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1. Introduction

The theory of rings which are graded by a finitely generated abelian group came

in light mainly when homogeneous coordinate rings for toric varieties were intro-

duced in algebraic geometry [5]. The theory of graded rings and modules can be

considered as an extension of the ring and module theory which has been studied

by many authors (See [1], [2], [3], [5], [10], [11], [13], [14] and [15]). A comparison

between global primary decomposition of coherent sheaves over a toric variety and

graded primary decomposition of graded ideals is given in [15]. Graded primary

decomposition over a G-graded Noetherian ring has been discussed in [4] for the

case when G is a finitely generated torsion free abelian group. M. Perling and S.D.

Kumar [14] used this concept to extend the graded primary decomposition over a

G-graded Noetherian ring for the case when G is an arbitrary finitely generated

abelian group. In [11], S. Behara and S.D. Kumar investigated the uniqueness of

graded primary decomposition in graded modules. It is well known that if a ring

is graded Noetherian, then the graded primary decomposition exists but in graded

non-Noetherian case, it exists rarely. In [8], L. Fuchs and E. Mosteig gave a char-

acterization of primary decomposition of ideals in a Prüfer domain (not necessarily
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Noetherian). Further, the theory of different types of prime ideals associated to

a module over a commutative ring is a very important concept in commutative

algebra. Several authors have studied such types of prime ideals (see [4], [6], [7]

and [9]). In [9], J. Iroz and D.E. Rush discussed many important properties about

these types of prime ideals. In [6], P. Dutton introduced a quite different notion

of associated prime ideal called attached prime ideal. Recently in [7], N. Epstein

and J. Shapiro exhibited why strong Krull prime ideals can be considered as the

best non-Noetherian generalization of associated prime ideals by proving many im-

portant results with the help of strong Krull prime ideals which were enjoyed by

an associated prime ideal in Noetherian case. To study the theory of graded rings

and modules in more detail, one needs the graded analogues of different notions of

prime ideals associated to a module. Although there has been done a lot of work

in the area of graded rings and modules but a generalization of different notions of

prime ideals associated to a module and primary decomposition in a Prüfer domain

to the graded case is not found anywhere. This paper tries to fill this gap.

This paper discusses two objectives. Section 3 discusses the first objective of the

paper which is devoted to the study of different types of G-prime ideals associated

to a G-graded module where G is an arbitrary finitely generated abelian group.

We generalize different notions of prime ideals associated to a module (which is

discussed in [9]) to the graded case and make use of some examples to show the

difference between graded and non-graded cases. We show by Example 3.7 and

Example 3.14 that the graded versions of all the notions of prime ideals associated

to a module are different from the non-graded versions. It is well known that over

a Noetherian ring all the notions of associated prime ideals defined in [9] coincide.

For the graded case, a natural question arises, for which graded non-Noetherian

ring most of the notions of G-prime ideals associated to a graded module coincide.

To answer this question, first we introduce the notion of graded Prüfer domain as a

generalization of Prüfer domain to the graded case, then we show that most of the

notions of G-prime ideals associated to a graded module over a graded Prüfer do-

main under certain conditions coincide (Theorem 3.9 and Proposition 3.12). Graded

valuation domains and graded Prüfer domains were studied in [1] and [2], where the

authors assumed that the graded domains are integral domains. So our definitions

of graded valuation domain and graded Prüfer domain are generalizations of [1] and

[2]. We also prove the graded local-global principle of a graded module in terms of

strong G-Krull prime ideals (Theorem 3.18).
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Section 4 discusses the second objective of the paper which is devoted to the

study of graded primary decomposition of a graded ideal in a graded Prüfer do-

main. For an arbitrary finitely generated abelian group G, we establish a G-graded

primary decomposition of a graded ideal in a graded Prüfer domain under certain

conditions (Theorem 4.2). H. Khashan [10] introduced the notion of QGR ring. As

an application of Theorem 4.2, we show that a graded Prüfer domain under certain

conditions is a QGR ring (Proposition 4.6). Some applications of Theorem 4.2 are

also discussed.

2. Preliminaries

Throughout this paper, G is a finitely generated abelian group and all rings are

assumed to be commutative rings with identity unless otherwise stated.

