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Abstract. Anderson-Smith studied weakly prime ideals for a commutative

ring with identity. Hirano, Poon and Tsutsui studied the structure of a ring

in which every ideal is weakly prime for rings, not necessarily commutative.

In this note we give some more properties of weakly prime ideals in noncom-

mutative rings. We introduce the notion of a weakly prime radical of an ideal.

We initiate the study of weakly completely prime ideals and investigate rings

for which every proper ideal is weakly completely prime.
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1. Definitions and general results

Anderson-Smith [1] defined a proper ideal P of a commutative ring R with

identity to be weakly prime if 0 6= ab ∈ P implies a ∈ P or b ∈ P . In [5] Hirano et al.

extended the notion of a weakly prime ideal to rings, not necessarily commutative

nor with identity. They defined a proper ideal P of the ring to be weakly prime

if for ideals A,B of the ring R, 0 6= AB ⊆ P implies that A ⊆ P or B ⊆ P .

They studied the structure of rings in which every ideal is weakly prime. Note that

by definition, a weakly prime ideal is a proper ideal of a ring. It is therefore not

possible that every ideal of a ring is a weakly prime ideal. However, a ring whose

zero ideal is prime is called a prime ring. In this sense, every ring is a weakly prime

ring since the zero ideal is always weakly prime. We may therefore say that every

ideal of a ring is weakly prime when every proper ideal of the ring is a weakly

prime ideal. Hirano et al. proved that if every ideal of a ring is weakly prime and

R2 = R, then P(R) = N(R) and (P(R))2 = (N(R))2 = 0 where P(R) is the prime

radical of R and N(R) the sum of all ideals whose square is zero. They also proved

that if every ideal of a right Noetherian ring R with identity is weakly prime then

P(R) = N(R) = J(R) and (J(R))2 = (P(R))2 = (N(R))2 = 0, where J(R) is the
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Jacobson radical of R. Furthermore, they proved that if every ideal of a ring R is

weakly prime then every nonzero ideal of R/N(R) is prime. Motivated by this we

further investigate weakly prime ideals in noncommutative rings and also introduce

the notion of weakly completely prime ideals.

In this paper, all rings are, as in [5], not necessarily commutative nor with

identity. By a ring R with identity, we shall mean that R has a multiplicative

identity 1 6= 0. By Theorem 3 of Anderson-Smith [1], the following statements are

equivalent for an ideal P of a commutative ring R with identity:

(a) P is weakly prime.

(b) For ideals A and B of R, 0 6= AB ⊆ P implies A ⊆ P or B ⊆ P .

For rings that are not necessarily commutative, it is clear that (b) does not imply

(a). The standard definition of a prime ideal P for a noncommutative ring R is

that for ideals A and B of R, AB ⊆ P implies A ⊆ P or B ⊆ P . Equivalent to this

is that if a, b ∈ R such that aRb ⊆ P then a ∈ P or b ∈ P . From [5] we have the

following:

Proposition 1.1. [5, Proposition 2] Let P be an ideal in a ring R with identity.

The following statements are equivalent:

(1) P is a weakly prime ideal.

(2) If a, b ∈ R such that 0 6= aRb ⊆ P , then a ∈ P or b ∈ P .

Let R be a ring. We note that for an element a ∈ R, 〈a] = Ra+Za, [a〉 = aR+Za

and 〈a〉 =

{
n∑

i=1

riasi + ra + as + ma : n ∈ N, m ∈ Z, ri, si, r, s ∈ R

}
. Clearly if R

is a ring with identity element, then 〈a] = Ra, [a〉 = aR and

〈a〉 =

{
n∑

i=1

riasi : n ∈ N, ri, si ∈ R

}
.

Also, for every two elements a and b of a ring R, the following statements are

equivalent:

(1) 〈a〉 〈b〉 = 0.

(2) a 〈b〉 = 0.

(3) 〈a〉 b = 0.

(4) a 〈b] = 0.

(5) [a〉 b = 0.

The following result is easy to check.

Proposition 1.2. For any ring R and an ideal P * R the following are equivalent:

(1) P is a weakly prime ideal.
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(2) If a, b ∈ R such that 0 6= 〈a〉 〈b〉 ⊆ P , then a ∈ P or b ∈ P .

(3) If a, b ∈ R such that 0 6= 〈a〉 b ⊆ P , then a ∈ P or b ∈ P .

(4) If a, b ∈ R such that 0 6= a 〈b〉 ⊆ P , then a ∈ P or b ∈ P .

(5) If a, b ∈ R such that 0 6= [a〉 b ⊆ P , then a ∈ P or b ∈ P .

(6) If a, b ∈ R such that 0 6= a 〈b] ⊆ P , then a ∈ P or b ∈ P .

Analogous to that in [2] we define the concept “twin-zero” for a weakly prime

ideal in a noncommutative ring.

Definition 1.3. Let I be a weakly prime ideal of R. We say (a, b) is a twin-zero

of I if 〈a〉 〈b〉 = 0, a /∈ I and b /∈ I.

Proposition 1.4. Let I be a weakly prime ideal of R. The following are equivalent:

(1) (a, b) is a twin-zero of I if 〈a〉 〈b〉 = 0, a /∈ I and b /∈ I.

(2) (a, b) is a twin-zero of I if 〈a〉 b = 0, a /∈ I and b /∈ I.

(3) (a, b) is a twin-zero of I if a 〈b〉 = 0, a /∈ I and b /∈ I.

Note that if I is a weakly prime ideal of R that is not a prime ideal then I has

a twin-zero (a, b) for some a, b ∈ R.

Lemma 1.5. Let I be a weakly prime ideal of R and suppose that (a, b) is a twin-

zero of I for some a, b ∈ R. Then 〈a〉 I = I 〈b〉 = 0.

