
International Electronic Journal of Algebra

Volume 28 (2020) 1-8

DOI: 10.24330/ieja.768086

MASON-STOTHERS THEOREM AND PERFECT BINARY

POLYNOMIALS

Luis H. Gallardo

Received: 16 February 2019; Revised: 10 December 2019; Accepted: 14 March 2020

Communicated by Abdullah Harmancı

Abstract. We prove that there is no perfect binary polynomial R that is the

sum of two appropriate powers, besides, possibly R = P +1 with P irreducible.

The proofs follow from analogue results involving the ABC-theorem for poly-

nomials and a classical identity.
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1. Introduction

A perfect number n is a positive integer such that the sum of all its divisors

including 1 and n equals 2n. For example, n = 6 and n = 28 are perfect numbers.

It is conjectured that there is an infinity of perfect numbers and that all of them

are even. Deep computations have resulted in more known examples. However,

essentially, we only know two main theoretical results about them, namely (a) all

even perfect numbers have exactly two prime divisors, more precisely, the even

perfect numbers are exactly the integers of the form 2p−1(2p − 1) with 2p − 1

prime, and (b) all, if any exist, odd perfect numbers are products of powers of

primes p4k+1 by perfect squares. Beginning with E. F. Canaday (see [2]), the

first doctoral student of Leonard Carlitz, the study of an analogous problem over

polynomials instead of numbers, started in 1941. More precisely, let A ∈ F2[x]

be a binary polynomial. We say that A is perfect if and only if A equals the

sum of all its divisors including 1 and A. We also say that a binary polynomial

B ∈ F2[x] is even if B(1) = 0 or B(0) = 0, and we say that a polynomial that

is not even is odd. In other words, B odd means that B(0) = 1 and B(1) = 1.

Canaday found the infinite family of even perfect polynomials (x(x+ 1))
2n−1

where

n = 0, 1, 2, . . . and called them “trivial”. He also found a list of 11 non-trivial perfect

polynomials, that we call sporadic (see Proposition 2.1 below), all of them even,

of degrees between 5 and 20. He says furthermore, that it seems plausible that

no odd perfect polynomial can exist but that this is not proved. No new perfect
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polynomial has been discovered since besides the efforts of Beard et al.[1], Gallardo

and Rahavandrainy [6,7,8,9,10], Cengiz et al.[3]. On the other hand, the polynomial

ABC-theorem, i.e., Mason-Stothers theorem (see [11, pp. 194-195]), is a nice result

about polynomials (see Lemma 2.4 below for details) that essentially says that if

one has two coprime polynomials in one variable over a field K, besides the case

where both these polynomials are p-th powers, where p is the characteristic of the

field K, the degree of the product of all prime (irreducible) polynomials that divide

their sum cannot be too small in terms of the degrees of both polynomials.

In the present paper, by considering possible perfect polynomials that are (es-

sentially) sums of two powers, (generalizing the “trivial” family described above)

we extend the number of cases for which we know that perfect binary polynomials

cannot exist and, moreover, we propose a conjecture that seems non-trivial.

More precisely, we prove in Theorem 1.1 that we cannot build odd perfect poly-

nomials by adding to a polynomial that splits in F2 (e.g., a “trivial” perfect poly-

nomial) any power of another polynomial. While our result in Theorem 1.2 char-

acterizes the even perfect polynomials of the form P + 1, where P is irreducible,

as the only perfect polynomials that are sums of two appropriate powers of binary

polynomials.

Our first result is

Theorem 1.1. There is no odd perfect binary polynomial R of the form R =

xk(x + 1)l + M t in which M ∈ F2[x], t > 1 is an integer, k, l are non-negative

integers, and k, l are not both even.

Our second result is

Theorem 1.2. Assume that a perfect binary polynomial R satisfies the condition:

Rm = P k + Sn (1)

in which P is a prime (irreducible) binary polynomial, S a binary polynomial, not

divisible by P and n, k,m are non-negative integers with m ≥ 1, k ≥ 1 such that

P k and Sn are not both squares in F2[x], and one has either n = 0 and deg(R) ≤
deg(P ), or n 6= 0 and

1

m
+

1

n
≤ 1

2
, (2)

deg(R) ≥ deg(P ), (3)

and

gcd(m,ndeg(S)) = 1. (4)
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Then

R = P + 1. (5)

Moreover, R is even perfect.

Our conjecture is

Conjecture 1.3. The only even perfect binary polynomials R ∈ F2[x] such that

R+ 1 is prime are

R0(x) := x2 + x,R1(x) := x5 + x2 and R2(x) := x5 + x4 + x2 + x. (6)

Remark 1.4. Clearly R0(x) satisfies the conjecture. It is not difficult to check

that of the 11 known sporadic perfect binary polynomials (see Proposition 2.1),

R1(x) and R2(x) = R1(x + 1) are the only that satisfy the conjecture. While for

any, say T , of the trivial even perfect binary polynomials, with deg(T ) > 2, T + 1

is always reducible (indeed, it has x2 + x + 1 as a prime factor). Moreover, from

computations in [3] it is known that the conjecture holds when deg(R) ≤ 200.