Let A be a G-graded ring and M be a G-graded A-module. We denote by

h(A), SpecG(A), MaxG(A), the set of all homogeneous elements, G-prime ideals,

G-maximal ideals of A respectively. The set of all homogeneous elements of M is

denoted by h(M). A is called a G-graded integral domain if for a, b ∈ h(A), ab = 0

implies that either a = 0 or b = 0. Note that a G-graded integral domain need

not be an integral domain. A G-graded integral domain is called a G-graded field

if each nonzero homogeneous element has a multiplicative inverse. A is called a

G-graded Noetherian ring if it satisfies the ACC on graded ideals of A. Let S be a

multiplicatively closed subset of h(A) containing 1A. Then the ring of fraction S−1A

is a graded ring called a G-graded ring of fraction. Indeed S−1A = ⊕g∈G(S−1A)g,

where (S−1A)g = {as : a ∈ h(A), s ∈ S and g = (degs)−1(dega)}. Let P be a G-

prime ideal of A and S = h(A)\P . We denote S−1A by AGP and call it the G-graded

localization of A at P . This ring AGP has a unique G-maximal ideal S−1P denoted

by PAGP . Also, S−1M is denoted by MG
P called the G-graded localization of M

at P . We denote by h(MG
P ), h(AGP ), h(PAGP ), h(IAGP ), the set of all homogeneous

elements of MG
P , AGP , PAGP , IAGP respectively where I is a graded ideal of A. The

graded support of M is defined as SuppGA(M) = {P ∈ SpecG(A) : MG
P 6= 0}. The

graded radical of a graded ideal I is denoted by Gr(I) and defined as Gr(I) = {a =

Σg∈Gag ∈ A : for all g ∈ G, there exists an integer ng ≥ 1 such that a
ng
g ∈ I}. A

graded ideal Q of A is said to be a G-primary ideal if Q 6= A and if a, b ∈ h(A) such

that ab ∈ Q, then a ∈ Q or b ∈ Gr(Q). For a G-primary ideal Q, Gr(Q) = P where

P is a G-prime ideal and we call Q a G-graded P -primary ideal. A decomposition

of a graded ideal I of the type Q1 ∩ Q2 ∩ · · · ∩ Qr where each Qi is a G-graded
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Pi-primary ideal of A is said to be a G-graded primary decomposition of I in A

and it is said to be reduced if Qi +
⋂
j 6=iQj and each Pi are distinct.

For more details of graded rings and graded modules [10], [13], [14] and [16] are

referred.

Definition 2.1. [10] The gr-dimension of a G-graded ring A is defined to be the

supremum of lengths of all chains of distinct G-prime ideals of A and is denoted by

gr-dim(A).

It is clear from the definition that if A is a G-graded integral domain such that

gr-dim(A) = 1, then a nonzero G-prime ideal of A is a G-maximal ideal.

Definition 2.2. [10] A G-graded ring A is called a QGR-ring if any graded ideal

of A can be written as a product of finitely many G-primary ideals of A.

Definition 2.3. A G-graded integral domain A is said to be of G-finite character if

any nonzero non-unit homogeneous element of A is contained in only finitely many

G-maximal ideals of A.

Proposition 2.4. [10] Let I and J be graded ideals in a G-graded ring A. Then

(I : J) = {a ∈ A : aJ ⊆ I} is a graded ideal of A.

Proposition 2.5. [16] Let Q be a graded ideal in a G-graded ring A such that

Gr(Q) = m, a G-maximal ideal. Then Q is a G-graded m-primary ideal.

Definition 2.6. [12] Let A be an integral domain. Then

(1) A is called a valuation domain if for all a, b in A either a divides b or b

divides a.

(2) A is called a Prüfer domain if its localization AP is a valuation domain for

each prime ideal P of A.

Theorem 2.7. [8] Let A be a Prüfer domain. Then any nonzero ideal of A can be

written as an intersection of finitely many primary ideals if and only if A is of finite

character and of Krull dimension 1. Further, any ideal can be uniquely expressed

as the product of primary ideals.

