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ABSTRACT A Jerk circuit with two diodes mounted in parallel is formulated and analyzed in this paper. The
system describing the proposed jerk circuit exhibits two or no equilibrium points as function of the system
parameters. Studies on equilibrium points stability show the appearance of Hopf bifurcation. The proposed
jerk circuit exhibits one scroll chaotic attractor and periodic attractors. An experimental study is presented to
support theoretical investigations. The experimental results are shown consistency with numerical simulation
results.
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INTRODUCTION
The scientific community was surprised when Lorenz
Lorenz (1963) discovered in 1963 a chaotic behavior in a
simple system based on third order differential equations,
with two quadratic non linearities. Lorenz had just discov-
ered the phenomenon of sensitivity to initial conditions and
systems possessing this behavior have been characterized
by chaotic. Since then, the researchers have been devoting
much attention to the famous systems exhibiting chaos as
Chen’s oscillator Chen and Ueta (1999) the Chua oscillator
Chua et al. (1993), Rossler oscillator Rössler (1976), the Ar-
neode oscillator Arneodo et al. (1981), the Lu oscillator Lü
et al. (2002) and the Jerk oscillators Sprott (1997).

A huge amount of papers have been hallowed to research
on simple systems that can generate chaotic behavior. Jerk
Munmuangsaen et al. (2011) systems are among these simple
systems that are easy to implement. It is a system of three
dimensional equations described as:

...
x = J(ẍ, ẋ, x) Where
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"J" refers to the term "Jerk" which is the derivative with
respect to the time of the scalar variable x. From standpoint
of the dynamic of solids, if the scalar variable is set to be the
position of a mobile, then the third order derivative of the
position represents the Jerk Schot (1978). Many researchers
have mobilized their thoughts on Jerk systems. Sprott and
his collaborators presented a Jerk system with exponential
nonlinearity Sprott (2010). In 2012, Chunxia at al. Chunxia
et al. (2012) generate multi-scroll attractors through a Jerk
model. In 2013, Omur et al. Umut and Yasar (2013), study
a jerk with quadratic nonlinearity initiated in Genesio and
Tesi (1992) that present strange attractors.

Sambas and collaborators Sambas et al. (2016) brought
some modifications on the system study by Omur et al.
Umut and Yasar (2013) and they found some striking phe-
nomena. Here, we linger on the Sambas and collaborators
system with hyperbolic cosine as nonlinearity term. The
reasons of this substitution are: Firstly, the system is simple
and easy to implement (replacement of the multiplier by
two diodes semiconductor) and secondly, to make it more
complex (look for new and enriching phenomena). In our
various studies, we have found that our new system can ex-
hibit enriching phenomena such as the existence of multiple
attractors.
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These chaotic phenomena are found in several areas of
sciences, particularly in biology Djati (2011); in chemistry
Nakajima and Sawada (1980); in economics Bouali et al.
(2012) and even in the medical engineering Shinbrot et al.
(1992) just to name a few. However, despite their unsta-
ble characters, these systems are today to an importance
because they can be used in telecommunication for secure
information’s Sambas et al. (2013); in video monitoring Lian
et al. (2008); in robotics Zang et al. (2016) and many other
fields in engineering.

The next coming steps are organized as follows. Section
2 presents the description, analytical and numerical investi-
gations of the proposed jerk circuit. Section 3 is devoted to
the experimental investigation. Finally, a general conclusion
and some remarks are given in section 4.

CONCEPTION AND ANALYSIS OF THE PRO-
POSED JERK CIRCUIT WITH TWO PARALLEL
DIODES
Sambas and other researchers Sambas et al. (2016) recently
proposed the jerk model with quadratic nonlinearity defined
by:

dx1

dt
= x2, (1a)

dx2

dt
= kx3, (1b)

dx3

dt
= −cx1 − bx2 − ax3 + µx2

1, (1c)

where t is the time, x1, x2 and x3 are the state variables
of system (1) and the parameters a, b, c, k, µ are the positive
system parameters. It is important to note that deep studies
conducted on this system have resulted in interesting phe-
nomena. In this paper, the quadratic term in system (1) is
substituted by a cosine hyperbolic nonlinearity. Therefore,
system (1) becomes:

dx1

dt
= x2, (2a)

dx2

dt
= kx3, (2b)

dx3

dt
= −cx1 − bx2 − ax3 + µcosh(x1), (2c)

The cosine hyperbolic nonlinearity of system (2) is easily
realized with two semiconductor diodes mounted in parallel
as indicated in Fig.1.

