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Abstract

Deterministic numerical solutions of point reactor kinetic equations give us the mean values of the neutron population and delayed neutron precursor
concentrations, whereas the actual dynamical process is stochastic. The neutron population and precursor concentrations fluctuate randomly with time.
In the present study, a novel stochastic model for two-point reactor kinetics equations is developed and used to analyze the dynamical behavior of the
source-free strongly reflected reactors with six groups of delayed neutron precursors. To derive the It6 stochastic differential equations system
corresponding to this model, the two-point reactor kinetics equations are separated into three terms: prompt neutrons, delayed neutrons, and reflected
neutrons. In the case of different perturbation scenarios, both with and without the Newtonian temperature reactivity feedback effects, this system of
stochastic differential equations is solved using the Euler-Murayama numerical method. It is observed that the mean response of the system is
comparable with the results of other deterministic numerical methods.
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Yansiticili reaktorlerin stokastik iki-nokta reaktor kinetik denklemlerinin sayisal
simiilasyonu

0Oz

Nokta reaktor kinetik denklemlerinin sayisal ¢oziimleri bize ndtron popiilasyonu ve gecikmis nétron iiretegleri yogunluklarinin ortalama degerlerini
vermektedir. Gergek dinamik siire¢ stokastik bir siire¢ oldugu i¢in, nétron popiilasyonu Ve iirete¢ yogunluklar: zamanla rastgele dalgalanmaktadir. Bu
caligmada, harici notron kaynagi olmayan ve alti grup gecikmis nétron tireteci olan giliglii yansiticili reaktorlerin dinamik davranigini analiz etmek
amaciyla iki-nokta reaktor kinetik denklemleri igin yeni bir stokastik model gelistirilmistir. Bu modele karsilik gelen Ito stokastik diferansiyel
denklemler sistemini tiiretmek igin iki-nokta reaktor kinetik denklemleri {i¢ terime ayrilir: ani ndtronlar, gecikmis nétronlar ve yansiyan nétronlar. Geri
besleme etkilerinin dahil edildigi ve edilmedigi farkli pertiirbasyon durumlarinda, stokastik diferansiyel denklemler sistemi Euler-Murayama sayisal
yontemini kullanarak ¢oziiliir. Sistemin ortalama yanitinin diger deterministik sayisal yontemlerin sonuglariyla karsilastirilabilir oldugu goriilmektedir.

Anahtar Kelimeler: Yansiticili reaktor, Euler-Murayama yontemi, Stokastik modeller, Geri-besleme etkisi

1. Introduction

Deterministic point kinetics equations are the coupled differential equations for the neutron population and the
precursor concentrations. Deterministic numerical solution methods have been used to solve the point kinetics equations
to predict the dynamical behavior of the nuclear reactors. Solutions of the point Kinetics equations give us the mean
estimated values for the neutron population and delayed neutron precursor concentrations [1-4].
Due to the inability of the conventional one-point reactor kinetics model in the estimation of the dynamical behavior of
the strongly reflected reactor, the two-point reactor kinetics model was developed by Cohn, and re-derived by Van Dam

and Spriggs et al. [5-7]. In this model the reflected reactor coupling parameters which are denoted by f;, and f,.. are used
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to describe the migration of neutrons between core and reflector. The source-free version of the two-point reactor kinetics

equation with six groups of delayed neutron precursors are as follows [6,8]:

ch(t) _p(t) _ﬁ _fcr f;"c f;"c C
=1 Ne(®) + TN + Z 3G ®
JaAN:(O)  for N (1)
dt - Ac Nc(t) lr
dc; (t) B o
dt =A—C Nc(t) _)'i Ci (t) ) i=1,..,6

In this system of equations, N, (t) represents the neutron population in the core region and is taken proportional to reactor
power, N,.(t) is the neutron density in the reflector region, A. is the neutron generation time in the core region, L. is the
neutron lifetime in the reflector region, p(t) = po,(t) — f-(1 — f;-c) is the system reactivity, p.,(t) is the infinite core
reactivity, f,. is the fraction of fission neutrons leaking from the core to the reflector, f,.. represents the fraction of reflector

neutrons returning back to the core, C; (t), A; and B; are the concentration, decay constant and delayed neutron fraction

for delayed neutron precursor group i, respectively, and 8 represents the total delayed neutron fraction (= Y.5_; B)).

