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ABSTRACT This contribution uncovers numerical evidence of hysteric dynamical behaviors for the same set
of the circuit parameters of the Chua’s circuit with traditional piecewise-linear nonlinearity. Stationary points
and the symmetry property of the model first forecast the possible evidence of coexisting attractors. Then,
well known nonlinear analysis approach based on the bifurcation diagrams, two-parameter diagrams, phase
portraits, two parameter Lyapunov exponent diagrams, graph of maximum Lyapunov exponents, and attraction
basins are exploited to characterize the dynamical behavior of the oscillator including coexisting orbits. Finally,
the simultaneous existence of both periodic and chaotic orbits highlighted in the Chua’s oscillator is also
annihilated based on linear controller. Numerical findings indicate control method ’s efficacy by combining two
periodic routes and one chaotic route with another chaotic route.
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INTRODUCTION
Chua’s circuit, which is the famous chaos generator is an
ideal paradigm for nonlinear phenomena study, has been
investigated intensively during the last years Chua et al.
(1986); Chua (1994, 1998); Duan et al. (2007); Huang et al.
(1996); Kengne (2017). In the traditional Chua’s circuit, the
nonlinear element responsible of complex behavior found
in the circuit is designed using a piecewise linear (PWL)
function (Chua’s diode) Matsumoto (1984); Ramírez-Ávila
and Gallas (2010); Zhong and Ayrom (1985).

It is well known that, the piecewise linear nonlinearity
enables solely the first-order description of the real Chua’s

Manuscript received: 7 July 2020,
Revised: 13 September 2020,
Accepted: 15 September 2020.

1 zerictabekoueng@yahoo.fr (Corresponding Author)
2 fozintheo@gmail.com
3 kamdjeukengneleandre@yahoo.fr
4 leutchoeinstein@yahoo.com
5 edwigemache7@gmail.com
6 kengnemozart@yahoo.fr

circuit Kengne et al. (2016). This is why smooth nonlinear-
ity is suitable from a computational point of view since it
is used for a better characterization of both the irregular
and regular behaviors of the oscillator. The current-voltage
characteristics of the nonlinear components in real circuits
are generally smooth curves hence; Chua’s equation with a
smooth (cubic) nonlinearity was established Hartley (1989).

Chua’s equations with smooth nonlinearity have been ex-
tensively studied and plethora of nonlinear behavior found
with the PWL function were also found with the smooth (cu-
bic) nonlinearity Tsuneda (2005); Ramírez-Ávila and Gallas
(2010). Among phenomena found in Chua’s circuit, we have
period-doubling bifurcations, period-adding bifurcation, in-
termittency bifurcations, torus breakdown route to chaos,
bubble bifurcation, hidden attractors as well as coexisting
attractors Leonov et al. (2011); Zhong (1994); Huang et al.
(1996); Chua (1994). This latter phenomenon also known
as simultaneous existence of multiple orbits/attractors is
a widespread in the variants of Chua’s oscillator Bao et al.
(2016, 2015a,b); Chen et al. (2015); Xu et al. (2016).

The extreme / hidden extreme multi-stability observed
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in the memristor-based Chua circuit is regarded as a strange
and striking manifestation of this phenomenon. Out of
Kengne (2017) who present coexistence of up to four discon-
nected attractor in Chua’s equation with a cubic nonlinearity,
there is no work in the literature focused on the discovery
of this phenomenon in the original Chua’s equation with
piecewise linear nonlinearity. In addition such nonlinear
phenomenon as well as their circuit implementation have
already been found in several others classes of nonlinear dy-
namical systems Adiyaman et al. (2020); Kingni et al. (2020);
Tuna et al. (2019).

It is good to mention that, the smooth (cubic) nonlinearity
is only an approximation of the nonlinear element of the
Chua’s circuit due to the fact in experimental realization the
(v− i) characteristic of the Chua’s diode also known as non-
linear resistor is smooth Tsuneda (2005); Zhong (1994). Then,
it is important to prove that the original Chua’s equation is
also able to exhibit coexistence of up to four disconnected
attractor in order to support the fact that the model with
smooth nonlinearity is able reproduce all the dynamics of
the one with PWL nonlinearity. To achieve this objective,
the dynamics of the original Chua’s equation is numerically
investigated in this contribution.