3. Graded Prüfer domains and properties of G-prime ideals associated

to a graded module

Let G be a finitely generated abelian group. We define a G-graded Prüfer domain

as a generalization of a Prüfer domain to the graded case.
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Definition 3.1. Let A be a G-graded integral domain. Then

(1) A is called a G-graded valuation domain if for any a, b ∈ h(A) either a

divides b or b divides a.

(2) A is called a G-graded Prüfer domain if its graded localization AGP is a

G-graded valuation domain for each G-prime ideal P of A.

Proposition 3.2. Every finitely generated graded ideal in a G-graded valuation

domain is principal.

Proof. Let A be a G-graded valuation domain. Let {a1, a2, . . . , an} be a set of

homogeneous generators of a graded ideal I of A. Then there exists i such that ai

divides aj for all j. Consequently, I is a principal ideal generated by ai. �

Proposition 3.3. Let A be a G-graded valuation domain and I be its graded ideal.

Then Gr(I) is a G-prime ideal.

Proof. Let a, b ∈ h(A) such that ab ∈ Gr(I). Then (ab)n ∈ I for some integer

n ≥ 1. Suppose a divides b. Then b2n ∈ I, and so b ∈ Gr(I). Similarly if b divides

a, then a ∈ Gr(I). Thus Gr(I) is a G-prime ideal. �

Example 3.4. Every Prüfer domain is trivially a G-graded Prüfer domain.

We now give an example to show that a G-graded Prüfer domain need not be a

Prüfer domain.

Example 3.5. Let A = F [x], the polynomial ring over a field F and let G =

Z2 = {0̄, 1̄}. Then A is a G-graded ring with A0̄ = F + Fx2 + Fx4 + · · · and

A1̄ = Fx + Fx3 + Fx5 + · · · . Consider the quotient ring R = A/I, where I =

(x2−1), a graded ideal generated by a homogeneous element x2−1 of A. Consider

the induced grading on R given by R = R0̄ ⊕ R1̄, where R0̄ = (A0̄ + I)/I and

R1̄ = (A1̄ + I)/I. Then R is a G-graded field since I is a G-maximal ideal of A,

and so R is a G-graded Prüfer domain but not a Prüfer domain since it is not an

integral domain.

Now we generalize several types of prime ideals associated to a module over a

ring to the graded case. A non-graded version of these definitions can be found in

[9].

Definition 3.6. Let A be a G-graded ring and M be a G-graded A-module. Sup-

pose P is a G-prime ideal of A. Then



146 AJIM UDDIN ANSARI, B. K. SHARMA AND SHIV DATT KUMAR

(1) P is a G-associated prime ideal to M if P = Ann(x) for some 0 6= x ∈ h(M)

where Ann(x) denotes the annihilator of x. The set of these G-prime ideals

is denoted by AssGA(M). They are discussed in [14].

(2) P is a strong G-Krull prime ideal to M if for every finitely generated graded

ideal I of A such that I ⊆ P , there exists 0 6= x ∈ h(M) such that I ⊆
Ann(x) ⊆ P . The set of all strong G-Krull prime ideals is denoted by

SKG
A (M). They are discussed in [3].

(3) P is a weak G-Bourbaki prime ideal to M if there exists 0 6= x ∈ h(M)

such that P is minimal over Ann(x). These G-prime ideals will be denoted

by AssGf (M).

(4) P is a G-Krull prime ideal to M if for every homogeneous element a ∈ P ,

there exists 0 6= x ∈ h(M) such that a ∈ Ann(x) ⊆ P . The set of all

G-Krull prime ideals is denoted by KG
A (M).

(5) P is a G-Zariski-Samuel prime ideal to M if there exists 0 6= x ∈ h(M)

such that Ann(x) is a G-graded P -primary ideal of A. The set of all G-

Zariski-Samuel prime ideals to M is denoted by ZSGA (M).

Like the ungraded case one can prove that AssGA(M) ⊆ ZSGA (M) ⊆ AssGf (M) ⊆
SKG

A (M) ⊆ KG
A (M) (see [9]). We now show by the following example that a G-

associated, G-Zariski-Samuel, G-Krull, strong G-Krull and weak G-Bourbaki prime

ideals to M need not be associated, Zariski-Samuel, Krull, strong Krull and weak

Bourbaki ideals to M respectively.