By using the adiabatic model, the Newtonian temperature reactivity feedback due to the fuel temperature is expressed as
follows [9,10]:

dr(t)

P K. N.(t) 2
and

p(t) = Pexe(t) — a [T(t) — Tp] 3)

Where K. is the reciprocal of the reactor heat capacity, p.,. (t) is the external reactivity, T (t) and T, are the core-averaged
fuel temperature at time t and zero, respectively, and « is the magnitude of the fuel temperature coefficient of the

reactivity.

By integrating the expression given in equation (2) with respect to time and using the expression given in equation (3),

the system reactivity in the presence of the Newtonian temperature feedback effect becomes in the form of:

t
PO = peae(® — b [ Ne(eat @
0
where b = aK_is the nonlinear coefficient part of the reactivity which is also called as the shutdown coefficient of the
reflected reactor.

Different type of numerical and analytical solution methods such as fundamental matrix method, analytical exponential
method, analytical inversion method, and exact solution methods were used to solve either linear or non-linear two-point

reactor kinetics equations [8, 9, 11-13].
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The neutron interaction type is determined by using the cross sections, which are also referred to as the interaction
probabilities. Therefore, the occurrence of any neutronic event is a stochastic or random process. The actual dynamical
process is also stochastic and the neutron population and precursor concentrations fluctuate randomly with time. Although
at high power levels the random fluctuations are negligible but at low power levels, such as at reactor start-up, random
fluctuations in the population dynamics can be significant. In modern science, the fluctuations are treated as a fundamental
property of the system which carry very often as much information as the mean value. Therefore, it is important to get

informed about these fluctuations. Hence, nuclear phenomena should be described using the stochastic models [14-16].

The initial stochastic one-point reactor kinetics model was developed by Hayes and Allen [17]. They also introduced a
special Monte Carlo technique as well as the stochastic piecewise constant approximation method to solve the stochastic
one-point reactor Kinetics equations [17,18]. The Euler—Maruyama and Taylor 1.5 strong order numerical methods are

also used to predict the stochastic behavior of the neutron and precursor populations [19].

The efficient stochastic model for the one-point kinetics equations was derived by Nahla and Edress, and different solution
methods are implemented to solve it [20-22]. In this model to transform the deterministic one-point reactor kinetics
equations into a stochastic differential equations system, the deterministic point kinetics equations are separated into

delayed and prompt neutrons terms.

In this manuscript, a system of stochastic two-point reactor kinetics equations is provided and solved by using the Euler-
Maruyama solution method. To test the validity of the proposed model, the mean response for the neutron population in
the core and reflector regions and the mean response for the precursor concentrations are compared with the results of the

different deterministic numerical methods.

2. Stochastic model formulation
To derive the stochastic two-point reactor kinetics equations, the deterministic two-point kinetics equations are

separated into three terms as follows:

i Prompt neutrons: %) N.(t)
ii. Delayed neutrons: % N.(t) —AC(t) ; i=1,..,6

iii. Reflected neutrons: fj\—’ N.(t) — Nr(®)
C

lr

To formulate the stochastic model, the time domain is divided into small time intervals of the length of At = h second,
such that the occurrence probability of more than one event during each time interval is small. It is also assumed that the
changes in the neutron and precursor populations during each time interval are approximately normally distributed [17-
19,22].