The remainder of this contribution is organized as fol-
lows. Section 2 is focused on the modeling process. Some
basic features of the mathematical model including sym-
metry property as well as the stability of the rest points
are underlined. Section 3 focuses on the numerical analy-
sis. Various nonlinear diagnostic tools are used to track the
windows in which the Chua’s model with piecewise-linear
function exhibits hysteretic dynamics. Section 4 is devoted
to the multistability control in the Chua’s circuit using linear
augmentation scheme. Finally, in the conclusion part, some
proposals for future works are given in Section 5.

PRESENTATION OF THE CHUA’S OSCILLATOR
BASED ON ITS ORIGINAL NONLINEARITY

Mathematical model of the oscillator
Attractors of the Chua circuit depicted in Fig1 have been
firstly found by computer simulations in Zhong and Ayrom
(1985). In the same line, its experimental validation has been
carried out by Ramírez-Ávila and Gallas (2010). Chua’s
oscillator can be viewed as the most studied nonlinear cir-
cuit capable to generate complex bifurcations and chaotic
phenomena. That circuit is built using two capacitors (C1,
C2), two resistors (R0, R), one inductor L and a nonlinear
resistor NR. This nonlinear resistor which is at the origin of
all complex phenomena found is called Chua’s diode.

The set of equations describing the model is given by
Tsuneda (2005) for model C-12.

dv1
dt = 1

C1
[G (v2 − v1)− f (v1)]

dv2
dt = 1

C2
[G (v2 − v1) + iL]

diL
dt = 1

L (v2 + R0iL)

(1)

Figure 1 Schematic diagram of Chua’s oscillator.

Where f (.) is the current-voltage characteristic (v− i) of
the nonlinear element NR (Chua’s diode).

f (v1) = Gbv1 +
1
2
(Ga − Gb) {|v1 + E| − |v1 − E|} (2)

With the following change of variables and parameters

x1 =
v1

E
, x2 =

v2

E
, x3 = i3

R
E

, α =
C2

C1
, β =

R2C2

L
γ =

RR0C2

L
,

(3)
m0 = RGa, m1 = RGb, k = 1i f RC2 > 0, k = −1i f RC2 <

0.
where Ga and Gb represent the conductance slopes of the

inner and E stand for the voltage breakpoint. From Eq.(3)
it is observed that k = 1 if RC2 > 0, k = −1 if RC2 < 0.
The practical conditions to have the negative product of
resistance and capacity (k = −1 if RC2 < 0) is to replace the
dissipative resistor in the case k = 1 by a negative resistor
which is an active device and enables to bring the energy
to the Chua’s circuit. This is the concept that the authors
wanted to highlight in their work Zhong and Ayrom (1985).

The dimensionless expression of the Chua’s model is
given by: 

dx1
dt = kα (x2 − x1 − f (x1))

dx2
dt = k (x1 − x2 + x3)

dx3
dt = k (−βx2 − γx3)

(4)

From (4) the nonlinear term f (.) is given by
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f (x) = m1x1 +
1
2
(m0 −m1) (|x1 + 1| − |x1 − 1|) (5)

(a)

(b)

Figure 2 Eigenvalues locus (a) [(resp. (b) to the nontrivial
equilibria S1.2]obtained with 1 ≤ α ≤ 38 for β = 73.04968

Remarks that the parameter values used in this works are
the one of the model call C-12 studied in Tsuneda (2005). It
is obvious that, Chua’s circuit is among the simplest circuit
reported to date capable to plethora of nonlinear behaviors.
In contrast to the work done by Kengne in 2017 Kengne
(2017) were the nonlinear element has been implemented
with a smooth nonlinearity f (x) = ax3 + bx, we consid-
ered Chua’s equation based on its original nonlinearity with
piecewise-linear function as define in Eq.5. The aim of this
consideration is to show that the original Chua’s model
without any modification can display the simultaneous exis-
tence of up to four disconnected attractors for the same set of
the circuit parameters which has never been highlighted in
the previous works focused on the dynamics of this original
model.

