Linear Codes over the Ring $\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$

ISSN: 2651-544X
http://dergipark.gov.tr/cpost

Basri Çalışkan*
Department of Mathematics, Faculty of Science and Arts, Osmaniye Korkut Ata University, Osmaniye, Turkey, ORCID:0000-0003-0512-4208
* Corresponding Author E-mail: bcaliskan@osmaniye.edu.tr

Abstract

In this paper, we introduce the ring $R=\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$ where $u^{2}=u, v^{2}=v, u v=v u=0$ over which the linear codes are studied. it's shown that the ring $R=\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$ is a commutative, characteristic 8 ring with $u^{2}=u, v^{2}=v, u v=v u=0$. Also, the ideals of $\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$ are found. Moreover, we define the Lee distance and the Lee weight of an element of R and investigate the generator matrices of the linear code and its dual.

Keywords: Duality, Generator matrix, Lee weight, Linear codes over rings.

1 Introduction

In algebraic coding theory, the most important class of codes is the family of linear codes. A linear code of length n over \mathbb{F}_{q} is a linear subspace of the vector space \mathbb{F}_{q}^{n} where \mathbb{F}_{q} is the finite field with q elements. A linear code of length n over a ring R is an R-submodule of R^{n}.

Codes over finite fields have been studied by many researchers. After the appearance of [1], a lot of researchers have considered codes over \mathbb{Z}_{4}. Later, these studies were mostly generalized to several new families of rings such as finite chain rings and rings of the form $\mathbb{F}_{2} /\left\langle u^{m}\right\rangle[2]$. There is a very interesting connection between \mathbb{Z}_{4} and $\mathbb{F}_{2}+u \mathbb{F}_{2}$. Both are commutative rings of size 4 , they are both finite-chain rings. Some of the main differences between these two rings are that their characteristic is not the same, Gray images of \mathbb{Z}_{4}^{2}-codes are usually not linear while the Gray images of $\mathbb{F}_{2}+u \mathbb{F}_{2}$-codes are linear.

Inspired by this similarity (and difference), in [3], Yildiz and Karadeniz considered linear self dual codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ and proved the MacWilliams identities for the weight enumerators of the codes involved. The authors defined a linear Gray map from $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ to \mathbb{Z}_{4}^{2} and a non-linear Gray map from $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ to $\left(\mathbb{F}_{2}+u \mathbb{F}_{2}\right)^{2}$, and used them to successfully construct formally self-dual codes over \mathbb{Z}_{4} and good non-linear codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$.

In [4] the authors derived the certain lower and upper bounds on the minimum distances of the binary images in terms of the parameters of the $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ codes. They performed same analogous procedure on the ring $\mathbb{Z}_{8}+u \mathbb{Z}_{8}$, where $u^{2}=0$, which is a commutative local Frobenius non-chain ring of order 64 . Then, the method was generalized to the class of rings $\mathbb{Z}_{2^{r}}+u \mathbb{Z}_{2^{r}}$, where $u^{2}=0$, for any positive integer r.

In [7] the linear codes over the ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}+u v \mathbb{Z}_{4}$ where $u^{2}=u, v^{2}=v, u v=v u$ are introduced.
Motivated by the works in [4] and [7], in this paper, the ring $R=\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$ where $u^{2}=u, v^{2}=v, u v=v u=0$ is introduced and the Lee distance and the Lee weight of an element of R are defined, and the generator matrices of the linear code and its dual are investigated.

2 The Ring $R=\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$

The ring $R=\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$ is a commutative, characteristic 8 ring with $u^{2}=u, v^{2}=v, u v=v u=0$. It can be also viewed as the quotient ring $\frac{\mathbb{Z}_{8}[u, v]}{\left\langle u^{2}-u, v^{2}-v, u v=v u\right\rangle}$. Let r be any element of R, which can be expressed uniquely as $r=a+u b+v c$, where $a, b, c \in \mathbb{Z}_{8}$. Let $e_{1}=1-u-v, e_{2}=u, e_{3}=v$, then e_{1}, e_{2}, e_{3} are pairwise orthogonal non-zero idempotent elements over R, and the unit element 1 can be decomposed as $1=e_{1}+e_{2}+e_{3}$. By the Chinese Remainder Theorem, we have $R=e_{1} R+e_{2} R+e_{3} R$, and r can be expressed uniquely as $r=e_{1} r_{1}+e_{2} r_{2}+e_{3} r_{3}$, where $r_{1}=a, r_{2}=a+b, r_{3}=a+c$.