ANC Nc(tm+1) - Nc(tm)
ANr Nr(tm+1) - Nr(tm)

|AY) = Af:l =1 Ci(tm+1) — Ci(tm) (5)
Aéﬁ Cﬁ(tm+1)._ Ce(tm)

where t,,, = m X h represents any time point within the time domain, where m changes from zero to M (humber of time-
bins).
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The eight possibilities for the |AW ) and their corresponding probabilities are listed as follows:

1
0
ja%,) = m IR RPLALL NS ©)

0

w ;o Py= h (% Nc(tm) - Alcl(tm)> (8)

_frc
1
A%)( 0 |5 P =h<ﬁ’ Nc(tm)—Nrgt”‘)) (7

-1
0 Be
|ALPS> = 0 ;0 Pg= h X Nc(tm) - Aﬁcﬁ(tm) (9)
1
The first event represents a change in the core region neutron population due to prompt neutrons. The second event

denotes the neutron transfer between the core and reflector regions. The rest events represent the changes in the neutron

and precursor populations which are caused due to both the precursor born and transformation of a precursor to a delayed
neutron.

The mean change in the small time interval, h, is obtained as follows:

8
E[|A¥,)] = » P |AW,) = h A(ty,) | () (10)
k=1
where
p(tm)_ﬁ_fcrfrc & /11 /12 /16
A, L.
fCT 1
A i 0 0 0
_ B
A(t,) = Xl 0 -4 0 .. 0
B
72 0 0 -2 =~ 0
B
76 0 0 0 .. —A
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N¢(tm)
N, (tn)
C6(tm)

The variance of change is also calculated as:

8
Var[|aw)l = ) P |A¥ AW, | = h B(tn) (11
k=1
where
.uc(tm) _frc .url(tm) _lll(tm) —U2 (tm) _.u6(tm)
—fre br1(tm) 1 (tm) 0 0 0
D _:ul(tm) 0 M (tm) 0 0
B(t,) =
En) =1 ) 0 0 faltw) . O
—He(tm) 0 0 0 te(tm)
6
p(tm) + B + frefer fre
“c(tm) = A - Nc(tm) - l_CNr(tm) - Z Aici(t)
¢ T i=1
e Ny (tm)
“T(tm) - Ac Nc(tm) lr
_Bi
wi(tm) = 1 Ne(tp) — A;Ci(tm)
Cc
. - . . |AW)-E[|AW)] L _1a1-
According to the central limit theorem, the random variate ~FratanT follows standard normal distribution [17-19]:

) — E[|A%)] _

Var[|AW)] ) (12)

where |n) = [n1, 12, ...,ng]7, and n;’s are the random numbers which are chosen from standard normal distribution
N(0,1).

Thus we have

AW) = h Aty [¥ (t)) + Vh B2(ty)n) (13)

The standard Wiener process W = {W(t) for t = 0} is a stochastic process which satisfies the following properties
[23,24]:

i W (t) is continuous for all ¢.
ii. W(@)=0.
iii. For 0 < t; < t,, the random number given by W (t,) — W (t;) is normally distributed with mean zero and
variance t, — ty, thatis W(t,) — W (t;)~+t; — t; N(0,1)
iv. ForO<t, <t,<ts<t,,W(t,) — W(t;) and W(t,) — W(t3) are independent from each other
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Relying on the Winer process properties, vh |n) becomes equal to |AW):

AW,

aw)y = [ 4%z

(14)
AW,
Where, AW; = W;(tm41) — Wj(tn).

By dividing both sides of equation (13) by h and taking limit h — 0, the corresponding system of Itd stochastic

differential equations for the two-point reactor kinetics model is resulted as follows:

d = =1 _d
e P(©) = A@©)|Y(D) + Bz(t) WD) (15)
In this study, the Euler-Maruyama numerical method is used to solve the stochastic two-point reactor kinetics [25].

|9 (1)) = 1% (60 + h A 1% (6)) + B2(t)18W) (16)

It is worth noting that, the result of each individual simulation is different from the other simulations results, therefore,
the system mean response is obtained by calculating the average of the results of the several individual simulations.