Example 3.7. Let A = Q[x] and M = A/I, where I is the ideal generated by

x2 − 1 in A. Consider the group G = Z2 = {0̄, 1̄} and grading A = A0̄ ⊕ A1̄,

M = M0̄ ⊕M1̄, where A0̄ = Q + Qx2 + Qx4 + · · · , A1̄ = Qx + Qx3 + Qx5 + · · · ,
M0̄ = (A/I)0̄ = {f + I : f ∈ A0̄} and M1̄ = (A/I)1̄ = {f + I : f ∈ A1̄}. Then M

is a G-graded A-module. Consider the G-prime ideal P = (x2 − 1) which is clearly

not a prime ideal of A. Clearly P = Ann(1 + I) where 1 + I ∈ h(M). Thus P is

a G-associated prime ideal to M . Hence P is a G-Zariski-Samuel, G-Krull, strong

G-Krull and weak G-Bourbaki prime ideals to M , but it is not a Zariski-Samuel,

Krull, strong Krull and weak Bourbaki prime ideals to M respectively since P is

not a prime ideal of A.

The next example shows that a G-Krull prime ideal need not be a strong G-Krull

prime ideal.

Example 3.8. Let A = K[x1, x2, x3, . . . , xn, . . .], the polynomial ring in infinitely

many indeterminates over a field K. Consider the ideal I = (xm1 , x
m
2 , x

m
3 , . . .) of
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A where m ≥ 2. Let M = A/I be an A-module trivially graded by G. Consider

the prime ideal P = (x1, x2, . . . , xn) of A. Since xi ∈ Ann(xm−1
i + I) ⊆ P and

xm−1
i + I is a nonzero element of M , then for all a ∈ P , there exists a nonzero

m ∈M such that a ∈ Ann(m) ⊆ P . Thus P is a G-Krull prime ideal to M . If P ∈
SKG

A (M), then P = Ann(f) for some nonzero f ∈M since P is finitely generated.

Consequently, xmi ∈ P = Ann(f) for all i. This implies xi ∈ P = Ann(f) for all i,

which is a contradiction. Hence P is not a strong G-Krull prime ideal to M .

Now one can ask when both the sets SKG
A (M) and KG

A (M) will be the same.

The following theorem gives an affirmative answer to this question.

Theorem 3.9. Let A be a G-graded Prüfer domain and M be a G-graded A-module.

Then SKG
A (M) = KG

A (M).

Proof. Let P ∈ KG
A (M). Let 0 6= b

t ∈ h(PAGP ) where b is a homogeneous element

of P and t ∈ h(A) \ P . Then there is a 0 6= x ∈ h(M) such that b ∈ Ann(x) ⊆ P .

Consequently, b
t ∈ Ann(x1 ) ⊆ PAGP and hence PAGP ∈ KG

AG
P

(MG
P ). Now, let L be

a finitely generated graded ideal of AGP such that L ⊆ PAGP . Since AGP is a G-

graded valuation domain, then by Proposition 3.2, L is a principal ideal generated

by a homogeneous element a
t say. Hence there exists a 0 6= y

s ∈ h(MG
P ) such that

L ⊆ Ann(ys ) ⊆ PAGP and so PAGP ∈ SKG
AG

P
(MG

P ).

Now, let I be a finitely generated graded ideal of A such that I ⊆ P . Then IAGP

is a finitely generated graded ideal of AGP such that IAGP ⊆ PAGP . This implies

that there exists a 0 6= y
t ∈ h(MG

P ) such that IAGP ⊆ Ann(yt ) ⊆ PAGP . Let a ∈ I.

Then a
1 ∈ IA

G
P , and so ay

t = 0. This implies that there exists s ∈ h(A) \ P such

that a ∈ Ann(sy) since I is finitely generated. Clearly, sy 6= 0 since y
t 6= 0. Now

r ∈ Ann(sy) implies that rs ∈ P since y
t 6= 0, and so r ∈ P . Thus I ⊆ Ann(sy) ⊆ P

where 0 6= sy ∈ h(M). Hence P ∈ SKG
A (M). �

It was shown in [7] that a Krull prime is not a proper generalization of an

associated prime in the sense that there is a module M over a Noetherian ring A

such that AssA(M) 6= KA(M) where AssA(M) and KA(M) denotes the set of all

associated prime ideals and Krull prime ideals to M respectively, and so it also

happens in the graded case. Now one can ask for which G-graded Noetherian ring

A, AssGA(M) = KG
A (M). We have the following corollary.