Proof. Suppose that 〈a〉 I 6= 0. Then there exists i ∈ I such that 〈a〉 i 6= 0. Hence

0 6= 〈a〉 (b + i) = 〈a〉 b + 〈a〉 i = 〈a〉 i ⊆ I, since (a, b) is a twin-zero of I. Because

a /∈ I and I weakly prime, we have b + i ∈ I, and hence b ∈ I, a contradiction.

Thus 〈a〉 I = 0. Now, suppose I 〈b〉 6= 0. Then there exists t ∈ I such that t 〈b〉 6= 0.

Hence 0 6= (a + t) 〈b〉 ⊆ I. Since b /∈ I and I weakly prime, we have a + t ∈ I, and

hence a ∈ I, a contradiction. Thus I 〈b〉 = 0. �

Theorem 1.6. [5, Proposition 1] If P is weakly prime but not prime then P 2 = 0.

Proof. Let (a, b) be a twin-zero of P . Suppose that P 2 6= 0. Then by Lemma

1.5, we have 0 6= (〈a〉 + P )(〈b〉 + P ) = 〈a〉 〈b〉 + 〈a〉P + P 〈b〉 + P 2 ⊆ P . Thus

(〈a〉 + P ) ⊆ P or (〈b〉 + P ) ⊆ P and hence a ∈ P or b ∈ P a contradiction since

(a, b) is a twin-zero of P . Therefore P 2 = 0. �

Corollary 1.7. Let R be a ring and let P an ideal of R. If P 2 6= 0 then P is prime

if and only if P is weakly prime.

Proof. This follows from Theorem 1.6. �
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Corollary 1.8. Let P(R) denote the prime radical of the ring R, i.e. the intersec-

tion of all the prime ideals of R. If P is a weakly prime ideal which is not a prime

ideal, then P ⊆ P(R).

Proof. This follows since P(R) is a semi-prime ideal of R and from Theorem 1.6

P 2 = 0 ⊆ P(R). �

Corollary 1.9. Let P be a weakly prime ideal of R. Then

(i) Either P ⊆ P(R) or P(R) ⊆ P .

(ii) If P ⊂ P(R), then P is not prime.

(iii) If P(R) ⊂ P , then P is prime.

(iv) If P = P(R), then P may or may not be prime.

Hence, if R is a prime ring then P is weakly prime if and only if P = 0 or P is

prime.

It should be noted that a proper ideal P with property that P 2 = {0} need not

be weakly prime. Take R =

[
Q R
0 Q

]
and P =

[
0 R
0 0

]
. Clearly P 2 = 0 yet P

is not weakly prime since

[
0 0

0 0

]
6=

[
3 0

0 0

][
Q R
0 Q

][
0 2

0 3

]
⊆ P .

In [4] Birkenmeier et al. introduced the notion of a 2-primal ideal and a 2-primal

ring.

Definition 1.10. [4, Definition 2.1] Let R be a ring and I an ideal of R. The ring

R is 2-primal if the prime radical P(R) of R is equal to the set of nilpotent elements

of R. The ideal I is 2-primal if the factor ring R/I is a 2-primal ring.

Proposition 1.11. If P is a weakly prime ideal that is not a prime ideal of the

ring R, then R is 2-primal if and only if P is a 2-primal ideal.

Proof. This follows from Corollary 1.8 and [4, Proposition 2.4]. �

Lemma 1.12. Let I be a weakly prime ideal of R and suppose that (a, b) is a

twin-zero of I. If 〈a〉 r ⊆ I for some r ∈ R, then 〈a〉 r = 0.

Proof. Suppose that 0 6= 〈a〉 r ⊆ I for some r ∈ R. Then r ∈ I since I is weakly

prime and (a, b) is a twin-zero of I. Now, since 〈a〉 r ⊆ 〈a〉 I, we have that 〈a〉 r = 0

from Lemma 1.5, a contradiction. �

Theorem 1.13. Let I be a weakly prime ideal of R and suppose that AB ⊆ I for

some ideals A,B of R. If I has a twin-zero (a, b) for some a ∈ A and b ∈ B, then

AB = 0.
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Proof. Suppose that I has a twin-zero (a, b) for some a ∈ A and b ∈ B and assume

that cd 6= 0 for some c ∈ A and d ∈ B. Since 0 6= cd ∈ 〈c〉 d ⊆ AB ⊆ I and I

weakly prime, we have c ∈ I or d ∈ I. Without loss of generality, we may assume

that c ∈ I. Since I2 = 0 by Theorem 1.6 and 0 6= cd ∈ I, we conclude that d /∈ I.

Since 〈a〉 d ⊆ AB ⊆ I it follows from Lemma 1.12 that 〈a〉 d = 0. Hence a 〈d〉 = 0.

Now, (a+ c) 〈d〉 = a 〈d〉+ c 〈d〉 = c 〈d〉 ⊆ AB ⊆ I. Since cd 6= 0, d /∈ I and I weakly

prime, we have (a + c) ∈ I. Hence a ∈ I, a contradiction. Thus AB = 0. �

Theorem 1.14. For a proper ideal P of R the following statements are equivalent:

(1) P is weakly prime.

(2) For x ∈ R− P , (P : 〈x]) = {p ∈ R : p 〈x] ⊆ P} = P ∪ (0 : 〈x]).

(3) For x ∈ R− P , (P : 〈x]) = P or (P : 〈x]) = (0 : 〈x]).

Proof. (1) ⇒ (2) Let y ∈ (P : 〈x]) where x ∈ R − P . Now y 〈x] ⊆ P . If y 〈x] 6= 0

then P weakly prime gives y ∈ P . If y 〈x] = 0, then y ∈ (0 : 〈x]). So (P : 〈x]) ⊆
P ∪ (0 : 〈x]). As the reverse containment holds for any ideal P , we have equality.

(2) ⇒ (3) Suppose (P : 〈x]) = P ∪ (0 : 〈x]) where x ∈ R − P . Since P and

(0 : 〈x]) are both ideals, we have (P : 〈x]) = P or (P : 〈x]) = (0 : 〈x]).