The ring R has the following properties:

- The finite ring R is with 512 elements.
- Its units are given by

$$
S=\{a+u b+v c \mid a, \overline{a+b}, \overline{a+c} \in\{1,3,5,7\}\}
$$

- It has a total of 64 ideals. Let $S_{1}=\{1,3,5,7\}, S_{2}=\{2,6\}$ and $S_{3}=\{0,2,4,6\}$. The trivial ideals are

$$
\langle 0\rangle=\{0\} \text { and }\langle r\rangle, \text { where } r \in S
$$

The other non-trivial ideals of R is given the last page of the paper.

- R is a principal ideal ring.
- R is not a finite chain ring.

Definition 1. A linear code C of length n over the ring R is a R-submodule of R^{n}. A codeword is denoted as $\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$.
The Lee weights of $0,1,2,3 \in \mathbb{Z}_{4}$ are defined by $w_{L}(0)=0, w_{L}(1)=1, w_{L}(2)=2$ and $w_{L}(3)=1$. In the case of $\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}$, the Lee weight was defined in [5] as

$$
w_{L}(d)=w_{L}(a, a+b, a+c)
$$

where $a, b, c \in \mathbb{Z}_{4}$. A similar technique is adopted here.
The Lee weight of a vector $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \in\left(\mathbb{Z}_{8}\right)^{n}$ was defined as

$$
\sum_{i=0}^{n-1} \min \left\{\left|v_{i}\right|,\left|8-v_{i}\right|\right\}
$$

in [6].
Let $r=a+u b+c v$ be an element of R, then we define the Lee weight of r as

$$
w_{L}(r)=w_{L}(a, \overline{a+b}, \overline{a+c})
$$

where $a, b, c \in \mathbb{Z}_{8}$. The Lee weight of a vector $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in R^{n}$ to be the sum of Lee weights its components:

$$
w_{L}(r)=w_{L}(a, \overline{a+b}, \overline{a+c})=w_{L}(a)+w_{L}(\overline{a+b})+w_{L}(\overline{a+c}) .
$$

For any elements $\mathbf{x}, \mathbf{y} \in R^{n}$, the Lee distance between \mathbf{x} and \mathbf{y} is given by

$$
d_{L}(\mathbf{x}-\mathbf{y})=w_{L}(\mathbf{x}-\mathbf{y})
$$

The minimum Lee distance defined as

$$
d_{L}(C)=\min \left\{d_{L}(\mathbf{x}-\mathbf{y}): \mathbf{x} \neq \mathbf{y}, \text { for all } \mathbf{x}, \mathbf{y} \in C\right\} .
$$

Example 1. Let $r=2+6 u+v$ and $r^{\prime}=1+u+4 v \in R$. The Lee weights of r and r^{\prime} as follows

$$
\begin{gathered}
w_{L}(r)=w_{L}(2, \overline{2+6}, \overline{2+1})=w_{L}(2,0,3)=5, \\
w_{L}\left(r^{\prime}\right)=w_{L}(1, \overline{1+1}, \overline{1+4})=w_{L}(1,2,5)=6 .
\end{gathered}
$$

The Lee distance between r and r^{\prime} as follows

$$
d_{L}\left(r-r^{\prime}\right)=w_{L}\left(r-r^{\prime}\right)=w_{L}(1+5 u+5 v)=w_{L}(1, \overline{1+5}, \overline{1+5})=5 .
$$

Let $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right), \mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ be two vectors in R^{n}. The inner product between \mathbf{x} and \mathbf{y} is defined as