Corollary 3.10. Let A be a G-graded Prüfer domain and M be a G-graded A-

module. If A is a G-graded Noetherian ring, then AssGA(M) = KG
A (M).
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Proof. Let P ∈ SKG
A (M). Then there exists a 0 6= x ∈ h(M) such that P ⊆

Ann(x) ⊆ P , i.e., P = Ann(x) since P is finitely generated. Consequently,

AssGA(M) = SKG
A (M). Also by Theorem 3.9, we have SKG

A (M) = KG
A (M). Hence

AssGA(M) = KG
A (M). �

For a G-graded A-module M , ZSGA (M) ⊆ SKG
A (M) but the converse need not

be true even if A is a G-graded Prüfer domain. Consider the following example.

Example 3.11. Let A = Z + xQ[x] and G = Z. Consider the grading on A,

A =
⊕

n∈ZAn, where A0 = Z, An = Qxn if n ≥ 1 and An = 0 if n < 0. Then A is

a G-graded Prüfer domain. Let I = (x) = {a0x+a1x
2 + · · ·+anx

n+1 : a0 ∈ Z, ai ∈
Q, n ≥ 0}. Then I is a graded ideal of A. Consider M = A/I as an A-module.

Consider the grading onM , M =
⊕

n∈ZMn, whereMn = (A/I)n = {e+I : e ∈ An}
if n ≥ 0 and Mn = 0 if n < 0. Then M is a G-graded A-module. Let P = xQ[x].

Then P is a G-prime ideal of A such that I ⊆ P . We show that P ∈ SKG
A (M) but

P /∈ ZSGA (M).

Let f ∈ P be a homogeneous element. Then f = axi for some integer i ≥ 1 where

a ∈ Q. Write a = p
q for some p, q ∈ Z with q 6= 0. Then f ∈ Ann(q + I) where

q + I ∈ h(M) \ {0}. Also, let g ∈ Ann(q + I) be a homogeneous element. Then

qg ∈ I ⊆ P . This implies that g ∈ P since q /∈ P . Thus for each homogeneous

element f ∈ P , there exists a nonzero q+ I ∈ h(M) such that f ∈ Ann(q+ I) ⊆ P ,

and so P ∈ KG
A (M). By Theorem 3.9, P ∈ SKG

A (M). On contrary suppose P is a

G-Zariski-Samuel prime ideal of A. Then there exists a nonzero h+ I ∈ h(M) such

that Ann(h+ I) is a G-graded P -primary ideal of A, and so Gr(Ann(h+ I)) = P .

Now, h /∈ I implies that h + I = α + I or h + I = βx + I for some α ∈ Z and

β ∈ Q \Z. Assume h+ I = α+ I. Write x = d
x

d
where d ∈ Z such that d does not

divide α. Then x ∈ Ann(h+I) but neither
x

d
nor dn belongs to Ann(h+I) for any

integer n ≥ 1, which is a contradiction. Assume h + I = βx + I. Write β =
r

s
for

some nonzero r, s ∈ Z. Then s ∈ Ann(h + I) but s /∈ P , which is a contradiction

since Ann(h+ I) ⊆ P . Hence P /∈ ZSGA (M).

However, we have the following.

Proposition 3.12. Let A be a G-graded valuation domain with gr-dim(A) ≤ 1 and

M be a G-graded A-module. Then ZSGA (M) = AssGf (M) = SKG
A (M).