(3) ⇒ (1) Let x, y ∈ R such that 0 6= y 〈x] ⊆ P . If x ∈ P , then we are done. So

suppose x ∈ R− P , then (P : 〈x]) 6= (0 : 〈x]) and from (3), we have (P : 〈x]) = P .

Hence y ∈ P and we are done. �

Lemma 1.15. Let R be a ring and P an ideal of R. Then the following are

equivalent.

(1) P is weakly prime.

(2) For any ideals I, J of R with P ⊂ I and P ⊂ J , we have either IJ = 0 or

IJ * P .

(3) For any ideals I, J of R with I * P and J * P , we have either IJ = 0 or

IJ * P .

Proof. (1) ⇒ (2) and (3) ⇒ (1) are clear.

(2) ⇒ (3) Let I, J be ideals of R with I * P and J * P . If IJ = 0, then we

are done, so suppose that IJ 6= 0. Let i ∈ I and j ∈ J such that 0 6= ij. Also,

since I * P and J * P there exist i1 ∈ I and j1 ∈ J such that i1, j1 /∈ P . Now

P ⊂ 〈i1〉 + 〈i〉 + P and P ⊂ 〈j1〉 + 〈j〉 + P . Furthermore, 0 6= ij ∈ 〈i〉 〈j〉 ⊆
(〈i1〉+ 〈i〉+ P )(〈j1〉+ 〈j〉+ P ). Hence from our assumption we have (〈i1〉+ 〈i〉+

P )(〈j1〉+ 〈j〉+P ) * P and it follows that P + 〈i1〉 (〈j1〉+ 〈j〉)+ 〈i〉 (〈j1〉+ 〈j〉) * P .

For this to be true we must have IJ * P . �
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Proposition 1.16. Any weakly prime ideal P in a ring R contains a minimal

weakly prime ideal.

Proof. Apply Zorn’s Lemma to the family of weakly prime ideals of R contained

in P . It suffices to check that, for any chain of weakly prime ideals {Pi : i ∈ I} in

P , the intersection P
′

= ∩Pi is weakly prime. Let A and B be ideals of R such

that 0 6= AB ⊆ P ′. Suppose that A * P ′ and B * P ′. Then there exist a ∈ A\P ′

and b ∈ B\P ′ and we have a /∈ Pi and b /∈ Pj for some i, j ∈ I. If, say Pi ⊆ Pj ,

then both a, b are outside Pi. Since Pi is weakly prime we have 〈a〉 〈b〉 = 0 or

〈a〉 〈b〉 * Pi. Because 〈a〉 〈b〉 ⊆ AB ⊆ P ′ ⊆ Pi we must have 〈a〉 〈b〉 = 0. Hence

(a, b) is a twin zero for Pi. It now follows from Theorem 1.13 that AB = 0. This

contradicts our assumption hence A ⊆ P ′ or B ⊆ P ′ and therefore P ′ is a weakly

prime ideal. �

Proposition 1.17. Let R be a Noetherian ring and I 6= R an ideal. The set of

minimal weakly prime ideals containing I is finite.

Proof. Assume the result is false and choose I 6= R an ideal maximal with respect

to the property that I 6= R and that there are infinitely many weakly prime ideals

containing I. This is possible as R is Noetherian. Then clearly I is not a weakly

prime ideal so there exist elements a, b ∈ R such that 0 6= 〈a〉 〈b〉 ⊆ I but a /∈ I

and b /∈ I. Let J = I + 〈a〉 and K = I + 〈b〉. Now J and K properly contain I.

Furthermore, 0 6= 〈a〉 〈b〉 ⊆ JK = (I + 〈a〉) (I + 〈b〉) ⊆ I. Since I is weakly prime

we must have J ⊆ I or K ⊆ I. Note that any weakly prime ideal containing I

must contain either J or K. In particular, any weakly prime ideal minimal over I

is minimal over either J or K. But J and K each have only finitely many minimal

weakly primes (by choice of I), a contradiction. �

Theorem 1.18. Let R be a decomposable ring with identity. If P is a weakly prime

ideal of R, then either P = 0 or P is prime.

Proof. Suppose that R = R1 × R2. Let P = P1 × P2 be a weakly prime ideal of

R. We can assume that P 6= 0. Now, let A be a non-zero ideal of R1 and B be a non-

zero ideal of R2 such that 0 6= A×B ⊆ P . Then 0 6= (A×R2)(R1×B) ⊆ A×B ⊆ P

which implies A × R2 ⊆ P or R1 × B ⊆ P . Suppose that A × R2 ⊆ P . Then

0×R2 ⊆ P and so P = P1 ×R2. We show that P1 is a prime ideal of R1. Let A1

and B1 be ideals of R1 such that A1B1 ⊆ P1. Then (0, 0) 6= (A1×R2)(B1×R2) ⊆
A1B1 ×R2 ⊆ P , so A1 ×R2 ⊆ P or B1 ×R2 ⊆ P and hence A1 ⊆ P1 or B1 ⊆ P1.

So P is a prime ideal of R. The case where (R1 ×B) ⊆ P is similar. �
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Proposition 1.19. Let A ⊆ P be a proper ideal of a ring R. Then the following

holds:

(1) If P is weakly prime, then P/A is weakly prime.

(2) If A and P/A are weakly prime, then P is weakly prime.

Proof. (1) Let 0 6= ((〈a〉+A)(b+A))/A = (〈a〉 b+A)/A ⊆ P/A where a, b ∈ R, so

〈a〉 b ⊆ P . If 〈a〉 b = 0 ⊆ A, then ((〈a〉+ A)(b + A))/A = 0 a contradiction. Hence

〈a〉 b 6= 0 and since 〈a〉 b ⊆ P and P weakly prime, we get a ∈ P or b ∈ P . Hence

(a + A) ∈ P/A or (b + A) ∈ P/A as required.