(a)

(b)

Figure 3 Bifurcation diagram (a) and the corresponding
graph (b) of largest LE (λmax).
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Stationary point analysis
In the investigation on the nonlinear dynamic systems, sta-
tionary points possess a key role. This role is justified by
the fact that they enable to determine whether the attrac-
tors generated are self-excited when the stationary points
are unstable or whether the attractors generated are hid-
den Pham et al. (2019). Hidden attractors are associated
to systems with the following properties: systems without
equilibria Jafari et al. (2013); Njitacke et al. (2017), systems
with stable equilibria Wang and Chen (2012) and systems
having an uncountable number of equilibria (line, circular,
elliptic, square ...) Gotthans and Petržela (2015); Gotthans
et al. (2016); Njitacke et al. (2018). The stationary points of
the considered Chua’s circuit are obtained by checking the
solutions of the following equation.

kα (x2 − x1 − f (x1)) = 0

k [x1 − x2 + x3] = 0

k (−βx2 − γx3) = 0

(6)

The breakpoints are located at x1 = 1 and x1 = −1 there-
fore, f (x1) can be rewritten

f (x1) =


m1x1 + (m0 −m1) x1 > +1

m0x1 −1 ≥ x1 ≤ +1

m1x1 − (m0 −m1) x1 < −1

(7)

Then, the three stationary points of the model can know
be express as

S0 =

(
0, 0, 0

)
and S1,2 =

(
±x̄1

±x̄1γ
γ+β

∓x̄1β
γ+β

)
in which x̄1 is given by x̄1 = m0−m1

γ
γ+β−1−m1

It is clear that S1,2 are symmetric compared to the ori-
gin therefore they can share an identical stability owner-
ship. This symmetry stability is also associated to the fact
that the model remains unchanged under the permutation
(x1, x2, x3) ⇔ (−x1,−x2,−x3). Consequently (x1, x2, x3)
and (−x1,−x2,−x3) share a pair of solution for the same
range of the system parameters. This symmetric owner-
ship can enable us to predict the finding of the coexisting
attractor that we want to highlight in the model studied (see
Fig.5).

The stability of the model around any rest point
(x̄1, x̄2, x̄3) is analyzed by computing the Jacobian matrix
of the Chua’s model with piecewise-linear function given in
Eq. 8.

Based on this Jacobian matrix, the eigenvalues which
are tied to it are determined by solving the characteristic
equation as depicted in Eq.(9)

det (λI − J) = λ3 + a1λ2 + a2λ + a3 = 0 (9)

Considering the assumptions of the Routh–Hurwitz cri-
terion, and knowing that the polynomial coefficients of the
Eq. (9) are all nonzero, the obligatory and adequate cases
for the real parts of the roots of Eq. (9) to be positive are:

a1 > 0

a1a2 − a3 > 0

a3 > 0

(11)

(a)

(b)

Figure 4 Bifurcation diagram (a) and the corresponding
graph (b) of largest LE (λmax).

80 | Njitacke et al. CHAOS Theory and Applications



Mj =


kα (−1− (m1 + 0.5 (m0 −m1) (sign (x̄1 + 1)− sign (x̄1 − 1)))) kα 0

k −k k

0 −kβ −kγ

 (8)



a1 = (2489α) /25000 + (12213αsign (x̄1 − 1)) /100000− (12213αsign (x̄1 + 1)) /100000 + 403/2500

a2 = β− (61496933α) /62500000 + (4921839αsign (x̄1 − 1)) /250000000− (4921839αsign (x̄1 + 1)) /250000000

− 2903/2500

a3 = (35454339αsign (x̄1 + 1)) /250000000− (35454339αsign (x̄1 − 1)) /250000000− (79800567α) /62500000