Proof. It suffices to show SKG
A (M) ⊆ ZSGA (M). Let P ∈ SKG

A (M). Choose

a finitely generated graded ideal I of A such that I ⊆ P . Then there exists a

0 6= x ∈ h(M) such that I ⊆ Ann(x) ⊆ P . This implies that Gr(Ann(x)) ⊆ P . By
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Proposition 3.3, Gr(Ann(x)) = Q where Q is a G-prime ideal of A. But gr-dim(A)

≤ 1 implies that Q = P , a G-maximal ideal of A. Hence by Proposition 2.5, Ann(x)

is a G-graded P -primary ideal of A, and so P ∈ ZSGA (M). �

Corollary 3.13. Let A be a G-graded Prüfer domain with gr-dim(A) ≤ 1 and M be

a G-graded A-module. Then ZSG
AG

P
(MG

P ) = AssGf (MG
P ) = SKG

AG
P

(MG
P ) = {PAGP }

for all P ∈ SuppGA(M).

We now show by an example that associated prime, Zariski-Samuel, Krull, strong

Krull and weak Bourbaki prime ideals to M need not be G-associated, G-Zariski-

Samuel, G-Krull, strong G-Krull and weak G-Bourbaki prime ideals to M respec-

tively.

Example 3.14. Let A = Q[x] and M = A/I where I = (x2 − 1) is an ideal in A.

Consider the group G = Z2. Then M is a G-graded A-module with grading as in

Example 3.7. Consider the prime ideal P = (x + 1) of A. Then P = Ann((x −
1) + I), and so P is an associated prime ideal to M . Consequently, P is a Zariski-

Samuel, Krull, strong Krull and weak Bourbaki prime ideal to M but none of the

G-Zariski-Samuel, G-Krull, strong G-Krull and weak G-Bourbaki prime ideal to M

respectively since P is not a G-prime ideal of A.

However we have the following.

Proposition 3.15. Let M be a G-graded A-module. Let P be a strong Krull prime

ideal in non-graded case and P ′ be the largest graded ideal contained in P . Then

P ′ ∈ SKG
A (M).

Proof. Clearly P ′ is a G-prime ideal of A. Let I be a finitely generated graded

ideal of A such that I ⊆ P ′. Then I is a finitely generated ideal such that I ⊆ P ,

and so by definition of strong Krull prime ideal, there exists a 0 6= x ∈M such that

I ⊆ Ann(x) ⊆ P . Write x = xg1 + xg2 + · · · + xgn where 0 6= xgi ∈ h(M). Then∏n
i=1Ann(xgi) ⊆

⋂n
i=1Ann(xgi) ⊆ Ann(x) ⊆ P . Then there exists j such that

Ann(xgj ) ⊆ P . Consequently, I ⊆ Ann(xgj ) ⊆ P ′ since Ann(xgj ) is a graded ideal

and all homogeneous elements of P are in P ′. Hence P ′ ∈ SKG
A (M). �

Proposition 3.15 also holds if we replace SKG
A (M) by AssGA(M) or KG

A (M).

Further, Example 3.7 shows that a G-Zariski-Samuel prime ideal need not be a

Zariski-Samuel prime ideal. There are two reasons: the first one is that a G-prime

ideal need not be a prime ideal (see Example 3.7) and the other is that a G-primary

ideal need not be a primary ideal.

The following example shows that a G-primary ideal need not be a primary ideal.
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Example 3.16. Let A = Q[x] be the polynomial ring with Z2-grading as in Ex-

ample 3.7. Then Q = (x4 + x2 + 1) is a G-graded primary ideal but not a primary

ideal since x4 +x2 +1 ∈ Q but x2 +x+1 /∈ Q and (x2−x+1)n /∈ Q for any integer

n ≥ 1.

Now we wish to know when a G-Zariski-Samuel prime ideal is a Zariski-Samuel

prime ideal. We have the following theorem.

Theorem 3.17. Let G be a finitely generated torsion free abelian group and M be a

G-graded A-module. Then every G-Zariski-Samuel prime ideal is a Zariski-Samuel

prime ideal.

Proof. First we prove that a G-primary ideal of A is a primary ideal. Let Q be

a G-primary ideal of A. On the contrary suppose Q is not a primary ideal of A.