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{0} y_{0}+x_{1} y_{1}+\ldots+x_{n-1} y_{n-1}
$$

where the operation are performed in the ring R.
Definition 2. Let C be a linear code over the ring R of length n, then we define the dual of C as

$$
C^{\perp}=\left\{\boldsymbol{y} \in R^{n} \mid\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0, \text { for all } \boldsymbol{x} \in C\right\}
$$

Note that from the definition of inner product, it is clear that C^{\perp} is also a linear code over R^{n}. A code C is said to be self-orthogonal if $C \subseteq C^{\perp}$, and self-dual if $C=C^{\perp}$.

$3 \quad$ Linear Codes over $\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$

Let C be a linear code of length n over R, we denote $C_{i}(1 \leq i \leq 3)$ as:

$$
\begin{aligned}
& C_{1}=\left\{\mathbf{a} \in \mathbb{Z}_{8}^{n} \mid \exists \mathbf{b}, \mathbf{c} \in \mathbb{Z}_{8}^{n},(1-u-v) \mathbf{a}+u \mathbf{b}+v \mathbf{c} \in C\right\} \\
& C_{2}=\left\{\mathbf{b} \in \mathbb{Z}_{8}^{n} \mid \exists \mathbf{a}, \mathbf{c} \in \mathbb{Z}_{8}^{n},(1-u-v) \mathbf{a}+u \mathbf{b}+v \mathbf{c} \in C\right\} \\
& C_{3}=\left\{\mathbf{c} \in \mathbb{Z}_{8}^{n} \mid \exists \mathbf{a}, \mathbf{d} \in \mathbb{Z}_{8}^{n},(1-u-v) \mathbf{a}+u \mathbf{b}+v \mathbf{c} \in C\right\}
\end{aligned}
$$

where C_{1}, C_{2} and C_{3} are linear codes over \mathbb{Z}_{8}^{n} of length n. And C can be uniquely expressed as

$$
C=(1-u-v) C_{1}+u C_{2}+v C_{3} .
$$

According to the direct sum decomposition in above, we have $|C|=\left|C_{1}\right|\left|C_{2}\right|\left|C_{3}\right|$.

Theorem 1. Let C be a linear code of length n over R, then

1. $C=(1-u-v) C_{1}+u C_{2}+v C_{3}$, where $C_{i}(1 \leq i \leq 3)$ is a linear code of length n over \mathbb{Z}_{8}, and the direct sum decomposition is unique. 2. $C^{\perp}=(1-u-v) C_{1}^{\perp}+u C_{2}^{\perp}+v C_{3}^{\perp}$, where C_{i}^{\perp} is the dual code of $C_{i}(1 \leq i \leq 3)$.
2. C is a self-orthogonal code if and only if $C_{i}(1 \leq i \leq 3)$ is a self-orthogonal code over \mathbb{Z}_{8}. Furthermore, C is a self-dual code if and only if $C_{i}(1 \leq i \leq 3)$ is a self-dual code over \mathbb{Z}_{8}.

Proof: 1. Let $\mathbf{r}=\left(r^{(0)}, r^{(1)}, \ldots, r^{(n-1)}\right) \in R^{n}$, where $r^{(i)}=(1-u-v) r_{i 1}+u r_{i 2}+v r_{i 3}$ and $i=0,1, \ldots, n-1$. It is clear that $1-u-v, u$ and v are pairwise orthogonal non-zero idempotent elements over R, then \mathbf{r} can be uniquely expressed as $\mathbf{r}=(1-u-v) \mathbf{r}_{1}+$ $u \mathbf{r}_{2}+v \mathbf{r}_{3}$, where $\mathbf{r}_{j}=\left(r_{0 j}, r_{1 j}, \ldots, r_{n-1, j}\right) \in \mathbb{Z}_{8}^{n}$ and $j=1,2,3$. Since a linear code C over R is a subgroup of R^{n}, then C can be uniquely expressed as $C=(1-u-v) C_{1}+u C_{2}+v C_{3}$.
2. Let $D=(1-u-v) C_{1}^{\perp}+u C_{2}^{\perp}+v C_{3}^{\perp}$, for any $\mathbf{d}=(1-u-v) \mathbf{a}+u \mathbf{b}+v \mathbf{c} \in C, \mathbf{d}^{\prime}=(1-u-v) \mathbf{a}^{\prime}+u \mathbf{b}^{\prime}+v \mathbf{c}^{\prime} \in D$, where $\mathbf{a}, \mathbf{b}, \mathbf{c} \in C$ and $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime} \in D$. Then we have