+ (2489αβ) /25000 + (12213αβsign (x̄1 − 1)) /100000− (12213αβsign (x̄1 + 1)) /100000

(10)

Since that α is not related to the value of any rest point,
it’s then important to evaluate the global stability of the
model by plotting the eigenvalues locus in terms of station-
ary point S0 respectively S1,2 (see Fig.2) when the bifurcation
parameter α is sweep in the range 1 ≤ α ≤ 38. According
to the graph shown in Fig.2, it can be observed that, the
origin S0, has eigenvalues with one positive real root. For
the nontrivial stationary point S1,2 possess eigenvalues with
one negative real root. Thus, from this analysis of the eigen-
values associated to the model of Chua’s oscillator under
consideration, the model is always unstable and displays
self-excited dynamics Negou and Kengne (2018); Njitacke
et al. (2019); Pham et al. (2016); Tagne et al. (2019).

NUMERICAL INVESTIGATION

In this section, the analyses tools are simulated under a work
space equipped with Intel i7-2450M, 16GB RAM where we
run both MATLAB and Turbo Pascal softwares. We exploit
usual nonlinear analysis tools to find the various windows
of the parameters space for which the Chua’s model with
piecewise-linear function exhibits hysteretic dynamics. For
this work, a fixed time step of ∆t = 0.002 is used. During our
investigations very long time is used to allow the transient
behavior to be suppressed. Graph of Lyapunov exponent
associated to each bifurcation diagram are computed using
the Wolf et al. Wolf et al. (1985) algorithm.

(a)

(b)

Figure 5 Three dimensional projections of the attractors
in the (α, x1, x2) and (β, x1, x2) axes showing symmetry
property of the model and route to chaos in (a) as depicted
in Fig.3 and (b) as depicted in Fig.4. Initial conditions are
(±1, 0, 0).CHAOS Theory and Applications 81



Dynamics with coexisting Bifurcations

Coexistence of bifurcations has been already found in sev-
eral variant of Chua’s oscillator Bao et al. (2016, 2015a); Pham
et al. (2019). Recently this phenomenon of coexisting bifur-
cation has been reported in the Chua’s oscillator having a
smooth cubic nonlinearity but not yet in the original Chua’s
oscillator exploiting piecewise-linear function as nonlinear-
ity. Fig.3 (a) shows a bifurcation diagram computed using
the technique describes above. This method enables to in-
crease respectively decrease the control parameter α.

Figure 6 The phase portraits for α = 35 in initial condi-
tions (−0.2,−0.002, 0.1).

In each case, the end state at each variation of the control
parameter α is used as the initial state for the next iteration.
When sweeping α in the windows 20 ≤ α ≤ 38 two sets of
data are superposed. The one in blue is obtained by sweep-
ing up the bifurcation parameter while de one in magenta
in captured by sweeping down the bifurcation parameter as
shown in Fig.3 (a). Fig.3 (b) displays the graph of maximum
Lyapunov exponent corresponding to the blue diagram de-
picted in (a). From these two separated diagrams (blue and
magenta), hysteretic dynamics can be easily explained us-
ing the discrepancy between both diagrams. From Fig.3
and Fig.4, it can be observed that, when sweeping either α
or β Chua’s circuit with piecewise-linear function displays
plethora of behaviors.

In Fig.5 we have several 3D projection of the attractors
which appear in symmetric pair in order to restore the exact
symmetric of the model. When increasing the parameter α
(four discrete values) the dynamics of the system varies from
a pair of periodic attractor and end with a symmetric chaotic
attractor. In contrast when varying β (four discrete values)
the dynamics of the system varies form a symmetric chaotic
attractor. For a specific value of the bifurcation parameter
α = 35 selected in Fig. 3; the model exhibits double scroll
chaotic orbit. Fig.6 shows in (a-c) the 2D projection of the
chaotic orbit in various plane as well as it corresponding 3D

Figure 7 Two parameter diagram (left) and lyapunov sta-
bility diagram (right).