Then there exists a, b ∈ A such that ab ∈ Q but a /∈ Q and b /∈ Rad(Q) where

Rad(Q) denotes the radical of Q. Then we can write b = d+ c where d ∈ Rad(Q)

and c =
∑
h∈G bh with bh /∈ Rad(Q) for all h ∈ G. Since G is torsion free, G

admits a total order ≤ compatible with the group structure, i.e., if α ≤ β where

α, β ∈ G, then α+ γ ≤ β+ γ for all γ ∈ G. We can write a = ag1 + ag2 + · · ·+ agn ,

c = bh1 + bh2 + · · · + bhm with g1 < g2 < · · · < gn and h1 < h2 < · · · < hm where

agi and bhj
are nonzero homogeneous elements of A. Since a /∈ Q, we may assume

that agi /∈ Q for all i. Now, d being in Rad(Q) implies that dk ∈ Q for some integer

k ≥ 1. Hence a(bh1
+ · · · + bhm

)k = a(b − d)k ∈ Q since ab and dk are in Q. The

component of degree g1 +kh1 is ag1b
k
h1

which must belong to Q since Q is a graded

ideal. But then bkh1
∈ Gr(Q) ⊆ Rad(Q) since ag1 /∈ Q and Q is a G-primary ideal.

This implies that bh1
∈ Rad(Q) which is a contradiction since bh1

/∈ Rad(Q). Hence

Q is a primary ideal of A. Similarly we can prove that a G-prime ideal of A is a

prime ideal.

Now we show that Gr(Q) = Rad(Q). For, let r ∈ Rad(Q), then rn ∈ Q for some

integer n ≥ 1. Write r = rγ1 + rγ2 + · · · + rγt with γ1 < γ2 < · · · < γt where

rγ1 , rγ2 , . . . , rγt are nonzero homogeneous elements of A. Since Q is a graded ideal,

then homogeneous component of rn whose degree is nγ1 must belong to Q, i.e.,

rnγ1 ∈ Q, so it follows that rγ1 ∈ Rad(Q). But then rγ2 + · · · + rγt ∈ Rad(Q) and

we may repeat the argument. Consequently, rni
γi ∈ Q for some integer ni ≥ 1 for

i = 1, 2, . . . , t. This implies that r ∈ Gr(Q). Thus Gr(Q) = Rad(Q).

Now, let P ∈ ZSGA (M). Then Ann(x) is a G-graded P -primary ideal for some

nonzero x ∈ h(M). Consequently, Ann(x) is a primary ideal and Rad(Q) =
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Gr(Q) = P , a prime ideal of A. Thus Ann(x) is a P -primary ideal. Hence P

is a Zariski-Samuel prime ideal. �

We now prove a graded local-global principle of graded module in terms of strong

G-Krull prime ideals of A.

Theorem 3.18. Let M be a G-graded A-module. Then the following are equivalent:

(1) M = 0.

(2) MG
P = 0, for all P ∈ SKG

A (M).

(3) MG
Q = 0, for all maximal element Q ∈ SKG

A (M).

Proof. (1)⇒(2)⇒(3) Clear.

(3)⇒(1) Suppose MG
Q = 0 for all maximal element Q ∈ SKG

A (M) and M 6= 0. Then

h(M) 6= 0. Choose an element 0 6= x ∈ h(M) and a minimal G-prime ideal P over

Ann(x). Then P ∈ AssGf (M) ⊆ SKG
A (M). Consider the set X = {L ∈ SKG

A (M) :

P ⊆ L}, which is clearly a nonempty set since P ∈ X. Let {Li} be a chain in X

and T =
⋃
Li. Then T is a G-prime ideal of A. Now, let I be a finitely generated

graded ideal of A such that I ⊆ T . Then I ⊆ Li for some i. This implies that

there exists 0 6= y ∈ h(M) such that I ⊆ Ann(y) ⊆ Li ⊆ T since Li ∈ SKG
A (M).

Thus T is a strong G-Krull prime ideal with P ⊆ T , and so T is an upper bound

for the chain. Then SKG
A (M) has a maximal element Q such that P ⊆ Q. Thus

y
1 ∈ MG

Q = 0. Consequently, there exists a ∈ h(A) \ Q such that ay = 0. This

implies that a ∈ Ann(y) ⊆ P ⊆ Q, a contradiction. Hence M = 0. �

Let M be a G-graded A-module. An element a ∈ h(A) is called a graded

zero-divisor on M if ax = 0 for some non-zero x ∈ h(M). The set of all graded

zero-divisors on M is denoted by ZG(M). Let Z(M) denotes the set of all zero

divisors on M in non-graded case. Then in general ZG(M) 6= Z(M). For this,

consider the following example.