For information on the analogue of the conjecture over the integers, the reader

may check [4] as well as [5].

In Section 2, one finds the necessary tools (Lemma 2.5 and Lemma 2.7) that

essentially prove our main results. However, for clarity, both theorems are proved

in Section 3.

2. Tools

The list of all known sporadic perfect binary polynomials (see [1,2,3]) is:

Proposition 2.1. Let P2 := x2 + x + 1, P3a := x3 + x + 1, P3b := P3a(x + 1) =

x3+x2+1, P4a := x4+x3+1, P4b := P4a(x+1) = x4+x3+x2+x+1, P4c := x4+x+1.

The 11 known sporadic perfect polynomials over F2[x] are

(a) degree 5: x(x+ 1)2P2, x
2(x+ 1)P2,

(b) degree 11: x(x+ 1)2P 2
2P4c, x

2(x+ 1)P 2
2P4c, x

3(x+ 1)4P4a, x
4(x+ 1)3P4b,

(c) degree 15: x3(x+ 1)6P3aP3b, x
6(x+ 1)3P3aP3b,

(d) degree 16: x4(x+ 1)4P4aP4b,

(e) degree 20: x4(x+ 1)6P3aP3bP4b, x
6(x+ 1)4P3aP3bP4a.

A simple, but important property of binary polynomials is

Lemma 2.2. Let B be a binary polynomial. Then there exist unique binary poly-

nomials B1 and B2 such that

B = B2
1 + xB2

2 .
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Proof. Observe that f : F2[x] → F2[x] defined by f(t) = t2 is one to one since

f(t) = f(u) implies 0 = t2 − u2 = (t− u)2, so that t = u. Thus, in order to define

B1 and B2, it is only necessary to define B2
1 and B2

2 as appropriate squares in

F2[x]. Observe also that the formal derivative M
′

of any binary polynomial M is

a square in F2[x] and that the formal derivative of a square in F2[x] is equal to 0.

Put B2
2 := B

′
, the formal derivative of B. Put also B2

1 := (xB)
′
. This proves the

existence and uniqueness of both B1 and B2. �

The following classical lemma (see [2]) is useful.

Lemma 2.3. If A is an odd perfect binary polynomial then A is a square in F2[x].

The following lemma is the ABC theorem for binary polynomials. The proof

is the same as Lang’s proof of Mason-Stothers theorem [11, Theorem 7.1], which

works in any characteristic.

Lemma 2.4. Let a, b, c be relatively prime polynomials in F2[x] such that a+ b = c

and a, b, c are not simultaneously squares in F2[x]. Then

max(deg(a),deg(b),deg(c)) < deg(rad(abc)), (7)

where rad(abc) is the product of all distinct prime divisors of abc in F2[x].

Lemma 2.5. Let k, l be non-negative integers not both even and let t > 1 be an

integer. Then there are no polynomials L,M ∈ F2[x] such that L is odd and

L2 + xk(x+ 1)l = M t. (8)

Proof. Assume, on the contrary, the existence of two polynomials L and M ∈ F2[x]

satisfying (8). Put A := L2, B := xk(x+1)l, C := M t. Since M t cannot be a square

we have t = 2t1 + 1 and only two cases to consider.

Case 1. We have that k, l are not both odd, say k := 2k1, and l := 2l1 + 1, since

we can always change x by x+ 1 if necessary in (8).

Since M ∈ F2[x], Lemma 2.2 implies the existence of unique binary polynomials

M1,M2 ∈ F2[x] such that

M = M2
1 + xM2

2 . (9)

Thus we can write (8) in the form

T 2 + xV 2 = (M t1M1)2 + x(M t1M2)2, (10)

where

T := L+ xk1(x+ 1)l1 and V := xk1(x+ 1)l1 . (11)
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It follows from the uniqueness of T and V in (10) (guaranteed by Lemma 2.2 again)

and by (11) that

xk1(x+ 1)l1 = M t1M2, (12)

which is a contradiction since M is odd, so that it cannot have roots in F2.

Case 2. We have that k, l are both odd. We obtain the same contradiction as

before, since we get the same V on the left hand side of (10). This finishes the

proof of the Lemma. �

Remark 2.6. We first found a proof of Lemma 2.5 using the ABC theorem, how-

ever our present proof above, based on the classical Lemma 2.2 is much shorter.