projection in the last quadrant. Finally, the two parameter
diagram (left) and the maximal Lyapunov exponent (right)
are displayed in Fig.7. On the two diagrams, the set of
parameters which provide periodic oscillations are painted
in magenta while the one providing chaotic oscillations are
painted in green. Remark that, if other of theses diagrams
is computed starting from initial states which are different
from (−0.2,−0.002, 0.1) (the one used to compute Fig.7) the
results may be different because of the hysteresis dynamics
of the investigated model.
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Figure 8 Two data sets corresponding to the incremental
(a) and decreasing (b) values of the bifurcation control
parameters respectively are provided and superimposed
in (c). (d) the corresponding graph of largest LE of each
diagram in (c).

Multistability and basins of initial conditions

The simultaneous existence (coexistence) of attractors in an
oscillator sharing the same set of system parameters. Some
extreme manifestations of such behavior generally conduct
to extreme multistability Bao et al. (2016) or mega-stability
Leutcho et al. (2020,?); Sprott et al. (2017); Tuna et al. (2019).
In such system bifurcations that can occur depend only
on the variation on the initial conditions. Among some
nonlinearities are found hybrid diode, active diodes, RC
memristor with diode bridge, Flux control just to name a few
Bao et al. (2016); Chen et al. (2015); Bao et al. (2016). Recently
Kengne in 2017 Kengne (2017) highlight the simultaneous
existence of up to four disconnected attractors in the Chua’s
oscillator a smooth nonlinearity f (x) = ax3 + bx. Although
some immense works already done on Chua’s oscillator, no
work has ever report this widespread in the original Chua’s
circuit with PWL function as nonlinearity thus, merit to be
investigated.

Fig.8 displays an extension of the diagram of Fig.3. A
window of coexisting bifurcations which support the hys-
teretic dynamics are observed. For example when α = 28.5,
the Chua’s circuit displays the simultaneous existence of
two pair of periodic attractors including a pair period-1 limit
cycle and a pair of period-3 limit cycle, using different initial
states in Fig.9.

(a)

(b)

Figure 9 Superposition of four coexisting different
periodic orbits for α = 28.5. Initial conditions
(x1(0), x2(0), x3(0)) are (±1.2, 0, 0) and (±0.8, 0, 0) respec-
tively.

(a)

(b)

Figure 10 Superposition of four coexisting differ-
ent periodic orbits for α = 29. Initial conditions
(x1(0), x2(0), x3(0)) are (±0.8, 0, 0) and (±1.2, 0, 0) respec-
tively.
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For α = 29 the Chua’s circuit displays the simultaneous
existence of two pair of periodic attractors including some
limit cycles with different initial states in Fig.10. When
further increase the control parameter to α = 29.47 rep.
α = 32.3 the model exhibits the simultaneous existence four
different orbits among which a pair of chaotic orbits and
of a pair of period-3 limit cycle for different initial states as
presented in Fig.11 resp. in Fig.12.

(a)

(b)

Figure 11 Superposition of four coexisting different pe-
riodic orbits including a pair of chaotic orbits as well
as a periodic one for α = 29.47. Initial conditions
(x1(0), x2(0), x3(0)) are (±1.44, 0, 0) and (±1.2, 0, 0) re-
spectively.

This simultaneous existence of periodic and chaotic or-
bits discovered in this works can be viewed as another
contribution for the repertory of behavior already found
during the previous investigation of this original Chua’s
circuit with piecewise-linear function. In the case Fig.12
we have computed the eigenvalues associated to each
stationary point. It is found that, the eigenvalues re-
lated to origin S0 are λ0= 6.8313 and λ1,2= −1.1593 ±
7.3028i while the one related to the non-trivial fixed point
S12 = (±2.93,∓0.0473,∓2.9773) are λ0= −4.3618 and
λ1,2= 0.4924± 6.6453i.

(a)

(b)

Figure 12 Superposition of four coexisting different
periodic orbits including a pair of chaotic orbits as
well as a periodic one for α = 32.3. Initial conditions
(x1(0), x2(0), x3(0)) are (±1.44, 0, 0) and (±1.52, 0, 0) re-
spectively.