$$
\mathbf{d} \cdot \mathbf{d}^{\prime}=(1-u-v) \mathbf{a a}^{\prime}+u \mathbf{b} \mathbf{b}^{\prime}+v \mathbf{c c}^{\prime}
$$

Hence, $\mathbf{d} \cdot \mathbf{d}^{\prime}=0$, so we have $D \subseteq C^{\perp}$. Moreover, the ring R is Frobenius ring [8], so $|C|\left|C^{\perp}\right|=|R|^{n}$ [8]. Thus

$$
|D|=\left|C_{1}^{\perp}\right|\left|C_{2}^{\perp}\right|\left|C_{3}^{\perp}\right|=\frac{8^{n}}{\left|C_{1}\right|} \frac{8^{n}}{\left|C_{2}\right|} \frac{8^{n}}{\left|C_{3}\right|}=\frac{R^{n}}{|C|}=\left|C^{\perp}\right|,
$$

therefore we have $D=C^{\perp}$.
3. According to (1) and (2), we have $C \subseteq C^{\perp}$ if and only if $C_{i} \subseteq C_{i}^{\perp}(1 \leq i \leq 3)$ is a self-orthogonal code over \mathbb{Z}_{8}. Similarly, C is a self-dual code if and only if $C_{i} \subseteq C_{i}^{\perp}(1 \leq i \leq 3)$ is a self-dual code over \mathbb{Z}_{8}.

Corollary 1. There are self-dual codes of arbitrary lengths over R.

Proof: From Theorem 1, there exists a self-dual code over R if and only if there exists a self-dual code over \mathbb{Z}_{8}. Clearly, there exists a self-dual code over \mathbb{Z}_{8} generated by

$$
\left(\begin{array}{lll}
4 & & \\
& \ddots & \\
& & 4
\end{array}\right)_{n \times n}
$$

We give the generator matrix of the linear codes over R. Let $C=(1-u-v) C_{1}+u C_{2}+v C_{3}$, for $C_{i}(1 \leq i \leq 3)$ is a linear code over \mathbb{Z}_{8}, then C_{i} is permutation-equivalent to a code generated by

$$
G_{i}=\left(\begin{array}{cccc}
I_{k_{i 0}} & A_{i} & B_{i} & T_{i} \\
0 & 2 I_{k_{i 1}} & 2 D_{i} & 2 E_{i} \\
0 & 0 & 4 I_{k_{i 2}} & 4 F_{i}
\end{array}\right)[9] .
$$

Thus, C is permutation-equivalent to a linear code generated by

$$
G=\left(\begin{array}{c}
(1-u-v) G_{1} \\
u G_{2} \\
v G_{3}
\end{array}\right)
$$

The dual code C_{i}^{\perp} of the \mathbb{Z}_{8}-linear code C_{i} has the generator matrix

$$
H_{i}=\left(\begin{array}{cccc}
-T_{i}^{t}+E_{i}^{t} A_{i}^{t}+F_{i}^{t} B_{i}^{t}-F_{i}^{t} D_{i}^{t} A_{i}^{t} & -E_{i}^{t}+F_{i}^{t} D_{i}^{t} & -F_{i}^{t} & I_{n-k_{i 0}-k_{i 1}-k_{i 2}} \\
-2 B_{i}^{t}+2 D_{i}^{t} A_{i}^{t} & -2 D_{i}^{t} & 2 I_{k_{i 2}} & 0 \\
-4 A_{i}^{t} & 4 I_{k_{i 1}} & 0 & 0
\end{array}\right) .
$$

[9]. Then C^{\perp} is permutation-equivalent to a linear code generated by

$$
H=\left(\begin{array}{c}
(1-u-v) H_{1} \\
u H_{2} \\
v H_{3}
\end{array}\right)
$$

H is called the party-check matrix of C.