(2) Let 0 6= 〈a〉 b ⊆ P where a, b ∈ R so that ((〈a〉 + A)(b + A))/A ⊆ P/A. If

〈a〉 b ⊆ A, then since A is weakly prime, we get a ∈ A ⊆ P or b ∈ A ⊆ P . If

〈a〉 b * A, then 0 6= ((〈a〉+ A)(b + a))/A ⊆ P/A. Now, since P/A is weakly prime,

we get (a + A) ∈ P/A or (b + A) ∈ P/A. Hence a ∈ P or b ∈ P as needed. �

Theorem 1.20. Let P and Q be weakly prime ideals of a ring R that are not prime.

Then P + Q is a weakly prime ideal of R.

Proof. Since (P + Q)/Q ∼= Q/(P ∩Q) we get that (P + Q)/Q is weakly prime by

Proposition 1.19 (1). Now the assertion follows from Proposition 1.19 (2). �

2. Idealization

We now show how to construct weakly prime ideals using the Method of Ide-

alization. In what follows, R is a ring (associative, not necessarily commutative

and not necessarily with identity) and M is an R-R-bimodule. The idealization of

M is the ring R �M with (R �M,+) = (R,+) ⊕ (M,+) and the multiplication

is given by (r,m)(s, n) = (rs, rn + ms). R � M itself is, in a canonical way, an

R-R-bimodule and M ' 0 �M is a nilpotent ideal of R �M of index 2. We also

have R ' R � 0 and the latter is a subring of R �M . Note also that R �M is a

subring of the Morita ring

[
R M

0 R

]
via the mapping (r,m) 7→

[
r m

0 r

]
. We

will require some knowledge about the ideal structure of R�M . If I is an ideal of

R and N is an R-R-bi-submodule of M , then I�N is an ideal of R�M if and only

if IM + MI ⊆ N . It follows from [7] that the prime ideals of R �M are exactly

the ideals of the form I �M where I is a prime ideal of R.

If R is a ring with identity then (a, b) is a twin zero of an ideal I of R if aRb = 0

and a /∈ I and b /∈ I.
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Theorem 2.1. Let R be a ring with identity and M an R-R-bimodule, with I a

proper ideal of R. Then I �M is a weakly prime ideal of R�M if and only if I is

a weakly prime ideal of R and for any twin zero (a, b) of I we have aM = Mb = 0.

Proof. Suppose I �M is a weakly prime ideal of R�M . Let 0 6= aRb ⊆ I where

a, b ∈ R. Now (0, 0) 6= (a, 0)R�M(b, 0) ⊆ I �M and I �M a weakly prime ideal

gives (a, 0) ∈ I � M or (b, 0) ∈ I � M . Hence a ∈ I or b ∈ I. So I is weakly

prime. Now suppose (a, b) is a twin zero of I. We claim that aM = Mb = 0.

Assume say aM 6= 0, so there exists m ∈ M such that am 6= 0. Now we have

(0, 0) 6= (a, 0)(1, 0)(b,m) ∈ (a, 0)R �M(b,m) ⊆ aRb�M = 0 �M ⊆ I �M . But

(a, 0) /∈ I �M and (b,m) /∈ I �M contradicting the fact that I �M is a weakly

prime ideal.

Conversely, assume (0, 0) 6= (a,m)R�M(b, n) ⊆ I �M for a, b ∈ R and n,m ∈
M . We have aRb ⊆ I. Two cases are possible:

Case 1: 0 6= aRb ⊆ I. Now I a weakly prime ideal of R gives a ∈ I or b ∈ I.

Hence (a,m) ∈ I �M or (b, n) ∈ I �M as desired.

Case 2: 0 = aRb ⊆ I. We may assume a /∈ I and b /∈ I. Hence (a, b) is a

twin zero of I and from assumption aM = Mb = 0. Now (a,m)R � M(b, n) ⊆
(aRb, aM + aMb + Mb) = (0, 0) a contradiction. �

Corollary 2.2. Let R be a semi-prime ring with identity which is not a prime ring

and M be an R-R-bimodule. Then the unique weakly prime ideal which is not a

prime ideal of R � M which has the form I � M where I is an ideal of R, is the

ideal 0 �M .

Proof. Let I be an ideal of R and J := I � M such that J is a weakly prime

ideal which is not a prime ideal of R. Then I is a weakly prime ideal of R which

is not a prime ideal of R (recall that I � M is prime if and only if I is prime).

From Corollary 1.8 I ⊆ P(R) = 0. This means that J = 0 � M . The zero ideal

{0} is a weakly prime ideal of R. Let (a, b) be a twin zero of {0}. Hence aRb = 0

with a 6= 0 and b 6= 0. We claim that aM = Mb = 0. Without loss of generality,

we may assume aM 6= 0. Then, there exists n ∈ M such that an 6= 0. Now,

(0, 0) 6= (0, an) = (a, 0)(1, 0)(b, n) ∈ (a, 0)R � M(b, n) ⊆ aRb � M = 0 � M = J

and neither (a, 0) ∈ J nor (b, n) ∈ J , a desired contradiction since J is a weakly

prime ideal of R �M . On the other hand, by Theorem 1.6 and since J2 = 0, J is

not a prime ideal of R�M , which completes the proof. �
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3. The weakly prime radical

Motivated by the work of Beiranvand et al. in [3] we introduce the notion of a

weakly prime radical of an ideal of a ring.

We begin this section with the definition of weakly m-systems.

Definition 3.1. Let R be a ring. A nonempty set S ⊆ R\{0} is called a weakly

m-system if, for ideals A and B of R if A ∩ S 6= ∅, B ∩ S 6= ∅ and AB 6= 0 then

AB ∩ S 6= ∅.

Lemma 3.2. For a proper ideal P of R let S = R\P . Then P is a weakly prime

ideal of R if and only if S is a weakly m-system.