The obtained eigenvalues are in good agreement with the
one plotted in Fig.2 and yield the conclusion that coexist-
ing attractors found in this work are self-existed instead of
hidden Njitacke et al. (2019); Pham et al. (2016, 2019); Tagne
et al. (2019). For each coexisting attractors captured in Fig.12,
Fig.13 represents cross sections of basin of attraction associ-
ated to each attractor. From Fig.13 it can be observed that
each attractor has its set of initial conditions which inter-
cepts with the one of its direct neighbor.
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Figure 13 Basin of attraction domain forx1(0) = 0, x2(0) = 0 and x3(0) = 0.
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ANNIHILATION OF THE MULTISTABILITY IN THE
CHUA’S OSCILLATOR BASED ON LINEAR AUG-
MENTATION SCHEME

Presentation of the control method

From the theory Sharma et al. (2011) the linear augmenta-
tion control scheme enables a coupling between a nonlinear
system and linear system as following:

 Ẋ = F (X)− δU

U̇ = −ηU − δ (X− E)
(12)

Here, Ẋ = F (X) represents any autonomous nonlinear
dynamical system, X the m-dimensional state vector of the
uncontrolled system. The parameter δ defines the intensity
of interaction between the two structures. The vector U
relates the dynamics of the linear system U̇ = −ηU. Param-
eter E plays the key role of targeting desired attractor from
the augmented system Fonzin Fozin et al. (2019); Fozin et al.
(2019); Sharma et al. (2013, 2015). Henceforth, appropriate
selection of parameter E close to any of the unstable steady
state leads to the disappearance of some coexisting attrac-
tors. It is worth to underline that a unique targeted attractor
is obtained for higher values of the coupling strength and
thus turns the multistable system to a mono-stable one.

Figure 14 Two parameter diagram (left) and lyapunov
stability diagram (right).

Let now apply the linear augmentation scheme to the
Chua’s system with PWL nonlinearity. The controller is
applied along the x2 variable with the coupling strength δ
as shown in Eq.(13).



dx1
dt = kα

(
x2 − x1 −m1x1 +

1
2 (m0 −m1) (|x1 + 1| − |x1 − 1|)

)
dx2
dt = k (x1 − x2 + x3) + δu

dx3
dt = k (−βx2 − γx3)

du
dt = −ηu− δ (x2 − e)

(13)
It is worthy to recall that the choice of scalar coupling

is mostly justified by both engineering requirements (i.e.,
optimization of resources and great flexibility in the design
of communication systems) and recent results of control and
synchronization on chaotic systems Lian et al. (2002); Peng
et al. (1996). Indeed, vector coupling implies higher energy
and resources consumption than scalar coupling.

(a)

(b)

Figure 15 Bifurcation diagram (a) and corresponding
graph of maximum LEs.
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Control of multistability in Chua’s oscillator

Results of this control method are provided in Fig.14 us-
ing the Two-parameter diagram and corresponding graph
of the Lyapunov stability exponent in the parameter space
(δ, α). The computation method used here is the same like
the one exploited in the previous section. Green color jus-
tifies periodic oscillations while the magenta color justifies
chaotic motions. A good accordance is observed between
Two-parameter diagrams (left) and corresponding maximal
Lyapunov exponent diagrams (right). The diagrams are
obtained by sweeping up (Fig.14 (a)) and down (Fig.14 (b))
the bifurcation parameter of the uncontrolled Chua’s circuit
and coupling strength simultaneously. Globally, from these
diagrams three parameters space namely (R1), (R2) and (R3)
can be observed. The regions correspond to the set of param-
eter for with the model displays hysteretic dynamics which
gives birth to the phenomenon of coexistence of multiple
stable states.