Similarly, the standard deviation corresponding to the mean neutron and precursor populations are easily calculated.

3. Computational results

To test the validity of the proposed stochastic model, the zero-power research reactor PROTEUS, which consists
of a relatively small core surrounded by a thick graphite reflector, is taken into consideration [8,9]. For the different
reactivity insertion scenarios such as step reactivity, ramp reactivity, and ramp reactivity insertion in presence of the
Newtonian temperature feedback effect the mean response of the stochastic model is compared with the results of the
deterministic numerical methods. The kinetics parameters of the reflected reactor PROTEUS in the critical condition are

presented in Table (1).

Table 1. The kinetics parameters for the critical reflected reactor PROTEUS.

P A(ms) L.(ms) fre fer
04 0.4 4.0 0.5 0.8
Precursor group i A(s™YH B

1 0.012444 2.371E-4

2 0.030535 1.583E- 3

3 0.111438 1.417E-3

4 0.301368 2.856E- 3

5 1.136307 8.314E -4
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6 3.013683 3.037E-4

The initial condition is expressed as follows:

1
L for
Nc(to) A
(Nr(to)w ﬁ;
|l'p(t0 = 0)) = C1(t0) = Nc(to) n (17)
Cs(‘to) [”Ee
\AC /16/

3.1 Step reactivity insertion

In this test case, a positive step reactivity of 0.6 dollar is introduced into the system, at time ¢t = 0 s. The results obtained
from the Stochastic Point Reactor Kinetics Model (SPRKM) for the neutron populations in the core and reflector regions
are plotted in Figure (1). In each case, using the numerical solution of the SPRKM, two individual sample neutron
populations and the mean neutron population of 2000 individual simulations are plotted. The time intervals length is also

taken as h = 0.001 s.

30 SPRKM (sample neutron population 1) SPRKM (sample neutron population 1)
— SPRKM (sample neutron population 2) —— SPRKM (sample neutron population 2)
=——— SPRKM (mean neutron population) 200 = SPRKM (mean neutron population)

25

A 20t & 150
5 5
£ <
—~ 15¢ -
= = 100
z z
10
50
5t
1 8 |
0 2 4 6 8 10

t[s] t[s]

Figure 1. The core and reflector neutron populations for the positive step reactivity.

A comparison between the obtained results from the SPRKM and the results obtained from the fundamental matrix method
(FMM) and analytical exponential method (AEM) are presented in Table (2). The standard deviations of the results
obtained from the SPRKM are presented in parentheses next to the means. It is seen that the obtained results are in good

agreement with the results of the deterministic numerical methods.

Table 2. Core and reflector neutron populations for the step reactivity insertion.
Time (s) N.(t) N,.(t)

FMM[8] AEM [11] SPRKM (o) FMM AEM SPRKM (ay,)
10 2360463 2.360462 2.350399 (0.955340) 18.852197 18.852188 18.767001 (6.293199)
20 3294818 3294816 3.259099 (1.231999) 26.328428 26.328411  26.084001 (8.630404)
30 4302021 4302018 4.303596 (1.500201) 34.381319 34.381290  34.294006 (11.092999)
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Ramp reactivity insertion
In this test problem, a 0.1t positive linear ramp reactivity is inserted into the system, at t = 0 s. The average response
of the 2000 individual simulations for the core and reflector neutron populations are plotted in Figure (2). The results of

the SPRKM are compared with the results of FMM and AIM Padé02 and presented in Table (3). It is observed that the

results of SPRKM are accurate compared with the results of other deterministic methods.
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Figure 2. The core and reflector mean neutron populations for the positive ramp reactivity.

Table 3. Core and reflector neutron populations for the ramp reactivity insertion.