Example 2. Let $C=(1-u-v) C_{1}+u C_{2}+v C_{3}$, where C_{1}, C_{2} and C_{3} are linear codes over \mathbb{Z}_{8}^{2} generated by

$$
G_{1}=\left(\begin{array}{ll}
4 & 0
\end{array}\right), G_{2}=\left(\begin{array}{ll}
4 & 4
\end{array}\right), G_{3}=\left(\begin{array}{ll}
4 & 0
\end{array}\right) .
$$

Then C is generated by

$$
G=\left(\begin{array}{cc}
4-4 u-4 v & 0 \\
4 u & 4 v \\
4 v & 0
\end{array}\right)
$$

The dual codes C_{1}, C_{2} and C_{3} have the generator matrix

$$
H_{1}=\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right), H_{2}=\left(\begin{array}{ll}
7 & 1 \\
2 & 0
\end{array}\right), H_{3}=\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right) .
$$

Then the dual code C^{\perp} is generated by

$$
H=\left(\begin{array}{cc}
0 & 1-u-v \\
2-2 u-2 v & 0 \\
7 u & u \\
2 u & 0 \\
0 & v \\
2 v & 0
\end{array}\right)
$$

ideals with 2 elements	$\{a+u b+v c \mid a=b=0, c=4\}$ $\{a+u b+v c \mid b=c=0, a=4\}$ $\{a+u b+v c \mid a=c=4, b=0\}$	$\{a+u b+v c \mid a=c=0, b=4\}$ $\{a+u b+v c \mid a=b=4, c=0\}$ $\{a+u b+v c \mid b=c=4, a=0\}$
ideals with 4 elements	$\begin{aligned} & \left\{a+u b+v c \mid a=b=0, c \in S_{2}\right\} \\ & \left\{a+u b+v c \mid b=c=0, a \in S_{2}\right\} \end{aligned}$	$\left\{a+u b+v c \mid a=c=0, b \in S_{2}\right\}$
ideals with 8 elements	$\left.\begin{array}{l} \left\{a+u b+v c \mid a=b=0, c \in S_{1}\right\} \\ \left\{a+u b+v c \mid b=c=0, a \in S_{1}\right\} \end{array}\right\} \begin{aligned} & \left\{a+u b+v c \mid a=0, c=4, b \in S_{2}\right\} \end{aligned}\left\{\begin{array}{l} \left\{a+u b+v c \mid a \in S_{2}, \overline{a+b}=4, \overline{a+c}=0\right\} \end{array}\right\}$	$\begin{aligned} & \left\{a+u b+v c \mid a=c=0, b \in S_{1}\right\} \\ & \left\{a+u b+v c \mid a=0, b=4, c \in S_{2}\right\} \\ & \left\{\begin{array}{l} \left.a+u b+v c \mid a \in S_{2}, \overline{a+b}=0, \overline{a+c}=4\right\} \\ \left.a+u b+v c \mid a=4, \overline{a+b} \in S_{2}, \overline{a+c}=0\right\} \end{array}\right. \\ & \left\{\begin{array}{l} a+u b+v c \mid a=\overline{a+b}=\overline{a+c}=4\} \end{array}\right. \end{aligned}$
ideals with 16 elements	$\begin{aligned} & \left\{a+u b+v c \mid a=0, b \in S_{1}, c=4\right\} \\ & \left\{a+u b+v c \mid a=0, b, c \in S_{2}\right\} \\ & \left\{\begin{array}{l} \left.a+u b+v c \mid a=\overline{a+c}=4, b \in S_{2}\right\} \end{array}\right. \\ & \left\{\begin{array}{l} \left.a+u b+v c \mid a=\overline{a+b} \in S_{2}, \overline{a+c}=0,\right\} \\ \left.a+u b+v c \mid a=4, \overline{a+b} \in S_{1}, \overline{a+c}=0\right\} \\ \left.a+u b+v c \mid a \in S_{1}, \overline{a+b}=4, \overline{a+c}=0\right\} \end{array}\right. \end{aligned}$	$\left\{\begin{array}{l} \left\{a+u b+v c \mid a=0, b=4, c \in S_{1}\right\} \\ \left\{a+u b+v c \mid a=\overline{a+b}=4, c \in S_{2}\right\} \\ \left.a+u b+v c \mid a \in S_{2}, \overline{a+b}=\overline{a+c}=4,\right\} \\ \left.a+u b+v c \mid a=\overline{a+c} \in S_{2}, \overline{a+b}=0\right\} \\ \left.a+u b+v c \mid a=4, \overline{a+b}=0, \overline{a+c} \in S_{1}\right\} \\ \left.a+u b+v c \mid a \in S_{1}, \overline{a+b}=0, \overline{a+c}=4\right\} \end{array}\right.$