Proof. Suppose S = R\P . Let A and B be ideals in R such that A ∩ S 6= ∅,
B∩S 6= ∅ and AB 6= 0. If AB∩S = ∅ then AB ⊆ P . Since P is weakly prime, and

AB 6= 0, A ⊆ P or B ⊆ P . It follows that A∩S = ∅ or B ∩S = ∅, a contradiction.

Therefore, S is a weakly m-system in R. Conversely, let S = R\P be a weakly

m-system in R. Suppose AB ⊆ P and AB 6= 0, where A and B are ideals of R. If

A * P and B * P , then A ∩ S 6= ∅ and B ∩ S 6= ∅. Since S is a weakly m-system

AB ∩ S 6= ∅, a contradiction. Therefore, P is a weakly prime ideal of R. �

The following proposition offers several characterizations of a weakly m-system

S when it is the complement of an ideal.

Proposition 3.3. Let R be a ring and P be a proper ideal of R and let S := R\P .

Then the following statements are equivalent:

(1) P is weakly prime.

(2) S is a weakly m-system.

(3) for left ideals A,B ⊆ R, if A ∩ S 6= ∅, B ∩ S 6= ∅ and AB 6= 0 then

AB ∩ S 6= ∅.
(4) for right ideals A,B ⊆ R if A ∩ S 6= ∅, B ∩ S 6= ∅ and AB 6= 0, then

AB ∩ S 6= ∅.
(5) for each a, b ∈ R, if a, b ∈ S and 〈a〉 〈b〉 6= 0, then 〈a〉 〈b〉 ∩ S 6= ∅.

Proof. (1) ⇔ (2) follows from Lemma 3.2.

(2) ⇒ (3) ⇒ (4) ⇒ (5) and (5) ⇒ (1) follows from Proposition 1.2 and [5,

Proposition 2]. �

Proposition 3.4. Let S ⊆ R be a weakly m-system, and let P an ideal of R

maximal with respect to the property that P is disjoint from S. Then P is a weakly

prime ideal.



52 NICO GROENEWALD

Proof. Suppose 0 6= AB ⊆ P , where A and B are ideals of R. If A * P and B * P ,

then by the maximal property of P , we have, (P +A)∩S 6= ∅ and (P +B)∩S 6= ∅.
Furthermore, 0 6= AB ⊆ (P +A)(P +B) ⊆ P . Thus, since S is a weakly m-system

(P + A)(P + B) ∩ S 6= ∅ and it follows that (P + A)(P + B) * P . For this to

happen, we must have AB * P , a contradiction. Thus, P must be a weakly prime

ideal. �

Next we need a generalization of the notion of
√
A for any ideal of A of R. We

adopt the following:

Definition 3.5. Let R be a ring. For an ideal A of R, if there is a weakly prime

ideal containing A, then we define Pw(A) := {a ∈ R : every weakly m-system

containing a meets A}. If there is no weakly prime ideal containing A, then we put

Pw(A) = R.

For an ideal A of R, observe that A and Pw(A) are contained in precisely the

same weakly prime ideals of R.

Theorem 3.6. Let A be an ideal of the ring R. Then either Pw(A) = R or Pw(A)

equals the intersection of all the weakly prime ideals of R containing A.

Proof. Suppose that Pw(A) 6= R. This means that {P : P is a weakly prime ideal

of R and A ⊆ P} 6= ∅. We first prove that Pw(A) ⊆ {P : P is a weakly prime ideal

of R and A ⊆ P}. Let m ∈ Pw(A) and P be any weakly prime ideal of R containing

A. Consider the weakly m-system R\P . This weakly m-system cannot contain m,

for otherwise it meets A and hence also P . Therefore, we have m ∈ P . Conversely,

assume m /∈ Pw(A). Then, by Definition 3.5, there exists a weakly m-system S

containing m which is disjoint from A. By Zorn’s Lemma, there exists an ideal

P ⊇ A which is maximal with respect to being disjoint from S. By Proposition 3.4,

P is a weakly prime ideal of R and we have m /∈ P , as desired. �

Theorem 3.7. Let A be an ideal of the ring R. Then Pw(A) equals the intersection

of all the weakly minimal weakly prime ideals of R containing A.

Proof. This follows from Theorem 3.6 and Proposition 1.16. �

Example 3.8. Let R =

{[
a b

0 0

]
: a, b ∈ Z4, b ∈ {0, 2}

}
. R has 2 proper ideals

P1 =

{[
0 0

0 0

]
,

[
0 2

0 0

]}
and P2 =

{[
0 0

0 0

]
,

[
2 0

0 0

]}
. P1 is a weakly
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prime ideal which is not a prime ideal since{[
0 0

0 0

]
,

[
2 0

0 0

]}{[
0 0

0 0

]
,

[
2 0

0 0

]}
=

{[
0 0

0 0

]}
⊆ P1

but

{[
0 0

0 0

]
,

[
2 0

0 0

]}
* P1. Pw(P1) =

{[
0 0

0 0

]
,

[
0 2

0 0

]}
and

Pw(P2) = R.

Example 3.9. [5, Example 5] Let R be the noncommutative ring of endomorphisms

of a countably infinite dimensional vector space. R is a prime ring with exactly one

nonzero proper ideal P . Every ideal of S1 = R�P is weakly prime: the maximum

ideal P1 = P � P is idempotent and the nonzero minimal ideal P2 = 0 � P is

nilpotent, both of which are prime. Let S2 = S1 � P2. Every ideal of S2 is weakly

prime: The maximum ideal Q1 = P1 � P2 is idempotent and the three nonzero

nilpotent ideals are Q2 = P2 � P2, Q3 = 0 � P2, and Q4 = P2 � 0. Q3 and Q4

are not prime ideals since 0 = Q2
2 ⊆ Q3 and 0 = Q2

2 ⊆ Q4. For the weakly prime

and prime radicals of the ideal Q3 we have Pw(Q3) = Q3 ∩ Q2 ∩ Q1 = Q3 and

P(Q3) = Q2 ∩Q1 = Q2.