When weeping up the control parameter δ in the range
[0→ 0.8] as it can be seen in Fig.15, four set of data are
superimposed in the bifurcation diagram as well as its cor-
responding graph of maximum Lyapunov exponent. Each
set of data (marked by cyan, green, magenta and yellow
colors) corresponds to the route follows by each attractor
during the control mechanism. As depicted in Fig.15 three
crises enable all the plotted routes to merge along the one
in red as for higher values of the coupling strength. In the
region (A1) of Fig.13 and for very small values of δ (i.e.,
δ ≈ 0.1), four attractors coexist including two chaotic at-
tractors (cyan color and magenta color) with two periodic
attractors (yellow color and green color).

Figure 16 Coexistence of a pair of asymmetric chaotic
attractor ((a) and (b)) with asymmetric periodic three ((c))
showing multistability phenomenon with the Basin of
attraction (d) in the plane (x2 (0) , x3 (0)) when δ = 0.128.

(a)

(b)

Figure 17 Coexistence of an asymmetric chaotic attractor
(a) with asymmetric periodic three showing multistability
phenomenon with the basin of attraction (b) in the plane
(x2 (0) , x3 (0)) when δ = 0.49.

(a)

(b)

Figure 18 Period-5 attractor (a) and asymmetric chaotic
attractor (b) showing various surveving attractor obtained
after the control gaol when δ = 0.6 and δ = 0.7 respec-
tively.
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At the upper boundary of (A1) the diagram in yellow
(periodic one) undergoes a crisis (first crisis) and merges
with the diagram in cyan. In the region (A2), because of
the previous merging crisis, there are only three distinct dia-
grams whose follow their bifurcations (see region A2). For a
discrete value δ = 0.128 we have the coexistence of three dis-
connected attractors, involving a period-3 limit cycle with
a pair of chaos as presented in Fig.16. The demarcation re-
gion of each coexisting attractor in region A2 is provided
in Fig.16d. At the upper boundary of (A2) a crisis (second
crisis) enables the diagram in green displaying chaotic dy-
namics to merge with the diagram in magenta. In the region
(A3), we observe the superposition of two diagrams includ-
ing a periodic and chaotic one. In this region for a discrete
value δ = 0.49, the Chua’s oscillator displays coexistence of
a period-3 limit cycle with an asymmetric chaotic attractor
(see Fig.17).

The basin of attraction associated to each coexisting at-
tractor is computed and plotted in Fig.15b. At the upper
boundary of (A3) a crisis (third crisis) enables the diagram
in magenta displaying period-3 limit cycle to merge with
the diagram in cyan. In the region (A4), when the critical
value δ = 0.52 all the diagrams have already merge with
the cyan one and the control goal is achieved as depicted
in region (A4). For δ = 0.6 (resp. δ = 0.7) Fig.18a (resp.
Fig.18b) displays the unique periodic (resp. chaotic) attrac-
tors which have survived through the control scheme. We
can say that, the route exhibited by the cyan diagram is a
magnetized route which attracts towards it all the others
route as the control parameter is increased. Also, It is worth
to emphasize here that the result of multistability control on
the Chua’s system with PWL nonlinearity obtained in this
work has never been presented before and thus merit to be
shared.

CONCLUSION

In the present work, we have addressed the suppression of
multistability in the original Chua’s circuit with the tradi-
tional piecewise-linear nonlinearity. Using usual nonlinear
bifurcation diagrams windows of coexisting dynamics of
the model have been investigated. The main result of this
paper is the output of different windows in the parame-
ter space where the Chua’s circuit with a piecewise-linear
nonlinearity displays the phenomenon of the simultaneous
existence of multiple coexisting orbits, including coexistence
of four disjointed oscillatory periodic and chaotic orbits de-
pending only on initial conditions for a large range of circuit
parameters values. The linear augmentation method has
been also applied on the model to control the four coexisting
orbits obtained from hysteretic investigation. Then the pair
of periodic orbits which were coexisting with the pair of
chaotic orbits have been suppressed and only a unique orbit
remains. Since the Chua’s model investigated in this work
processes three equilibrium points and displays the coexis-
tence of four attractors, the control of the coexisting attrac-
tors with selection of chaotic attractor based on equilibria

and its electronics implementation as well as its application
to image encryption would deserve the topic of our future
work.
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