ideals with 32 elements	$\begin{aligned} & \left\{\begin{array}{l} \left.a+u b+v c \mid a=0, \overline{a+b} \in S_{1}, \overline{a+c} \in S_{2}\right\} \\ a+u b+v c \mid a \in S_{1}, \overline{a+b} \in S_{2}, \overline{a+c}=0 \end{array}\right\} \\ & \left\{\begin{array}{l} \left.a+u b+v c \mid a \in S_{1}, \overline{a+b}=\overline{a+c}=4\right\} \end{array}\right. \\ & \left\{\begin{array}{l} \left.a+u b+v c \mid a \in S_{2}, \overline{a+b} \in S_{1}, \overline{a+c}=0\right\} \end{array}\right. \\ & \left\{\begin{array}{l} \left.a b+v c \mid a=\overline{a+c} \in S_{2}, \overline{a+b}=4\right\} \\ \left.a+u b+v c \mid a=\overline{a+b}=4, \overline{a+c} \in S_{1},\right\} \end{array}\right. \end{aligned}$	$\left.\begin{array}{l} \left\{\begin{array}{l} a+u b+v c \mid a=0, \overline{a+b} \in S_{2}, \overline{a+c} \in S_{1} \\ a+u b+v c \mid a \in S_{1}, \overline{a+b}=0, \overline{a+c} \in S_{2} \end{array}\right\} \\ \left\{\begin{array}{l} a+u b+v c \mid a \in S_{2}, \overline{a+b}=0, \overline{a+c} \in S_{1} \end{array}\right\} \\ \left.a+u b+v c \mid a=\overline{a+b} \in S_{2}, \overline{a+c}=4\right\} \end{array}\right\}$
ideals with 64 elements	$\begin{aligned} & \left\{\begin{array}{l} \left.a+u b+v c \mid a=0, \overline{a+b}=\overline{a+c} \in S_{1}\right\} \\ \left.a+u b+v c \mid a \in S_{1}, \overline{a+b} \in S_{2}, \overline{a+c}=4\right\} \\ \left.a+u b+v c \mid a=4, \overline{a+b} \in S_{1}, \overline{a+c} \in S_{2}\right\} \end{array}\right. \\ & \left\{\begin{array}{l} \left.a+u b+v c \mid a=\overline{a+b}=\overline{a+c} \in S_{2}\right\} \\ \left.a+u b+v c \mid a \in S_{1}, \overline{a+b}=4, \overline{a+c} \in S_{2}\right\} \end{array}\right. \end{aligned}$	$\begin{aligned} & \left\{\begin{array}{l} \left.a+u b+v c \mid a=\overline{a+b} \in S_{1}, \overline{a+c}=0\right\} \\ \left.a+u b+v c \mid a \in S_{2}, \overline{a+b} \in S_{1}, \overline{a+c}=4\right\} \\ \left.a+u b+v c \mid a=4, \overline{a+b} \in S_{2}, \overline{a+c} \in S_{1}\right\} \end{array}\right. \\ & \left\{\begin{array}{l} \left.a+u b+v c \mid a=\overline{a+c} \in S_{1}, \overline{a+b}=0\right\} \\ \left.a+u b+v c \mid a \in S_{2}, \overline{a+b}=4, \overline{a+c} \in S_{1}\right\} \end{array}\right. \end{aligned}$
ideals with 128 elements	$\begin{aligned} & \left\{\begin{array}{l} \left.a+u b+v c \mid a=4, \overline{a+b}=\overline{a+c} \in S_{1}\right\} \\ \left\{a+u b+v c \mid a=\overline{a+c} \in S_{1}, \overline{a+b}=4\right\} \\ \left.a+u b+v c \mid a=\overline{a+c} \in S_{2}, \overline{a+b} \in S_{1}\right\} \end{array}\right. \end{aligned}$	$\begin{aligned} & \left\{\begin{array}{l} \left.a+u b+v c \mid a=\overline{a+b} \in S_{1}, \overline{a+c}=4\right\} \\ \left\{a+u b+v c \mid a \in S_{2}, \overline{a+b}=\overline{a+c} \in S_{1}\right\} \\ \left\{a+u b+v c \mid a \in S_{1}, \overline{a+b}=\overline{a+c} \in S_{2}\right\} \end{array}\right. \end{aligned}$
ideals with 256 elements	$\left\{\begin{array}{l} \left\{a+u b+v c \mid a=\overline{a+b} \in S_{1}, \overline{a+c} \in S_{3}\right\} \\ \left\{a+u b+v c \mid a \in S_{2}, \overline{a+b}=\overline{a+c} \in S_{1}\right\} \end{array}\right.$	$\left\{a+u b+v c \mid a=\overline{a+c} \in S_{1}, \overline{a+b} \in S_{3}\right\}$