N:(8) N, (8)
Time (s)
FMM  AIM Padé02 [12] SPRKM (ay,) FMM  AIM Padé02 SPRKM (ay,)
0.10 1.00171 1.00177 1.001393 (0.511915)  8.01271 8.01316 8.025715 (1.459975)
0.50 1.02817 1.02923 1.024317 (0.537758)  8.22249 8.23089 8.231267 (1.925292)
1.00 1.08316 1.05643 1.084554 (0.569949)  8.66127 8.68740 8.663623 (2.198768)
3.00 1.47994 1.50414 1.485416 (0.635719)  11.8302 12.0236 11.81655 (3.161711)

3.3.

Reactivity insertion in presence of the temperature reactivity feedback

In this test case, the transient behavior of the reflected reactor with a linear ramp reactivity insertion and in presence of
the Newtonian temperature feedback effect is simulated with SPRKM method. The system reactivity in each time point

is approximately obtained as follows:

m
p(t,) =ax mx h— bxthNc(tj) . m=0,..,M (18)

j=1

where a is the constant coefficient for the linear external reactivity.

For a = 0.1 s~1and two different b values of 1071 (cm3/s) and 10713 (cm3/s), the core and reflector mean neutron

populations are plotted in Figure (3). It is observed that the neutron populations reach a peak value and finally due to the
feedback mechanism the system reaches to a critical equilibrium condition with a different power level. By taking the

time derivative of the reactivity equal to zero, the mean neutron population in the core region in the equilibrium state
quently, in the reflector region, Ny, is equal to erﬁ X % . As seen in the figure, these
C

becomes equal to Ne,, = %. Subse

equilibrium mean values are accurately estimated by the SPRKM.
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Figure 3. The core and reflector mean neutron populations for the ramp reactivity insertion in presence of feedback effect.

The time evolution of the reactivity and normalized precursor concentrations are plotted in Figure (4). It is seen that the
reactivity asymptotically tends to zero. For all precursor groups, the normalized concentrations in the equilibrium
condition are the same and equal to:
Bi
C Ac A —_
o P -
Ci(o) o Ne(0) b

leq _ Ceq a

(19)

It is known that, for a system in critical equilibrium condition, it takes a long time that the delayed neutron precursors
reach the equilibrium condition. As it is seen in Figure (4-(b)), the precursor groups 5 and 6 reach the equilibrium in a

shorter time. This is due to the large decay constant of these groups compared to other groups.

0.15

@) a=0.1,b=10""2 1012} (b) N
01l F¢
0.05 s 10°r
e o
< S
0 o
n group 1 i
10 group 2
005 group 3
group 4
group 5
group 6
0.1 . . . . 10° . . . .
0 2 4 6 8 10 0 2 4 6 8 10

ts] t[s]
Figure 4. (a) Time evolution of the system reactivity for the a=0.1 and b=1E-13, (b) Normalized precursor concentrations for the a=0.1 and b=1E-

13.

4.

The point reactor kinetics equations are deterministic and can only be used to estimate the mean values of the neutron

Summary and conclusions

population and delayed neutron precursor concentrations. The reactions in the nuclear reactor are not fully describable by
deterministic laws. Therefore, nuclear phenomena should be described using the stochastic models. Both Monte Carlo
techniques and stochastic point reactor kinetics models were used to model the random behavior of the neutron density
and the precursor concentrations. It was observed that the stochastic point reactor models are computationally much faster
than the Monte Carlo method [17-18]. In the present study, a new stochastic point reactor kinetics model is proposed to

investigate the dynamical behavior of the reflected reactors. For different forms of reactivity insertions including
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reactivity feedback, the developed system of stochastic differential equations is solved using the Euler-Murayama

numerical method. The accuracy of the proposed methodology is confirmed by comparing the obtained results with the

results of the other numerical methods presented in the literature. It should be noted that the developed stochastic method

is only proper to estimate the mean particle populations and cannot be used to analyze the reactor noise. In order to

investigate the reactor noise, all the birth and death events of particles must be taken separately into account. As a future

work, we will try to derive an accurate stochastic point reactor kinetics model for noise analysis of the reflected systems.
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