 + u\mathbb{F}_2$, IEEE Trans. Inf. Theory **45** (1999), 32-45. B. Yildiz and S. Karadeniz, Linear Codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$: MacWilliams Identities Projections, and Formally Self-Dual Codes, Finite Fields and Their Applications, **27** (2014), 3 V. Sison and M. Remillion, *Isometries and binary images of linear block codes over* $\mathbb{Z}_4 + u\mathbb{Z}_4$ and $\mathbb{Z}_8 + u\mathbb{Z}_8$, The Asian Mathematical Conference (AMC 2016), (2016),
- 4 313-318.
- A. Dertli and Y. Cengellenmis, On the Codes Over the Ring $\mathbb{Z}_4 + u\mathbb{Z}_4 + v\mathbb{Z}_4$ Cyclic, Constacyclic, Quasi-Cyclic Codes, Their Skew Codes, Cyclic DNA and Skew Cyclic DNA Codes, Prespacetime Journal, **10**(2) (2019), 196-213. S.T. Dougherty T. A. Gulliver, J. Wong, Self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9 , Designs, Codes and Cryptography, **41** (2006), 235-249. P. Li, X. Guo, S. Zhu, Some results of linear codes over the ring $\mathbb{Z}_4 + u\mathbb{Z}_4 + v\mathbb{Z}_4 + uv\mathbb{Z}_4$, Journal of Applied Mathematics and Computing, **54** (2017), 307-324. J. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math., **121**(3) (1999), 555-575. 5
- 6
- 7
- 8
- 9 İ. Aydoğdu, Bazı özel modüller üzerinde toplamsal kodlar, Ph. D, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2014.