4. Weakly completely prime ideals

Recall that an ideal P of the ring R is a completely prime ideal if ab ∈ P implies

a ∈ P or b ∈ P for a, b ∈ R.

Definition 4.1. A proper ideal I of a ring R is weakly completely prime if 0 6=
ab ∈ P implies a ∈ P or b ∈ P for a, b ∈ R.

Analogous to that in [2] we define the concept “c-twin-zero” for a weakly com-

pletely prime ideal in a noncommutative ring.

Definition 4.2. Let I be a weakly completely prime ideal of R. We say (a, b) is a

c-twin-zero of I if ab = 0, a /∈ I and b /∈ I.

Note that if I is a weakly completely prime ideal of R that is not a completely

prime ideal, then I has a c-twin-zero (a, b) for some a, b ∈ R.

Lemma 4.3. Let I be a weakly completely prime ideal of R and suppose that (a, b)

is a c-twin-zero of I for some a, b ∈ R. Then aI = Ib = 0.

Proof. Same as the proof of [2, Theorem 3.2]. �

Lemma 4.4. Let I be a weakly completely prime ideal of R and suppose that (a, b)

is a c-twin-zero of I. If ar ∈ I for some r ∈ R, then ar = 0.
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Proof. Suppose that 0 6= ar ∈ I for some r ∈ R. Then r ∈ I since I is weakly

completely prime and (a, b) is a c-twin-zero of I. Now, since ar ∈ aI, we have that

ar = 0 from Lemma 4.3, a contradiction. �

Theorem 4.5. If P is weakly completely prime but not completely prime, then

P 2 = 0.

Proof. Let (a, b) be a c-twin-zero of P . Suppose that p1p2 6= 0 for some p1, p2 ∈ P .

Then by Lemma 4.3, we have 0 6= (a + p1)(b + p2) ∈ P . Thus (a + p1) ∈ P or

(b + p2) ∈ P and hence a ∈ P or b ∈ P a contradiction since (a, b) is a c-twin-zero

of P . Therefore P 2 = 0. �

Corollary 4.6. Let R be a ring and let P an ideal of R. If P 2 6= 0 then P is

completely prime if and only if P is weakly completely prime.

Proof. This follows from Theorem 4.5. �

Remark 4.7. Let Ng(R) denote the generalized nil (completely prime) radical

of the ring R, i.e. the intersection of all the completely prime ideals of R. If P

is a weakly completely prime ideal which is not a completely prime ideal, then

P ⊆ Ng(R). This follows since Ng(R) is a semi-prime ideal of R and from Theorem

4.5, P 2 = 0 ⊆ Ng(R).

Corollary 4.8. Let P be a weakly completely prime ideal of R. Then

(i) Either P ⊆ Ng(R) or Ng(R) ⊆ P .

(ii) If P ⊂ Ng(R), then P is not completely prime.

(iii) If Ng(R) ⊂ P , then P is completely prime.

(iv) If P = Ng(R), then P may or may not be completely prime.

Hence, if R is a reduced ring then P is weakly completely prime if and only if

P = 0 or P is completely prime.

It should be noted that a proper ideal P with property that P 2 = {0} need not be

weakly completely prime. Take R =

[
Q R
0 Q

]
and P =

[
0 R
0 0

]
. Clearly P 2 =

0, yet P is not weakly completely prime since

[
0 0

0 0

]
6=

[
3 0

0 0

][
0 2

0 3

]
=[

0 6

0 0

]
∈ P .

Proposition 4.9. Let P be a weakly completely prime ideal of the ring R. If a ∈ R

and B a subset of R such that 0 6= aB ⊆ P , then a ∈ P or B ⊆ P .
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Proof. Suppose a ∈ R and B a subset of R such that 0 6= aB ⊆ P . If a ∈ P ,

then we are done. So, suppose a /∈ P . For every b ∈ B such that 0 6= ab ∈ P , we

have b ∈ P since P is weakly completely prime. If t ∈ B such that 0 = at ∈ P and

t /∈ P , then (a, t) is a c-twin-zero of P . Because aB ⊆ P , it follows from Lemma

4.4 that aB = 0, a contradiction and therefore t ∈ P and we have B ⊆ P . �

Theorem 4.10. Let P be a weakly completely prime ideal of R, then P is a weakly

prime ideal of R.

Proof. Let P be a weakly completely prime ideal of R and suppose that 0 6= a 〈b〉 ⊆
P for a, b ∈ R. If a ∈ P , then we are done, so suppose a /∈ P . Now, since P is

weakly completely prime it follows from Proposition 4.9 that b ∈ 〈b〉 ⊆ P and we

are done. �

Example 4.11. Not every weakly prime ideal is a weakly completely prime ideal.

Let M2(Z) be the full matrix ring with entries from the ring of integers Z. M2(2Z)

is a prime ideal and hence also weakly prime ideal of M2(Z). To show that M2(2Z)

is not a weakly completely prime ideal, consider

[
3 5

4 6

]
and

[
1 1

1 1

]
. Now[

3 5

4 6

][
1 1

1 1

]
=

[
8 8

10 10

]
∈ M2(2Z) but

[
3 5

4 6

]
/∈ M2(2Z) and[

1 1

1 1

]
/∈M2(2Z).

Example 4.12. The zero ideal of the ring

[
Z 2Z
0 Z

]
is a weakly completely prime

ideal which is not a completely prime ideal since

[
0 1

0 0

][
0 1

0 0

]
=

[
0 0

0 0

]
.

Example 4.13. Let R =

{[
a b

0 0

]
: a, b ∈ Z4, b ∈ {0, 2}

}
. R has 2 proper

ideals P1 =

{[
0 0

0 0

]
,

[
0 2

0 0

]}
and P2 =

{[
0 0

0 0

]
,

[
2 0

0 0

]}
. P1 is a

weakly completely prime ideal which is not a completely prime ideal since[
2 0

0 0

][
2 0

0 0

]
=

[
0 0

0 0

]
∈ P1 but

[
2 0

0 0

]
/∈ P1.