Table 1 Ideals of R

4 Conclusion

In this work, it's shown that the ring $R=\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$ is a commutative, characteristic 8 ring with $u^{2}=u, v^{2}=v, u v=v u=0$. Moreover, the ideals of $\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$ are found and the Lee weight is defined on $\mathbb{Z}_{8}+u \mathbb{Z}_{8}+v \mathbb{Z}_{8}$. In the last part the generator matrices of the linear code and its dual are obtained.

5 References

1 A.R. Hammons, V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, The \mathbb{Z}_{4}-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
S.T.Dougherty, P. Gaborit, M. Harada, P.Solé, Type II codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$, IEEE Trans. Inf. Theory 45 (1999), 32-45.

3 B. Yildiz and S. Karadeniz, Linear Codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$: MacWilliams Identities Projections, and Formally Self-Dual Codes, Finite Fields and Their Applications, 27 (2014), 24-40.
4 V. Sison and M. Remillion, Isometries and binary images of linear block codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ and $\mathbb{Z}_{8}+u \mathbb{Z}_{8}$, The Asian Mathematical Conference (AMC 2016), (2016), 313-318.
5 A. Dertli and Y. Cengellenmis, On the Codes Over the Ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}$ Cyclic, Constacyclic, Quasi-Cyclic Codes, Their Skew Codes, Cyclic DNA and Skew Cyclic DNA Codes, Prespacetime Journal, 10(2) (2019), 196-213.
6 S.T. Dougherty T. A. Gulliver, J. Wong, Self-dual codes over \mathbb{Z}_{8} and \mathbb{Z}_{9}, Designs, Codes and Cryptography, 41 (2006), 235-249.
7 P. Li, X. Guo, S. Zhu, Some results of linear codes over the ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}+u v \mathbb{Z}_{4}$, Journal of Applied Mathematics and Computing, 54 (2017), 307 -324.
8 J. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math., 121(3) (1999), 555-575.
9 İ. Aydoğdu, Bazı özel modüller üzerinde toplamsal kodlar, Ph. D, Yıldı Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2014.