The schematic circuit of system (2) of consists of six
operational amplifiers, twelve resistors, three capacitors
and two semiconductor diodes Fig. 1 mounted in paral-
lel. The jerk circuit of Fig. 1, is easy to implement and
less expensive (substitution of the multiplier by two diodes).

System (2) is invariant under any transformation
(x1, x2, x3)↔ (−x1,−x2,−x3) It is also disspative because

∂ẋ1
∂x1

+ ∂ẋ2
∂x2

+ ∂ẋ3
∂x3

= −a < 0 The equilibrium points of sys-

tem (2) can be derived by setting dx1
dt = dx2

dt = dx3
dt = 0.

Resolution lead us to:

x∗2 = x∗3 = 0, (3a)
− cx∗1 + µ cosh(x∗1) = 0 (3b)

Analytical resolution of Eq. (3b) is impossible but by using
the Newton-Raphson method we can get the value of x∗1 .
Equation (3b) has no roots or two or four roots as function
of the value of parameters (µ, c) as shown in Fig. 2 (a). At
equilibrium point E =

(
x∗1 , 0, 0

)
evaluation of characteris-

tic equation of system (2) give:

λ3 + aλ2 + kbλ− k [−c + µ sinh (x∗1)] = 0. (4)

It can be obviously verified via Routh-Hurwitz stability
criterion, that the real parts of eigenvalues are less than zero
if:

c− µ sinh (x∗1) > 0, (5a)
ab− c + µ sinh (x∗1) > 0. (5b)

because a > 0 and k > 0. The stability analysis of equilib-
rium points E =

(
x∗1 , 0, 0

)
versus the parameter c is shown

in Fig. 2 (b).
Figure 2 (a) reveals that system (2) has two or no equilib-

rium points regions as function of the parameters µ and m.
One of the equilibrium points E1 is always unstable (see Fig.
2 (b)). For c ≤ 3.352, the other equilibrium point E2 is stable
while for c > 3.352, it is unstable as shown in Fig. 2 (b). So
system (1) can exhibit a Hopf or transcritical bifurcation at
the equilibrium point E2 by varying the parameter c.
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Figure 1 Electronic circuit of system (2).

Figure 2 (Color online) (a) Distribution of equilibrium
points of system (2) versus the parameters µ and c and
(b) stability diagram of equilibrium points E = (x1∗, 0, 0)
as function of the parameter c for µ = 1.0. In panels (b),
red lines indicate unstable branches and solid black lines
stable branches. The remaining parameters are α = 1.0and
b = 3.03.

Theorem: System (2) exhibits a Hopf bifurcation at the
equilibrium point located E2 for bk > 0 and the parameter α
passes through the value cH = −ab + µsinh(x1∗).

Proof: By substituting λ = iω (ω > 0) into Eq. (4), we
obtain

ω = ω0 =
√

bk, (6a)
c = cH = −ab + µ sinh (x∗1) . (6b)

By differentiating both sides of Eq. (4) with respect to c,
it is obtained

3λ2 dλ

dc
+ 2aλ

dλ

dc
+ bk

dλ

dc
+ k = 0 (7a)

dλ

dc
=

−k
3λ2 + 2aλ + bk

. (7b)

then

Re

(
dλ

dc

∣∣∣∣
c=cH , λ=iω0

)
=

k
2 (bk + a2)

6= 0. (8)

Therefore the conditions for Hopf bifurcation to happen are
fulfilled. System (2) exhibits a Hopf bifurcation at E2 when
cH = −ab + µ sinh

(
x∗1
)

and periodic solutions exit in the
vicinity of the point cH (for bk > 0). If α = 1.0, b = 3.03 and
k = 2.0, the critical value is c = cH ≈ 3.352 and the time
traces and the phase portraits of system (2) for two values
of c around cH ≈ 3.352.
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Figure 3 The time traces and the phase portraits of system
(2) for two values of c around cH ≈ 3.352: (a) c = 3.2 < cH
and c = 3.2 > cH . The initials conditions are x1(0) = 0.1,
x2(0) = 0.1 and x3(0) = 0.1. The others parameters are
a = 1.0, b = 3.03, k = 2.0 and µ = 1.