Example 4.14. Let A be a ring with M a left A-module. Let Z(A) be the set of

zero-divisors of A and (0 : M)A = {a ∈ A : aM = 0} the annihilator of M in A.

Suppose that 0 6= Z(A) ⊆ (0 : M)A. Let [A,M ] = {(a,m) : a ∈ A and m ∈M} be
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the ring with componentwise addition and multiplication (a,m)(b, n) = (ab, an).

Now [0,M ] = {(0,m) : m ∈M} is an ideal of [A,M ]. In fact, it is a weakly com-

pletely prime ideal, but not a completely prime ideal.

Proposition 4.15. Let R be a ring, M an R-R-bimodule, and I a proper ideal

of R. Then I � M is a weakly completely prime ideal of R � M if and only if I

is a weakly completely prime ideal of R and for any twin zero (a, b) of I we have

aM = Mb = 0.

Proof. Similar as the proof of [1, Theorem 17]. �

Corollary 4.16. Let R be a reduced ring which is not a prime ring and M an R-R-

bimodule. Then the unique weakly completely prime ideal which is not a completely

prime ideal of R � M which has the form I � M where I is an ideal of R, is the

ideal 0 �M .

Proof. Let I be an ideal of R and J := I �M such that J is a weakly completely

prime ideal which is not a completely prime ideal of R. Then I is a weakly com-

pletely prime ideal of R which is not a completely prime ideal of R (from [7] we

have that I � M is a completely prime ideal if and only if I is completely prime

ideal). From Remark 4.7, I ⊆ Ng(R) = 0. This means that J = 0 �M . The zero

ideal {0} is a weakly completely prime ideal of R. Let (a, b) be a c-twin zero of

{0}. Hence ab = 0 with a 6= 0 and b 6= 0. We claim that aM = Mb = 0. Without

loss of generality, we may assume aM 6= 0. Then, there exists n ∈ M such that

an 6= 0. Now, (0, 0) 6= (0, an) = (a, 0)(b, n) ∈ 0 � M = J and neither (a, 0) ∈ J

nor (b, n) ∈ J , a desired contradiction since J is a weakly completely prime ideal of

R�M . On the other hand, by Theorem 4.5 and since J2 = 0, J is not a completely

prime ideal of R�M , which completes the proof. �

Example 4.17. Let F be a field, and take the free algebra R := F < a, b, c :

acnb = bcna = 0, n ∈ N >. R is reduced but not prime. Since R is reduced but not

prime it is not completely prime. It now follows from Corollary 4.16 that if M is

any R-R-bimodule then 0 �M is the unique weakly completely prime ideal which

is not a completely prime ideal of the ring R�M .

Remark 4.18. Recall that a ideal I of a ring R is said to have the intersection-of-

factor-property (IFP) if whenever ab ∈ I for a, b ∈ R, we have aRb ⊆ I.

Proposition 4.19. If R is a ring and P a weakly prime ideal which has IFP then

it is weakly completely prime.
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Proof. Let P be weakly prime and a, b ∈ R such that 0 6= ab ∈ P . Since P has

IFP, we have aRb ⊆ P . Because ab ∈ P and aRb ⊆ P we have 0 6= 〈a〉 〈b〉 ⊆ P and

P weakly prime gives a ∈ P or b ∈ P . �

Corollary 4.20. If R is a ring and P a weakly prime ideal which is also completely

semi-prime then P is weakly completely prime.

Proof. This follows from the fact that a completely semi-prime ideal has IFP. �

Theorem 4.21. For a proper ideal P of R the following statements are equivalent:

(1) P is weakly completely prime.

(2) For any subset B of R such that B * R, (P : B) = {p ∈ R : pB ⊆ P} =

P ∪ (0 : B).

(3) For any subset B of such R that B * R, (P : B) = P or (P : B) = (0 : B).

Proof. (1) ⇒ (2) Let y ∈ (P : B) where B * P . Now yB ⊆ P . If yB 6= 0 then

since P is weakly completely prime it follows from Proposition 4.9 that y ∈ P . If

yB = 0, then y ∈ (0 : B). So (P : B) ⊆ P ∪ (0 : B). As the reverse containment

holds for any ideal P , we have equality.

(2) ⇒ (3) Suppose (P : B) = P ∪ (0 : B) where B is a subset of R such that

B * P . Since P and (0 : B) are both subgroups of R it follows from [6] that

(P : B) = P or (P : B) = (0 : B).

(3) ⇒ (1) Let x, y ∈ R such that 0 6= xy ∈ P . If y ∈ P , then we are done. So

suppose y ∈ R − P , then (P : y) 6= (0 : y) and from (3), we have (P : y) = P .

Hence x ∈ P and we are done. �

Corollary 4.22. For a proper ideal P of R the following statements are equivalent:

(1) P is weakly completely prime.

(2) For x ∈ R− P , (P : x) = P ∪ (0 : x).

(3) For x ∈ R− P , (P : x) = P or (P : x) = (0 : x).

Proposition 4.23. Any weakly completely prime ideal P in a ring R contains a

minimal weakly completely prime ideal.

Proof. Apply Zorn’s Lemma to the family of weakly completely prime ideals of R

contained in P . It suffices to check that, for any chain of weakly completely prime

ideals {Pi : i ∈ I} in P , the intersection P
′

= ∩ Pi is weakly completely prime.