Lemma 2.7. Assume that a non-constant binary polynomial R satisfies the condi-

tion:

Rm = P k + Sn (13)

in which P is a prime (irreducible) binary polynomial, S a binary polynomial, not

divisible by P and n, k,m are non-negative integers with m ≥ 1, k ≥ 1 such that

P k and Sn are not both squares in F2[x], and one has either n = 0 and deg(R) ≤
deg(P ), or n 6= 0 and

1

m
+

1

n
≤ 1

2
, (14)

deg(R) ≥ deg(P ), (15)

and

gcd(m,ndeg(S)) = 1. (16)

Then

R = P + 1. (17)

Proof. Put A := Rm, B := P k and C = Sn. Put also

α := max(deg(A),deg(B),deg(C)), β := deg(rad(ABC)).

Case 1. We have deg(A) = deg(B). Assume first that n = 0, so that C = 1.

Clearly, gcd(A,B) = 1. One has α = deg(A) = deg(B) = m deg(R) = k deg(P ),

β = deg(rad(A)rad(B)) = deg(rad(R)P ) = deg(rad(R)) + deg(P ) ≤ deg(R) +

deg(P ) so that β ≤ k
m deg(P ) + deg(P ). By Lemma 2.4 one has β > α thus

k deg(P ) < k
m deg(P ) + deg(P ). In other words, one has

1 <
1

m
+

1

k
. (18)

It follows from (18) that k < 2 or m < 2. If m > 1 then (18) implies that k = 1, so

that (13) becomes

P = Rm + 1. (19)
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But P is prime, so that it is not a square, i.e., m > 1 is odd. Thus Rm+1 = (R+1)T

for some non-constant binary polynomial T. Thus (19) contradicts the primality of

P. Therefore, m = 1. Thus the hypothesis deg(R) ≤ deg(P ) and k ≥ 1 together

with

deg(R) = m deg(R) = k deg(P ), (20)

proves that k = 1, i.e., we get the conclusion that R = P + 1.

Assume now that n 6= 0. From deg(A) = deg(B) and (13) one gets that deg(C) <

deg(A) and

m deg(R) = k deg(P ). (21)

Thus, α = deg(A) = m deg(R) = k deg(P ), while β = deg(rad(A)rad(B)rad(C)) =

deg(rad(R) deg(P )rad(S)) = deg(rad(R)) + deg(P ) + deg(rad(S)) ≤ deg(R) +

deg(P ) + deg(S). From Lemma 2.4 one gets

m deg(R) < deg(R) +
m

k
deg(R) +

m

n
deg(R). (22)

In other words,

1 <
1

m
+

1

k
+

1

n
. (23)

Putting together (23) and the hypothesis (14), we obtain 1
2 <

1
k , i.e.,

k = 1. (24)

If follows from (24) and (21) that

mdeg(R) = deg(P ). (25)

Finally, (25) together with hypothesis (15) gives

m = 1. (26)

But (26) contradicts hypothesis (14), so that n 6= 0 cannot happen in Case 1.

Case 2. One has deg(A) > deg(B). This implies, from (13), that deg(A) =

deg(C), i.e.,

m deg(R) = ndeg(S). (27)

Assume first that n 6= 0. Then from (27) and condition (16) we get m = 1. But this

contradicts condition (14). Therefore, we must have n = 0. But this implies C = 1,

so that we get m deg(R) = 0 from (27). This is a contradiction and thus Case 2

does not happen.

Case 3. One has deg(A) < deg(B). This implies, from (13), that deg(B) =

deg(C), i.e.,

k deg(P ) = n deg(S). (28)
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Assume first that n = 0. Then C = 1 so that (28) implies k deg(P ) = 0. This is a

contradiction. We have therefore n 6= 0. One has by (28) α = deg(B) = k deg(P ), β

is computed as before, i.e., β = deg((rad(A)rad(B)rad(C)) = deg(rad(R) deg(P )rad(S))

= deg(rad(R)) + deg(P ) + deg(rad(S)) ≤ deg(R) + deg(P ) + deg(S). Since β > α

by Lemma 2.4, we get from (28)

k deg(P ) <
k

m
deg(P ) + deg(P ) +

k

n
deg(P ). (29)

It follows from (29) that indeed

k <
1

1− 1
m −

1
n

. (30)

Now hypothesis (14), together with (30), implies that

k < 2, (31)

so that k = 1. We now put together (31), deg(A) < deg(B) and hypothesis (15) to

obtain

m deg(R) < deg(P ) ≤ deg(R), (32)

i.e., m < 1. This is a contradiction. Therefore, Case 3 does not happen. This

finishes the proof of the Lemma. �

3. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1:

Proof. Assume, on the contrary, that R is an odd perfect polynomial that satisfies

the conditions of the theorem. It follows from Lemma 2.3 that there exists an

L ∈ F2[x] such that R = L2. Thus Lemma 2.5 gives a contradiction. The result

follows. �

Proof of Theorem 1.2:

Proof. By Lemma 2.7, one has R = P + 1. Since R is perfect we cannot have

deg(P ) = 1, thus deg(P ) ≥ 2 so that P is odd. It follows that R is even perfect. �
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