In Fig. 3 (a) for c = 3.2 < cH , the trajectories of system (2)
converge to the equilibrium point E2 whereas for c = 3.2 >
cH , , system (2) displays a perid-1-oscillation as shown in Fig.
3 (b). The appearance of the Hopf bifurcation is independent
on the parameter k as shown in Eq. (6b). The bifurcation
diagrams of x1(t) versus the parameter c for α = 1.0, b =
3.03, µ = 1 and three different values of the parameter k
is show in Fig. 4 in order to confirm the analytical results
presented in Eq. (6b).

In Fig. 4, limit cycle is exhibited up to c = cH =
−ab + µ sinh

(
x∗1
)
≈ 3.352 where a Hopf bifurcation occurs

followed by the convergence of the trajectories of system (2)
to the line equilibrium point E2. The analysis of the behavior
of system (2) can be developed by plotting the bifurcation
diagram and largest Lyaponov exponent (LLE) as function
of the parameter c as illustrated in Fig. 5.

Figure 4 The bifurcation chart showing maxima (black
dots) and minima (gray dots) of x1(t) versus the param-
eter c for different values of parameter k: (a) k = 2,(b)
k = 8 and (c) k = 15. The others parameters are for
α = 1.0, b = 3.03 and µ = 1.

Figure 5 The bifurcation chart showing the local maxima
of x1(t) (a) and the corresponding LLE (b) as function of
the parameter c and a = 1.0, b = 3.03, k = 2.0 and µ = 1
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Figure 6 Numerical phase portraits of the chaotic attrac-
tors of system (2) for c = 5 and using initials conditions
x1(0) = 0.1, x2(0) = 0.1 and x3(0) = 0.1. The others
parameters are α = 1.0, b = 3.03, k = 2.0 and µ = 1

A period-doubling route to chaos interspersed with pe-
riodic regions is observed in Fig. 5 (a). The LLE of Fig. 5
(b) confirms the dynamical behaviors obtained in Fig. 5
(a). The phase portraits in different planes to illustrating
the chaotic behavior of system (2) are depicted in Fig. 6 for
c = 5. One-scroll chaotic attractor is shown in Fig. 6.

ELECTRONIC REALIZATION OF THE OF THE
PROPOSED JERK CIRCUIT WITH TWO PARAL-
LEL DIODES
The electronic circuit of Fig.1 describing by system (2) is
implemented as shown in Fig. 7.

The circuit of Fig. 7 is made of resistors, capacitors,
operational amplifiers (TL084) and two diodes (1N4148)
represent the nonlinearity element. The three variables
(x1, x2, x3) are respectively represented by the voltages
across the capacitors C1, C2 and C3 and the non-linearity
is represented by two diodes mounted in parallel. The
values of the circuit components are fixed as follow:
R1 = R5 = R6 = R7 = R8 = R9 = R10 = R11 = 100kΩ;
R2 = 50kΩ, R3 = 50kΩ, R4 = 26.5kΩ, C1 = C2 = C2 = 1nF.
The phase portraits obtained from the oscilloscope are
illustrated in Fig. 8.

The experimental results of Fig. 8 agree qualitatively with
the numerical simulations results of Fig. 6.

Figure 7 Image representing the experimental device of
the jerk oscillator with hyperbolic cosine nonlinearity
powered on ± 12V visualized on the oscilloscope.

Figure 8 Phase portraits of chaotic behavior of the jerk
system observed from oscilloscope for R3 = 26.3kΩ:
(a): V(x2) − V(x1) plane; (b): V(x2) − V(x3) plane; (c):
V(x1)−V(x3) plane.
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CONCLUSION

This paper reported on analytical, numerical and experimen-
tal studies of an introduced jerk with two diodes mounted in
parallel. The presence of Hopf Bifurcation in the proposed
jerk circuit was established. The numerical analysis of the
proposed jerk circuit was revealed that it exhibit periodic
attractors and one scroll chaotic attractor. The experimental
study was done to verify the accuracy of the numerical re-
sults simulations obtained. The experimental results agree
well with the numerical simulations.
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