Let a and b be elements of R such that 0 6= ab ∈ P ′. If a ∈ P ′, we are done. So,

suppose that a /∈ P ′. Then we have a /∈ Pi for some i ∈ I. Since 0 6= ab ∈ P ′ ⊆
Pi and Pi weakly completely prime we have b ∈ Pi. Now for any j ∈ I we have
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Pj ⊆ Pi or Pi ⊆ Pj . In the first case a /∈ Pj . Since Pj is weakly completely prime

and 0 6= ab ∈ P ′ ⊆ Pj we have b ∈ Pj . In the second case b ∈ Pi ⊆ Pj . Hence

b ∈ P ′ and therefore P ′ is a weakly completely prime ideal. �

Theorem 4.24. Let R = R1 × R2 where R1 and R2 are rings with identities. If

P is a weakly completely prime ideal of R, then either P = 0 or P is completely

prime.

Proof. Let R = R1×R2 where R1 and R2 are rings with identities and P = P1×P2

is a weakly completely prime ideal of R. We can assume that P 6= 0, so there is an

element (a, b) of P such that (a, b) 6= (0, 0). Now, (0, 0) 6= (a, b) = (a, 1)(1, b) ∈ P

and P weakly completely prime gives (a, 1) ∈ P or (1, b) ∈ P . Suppose (a, 1) ∈ P .

Then 0× R2 ⊆ P , so P = P1 × R2. We show that P1 is a completely prime ideal.

Let pq ∈ P1, where p, q ∈ R1. Then (0, 0) 6= (pq, 1) = (p, 1)(q, 1) ∈ P . Now P

weakly completely prime gives (p, 1) ∈ P or (q, 1) ∈ P . Hence p ∈ P1 or q ∈ P1. So

P1 is a completely prime ideal of R1. The case (1, b) ∈ P is similar. �

Proposition 4.25. Let A ⊆ P be a proper ideals of a ring R. Then the following

holds:

(i) If P is weakly completely prime, then P/A is weakly completely prime.

(ii) If A and P/A are weakly completely prime, then P is weakly completely

prime.

Proof. (i) Let 0 6= (a + A)(b + A) = (ab + A) ∈ P/A where a, b ∈ R, so ab ∈ P . If

ab = 0 ∈ A, then (a+A)(b+A) = 0 a contradiction. Hence ab 6= 0 and since ab ∈ P

and P weakly completely prime, we get a ∈ P or b ∈ P . Hence (a + A) ∈ P/A or

(b + A) ∈ P/A as required.

(ii) Let 0 6= ab ∈ P where a, b ∈ R so that (a+A)(b+A) ∈ P/A. If ab ∈ A, then

since A is weakly completely prime, we get a ∈ A ⊆ P or b ∈ A ⊆ P . If ab /∈ A,

then 0 6= (a + A)(b + A) ∈ P/A. Now, since P/A is weakly completely prime, we

get (a + A) ∈ P/A or (b + A) ∈ P/A. Hence a ∈ P or b ∈ P as needed. �

Theorem 4.26. Let P and Q be weakly completely prime ideals of a ring R that

are not completely prime. Then P + Q is a weakly completely prime ideal of R.

Proof. Since (P +Q)/Q ∼= Q/(P ∩Q) we get that (P +Q)/Q is weakly completely

prime by Proposition 4.25 (i). Now the assertion follows from Proposition 4.25

(ii). �
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5. Rings in which every ideal is weakly completely prime

We are interested in the structure of rings in which every ideal is weakly com-

pletely prime. Note that by definition, a weakly completely prime ideal is a proper

ideal of a ring. It is therefore not possible that every ideal of a ring is a weakly com-

pletely prime ideal. However, a ring whose zero ideal is completely prime is called

a completely prime ring. In this sense, every ring is a weakly completely prime ring

since the zero ideal is always weakly completely prime. We may therefore say that

every ideal of a ring is weakly completely prime when every proper ideal of the ring

is a weakly completely prime ideal. If R2 = 0, then it is evident that every ideal

of R is weakly completely prime. In particular, if an ideal I of a ring R is weakly

completely prime but not a completely prime ideal, then every ideal of I as a ring

is weakly completely prime by Theorem 4.5.

Proposition 5.1. Every ideal of a ring R is weakly completely prime if and only

if for every x, y ∈ R we have 〈xy〉 = 〈x〉, 〈xy〉 = 〈y〉 or 〈xy〉 = 0.

Proof. Suppose every ideal of R is a weakly completely prime ideal and let x, y ∈ R.

If 〈xy〉 6= R and if 〈xy〉 = 0 then we done. If 〈xy〉 6= 0 then 〈xy〉 is a weakly

completely prime ideal. Now, since 0 6= xy ∈ 〈xy〉, we have x ∈ 〈xy〉 or y ∈ 〈xy〉.
Hence 〈xy〉 = 〈x〉 or 〈xy〉 = 〈y〉. If 〈xy〉 = R, then 〈x〉 = 〈y〉 = R.

Conversely, let K be any proper ideal of R and suppose 0 6= xy ∈ K for x, y ∈ R.

Now we have 〈x〉 = 〈xy〉 ⊆ K or 〈y〉 = 〈xy〉 ⊆ K. Hence x ∈ K or y ∈ K and we

are done. �

Corollary 5.2. Let R be a ring in which every ideal is weakly completely prime.

Then for every a ∈ R, 〈a〉 =
〈
a2
〉

or
〈
a2
〉

= 0.

Proof. Let a ∈ R. If
〈
a2
〉

= R, then clearly 〈a〉 =
〈
a2
〉
. Suppose

〈
a2
〉
6= R. If〈

a2
〉

= 0, then we done, so suppose
〈
a2
〉
6= 0. We have 0 6= a2 ∈

〈
a2
〉

and
〈
a2
〉

weakly completely prime gives a ∈
〈
a2
〉
. Hence 〈a〉 =

〈
a2
〉
. �

Example 5.3. Let F be a field and R = F ⊕ F ⊕ F . Then for every element

a ∈ R, we have 〈a〉 =
〈
a2
〉
. I = F ⊕0⊕0 is evidently not weakly completely prime,

showing that the converse of Corollary 5.2 is false.
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