Example 3.19. Let A = F [x], the polynomial ring over a field F . Consider Z-

graded ring A =
⊕

n∈ZAn, where An = 0 if n < 0 and An = Fxn if n ≥ 0. Let

K = F (x), the field of fractions of A. Consider a trivially Z-graded A-module

M = K/A. Clearly Z(M) = A and ZG(M) =
⋃
n≥0 Fx

n. Thus ZG(M) 6= Z(M).

Proposition 3.20. Let M be a G-graded A-module. Then ZG(M) =
⋃
P∈SKG

A (M) P
G

where PG denotes the set of all homogeneous elements of P .

Proof. Let a ∈ ZG(M). Then ax = 0 for some nonzero x ∈ h(M). Let P be a

minimal G-prime ideal containing Ann(x). Then P ∈ AssGf (M) ⊆ SKG
A (M) and
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a ∈ PG. Thus ZG(M) ⊆
⋃
P∈SKG

A (M) P
G. Conversely, let a ∈

⋃
P∈SKG

A (M) P
G.

Then a ∈ P for some P ∈ SKG
A (M), and so there exists 0 6= x ∈ h(M) such that

ax = 0, i.e., a ∈ ZG(M). Hence
⋃
P∈SKG

A (M) P
G ⊆ ZG(M). �

4. Graded primary decomposition in a graded Prüfer domain

In this section, we study a graded primary decomposition of a graded ideal in a

G-graded Prüfer domain.

The following example shows that Theorem 2.7 may not work in the graded case.

Example 4.1. Let A = Q[x] be the polynomial ring. Then A is a Prüfer domain of

finite character such that dim(A)=1. Consider Z2-grading on A as in Example 3.7.

Here I = (x4− 1) is a graded ideal of A which has a unique primary decomposition

I = J1∩J2∩J3 where J1 = (x+ 1), J2 = (x−1) and J3 = (x2 + 1). Clearly J1 and

J2 are primary ideals but not Z2-primary since x+1 and x−1 are not homogeneous

elements of A. On the other hand I = Q1∩Q2 is a Z2-graded primary decomposition

of I where Q1 = (x2 + 1) and Q2 = (x2 − 1). Thus a primary decomposition and a

graded primary decomposition of a graded ideal may be different.

We now generalize Theorem 2.7 to the graded case.

Theorem 4.2. Let A be a G-graded Prüfer domain of G-finite character with gr-

dim(A) ≤ 1. Then every graded ideal of A can be written as an intersection of

finitely many G-primary ideals.

Proof. Let I be a graded ideal of A. If I = {0}, then I is G-primary since A is a G-

graded integral domain. Suppose I 6= {0}. We claim that I = (
⋂
m∈MaxG(A) IA

G
m)

⋂
A.

Clearly I ⊆ (
⋂
m∈MaxG(A) IA

G
m)

⋂
A. Now, let a ∈ (

⋂
m∈MaxG(A) IA

G
m)

⋂
A be a

homogeneous element. Consider J = (I : a) = {b ∈ A : ab ∈ I}. Then by Proposi-

tion 2.4, J is a graded ideal of A. If J 6= A, then we can choose a G-maximal ideal L

of A such that J ⊆ L. Since a ∈ IAGL , then there exists b ∈ h(A)\L such that ab ∈ I.

Consequently, b ∈ J ⊆ L, which is a contradiction since b /∈ L. Thus J = A, and so

a ∈ I. Hence (
⋂
m∈MaxG(A) IA

G
m)

⋂
A ⊆ I. Now since A is of G-finite character, so

there are finitely many ideals m1,m2, . . . ,mr ∈ MaxG(A) such that I ⊆ mi. But

then IAGm = AGm when m 6= mi. Hence I = IAGm1

⋂
IAGm2

⋂
. . .

⋂
IAGmr

⋂
A. Let

us write Qi = IAGmi
∩A. Then I = Q1 ∩Q2 ∩ . . .∩Qr. Now it suffices to show that

each Qi is a G-graded Pi-primary ideal of A.

Let a, b ∈ h(AGmi
) such that ab ∈ Li = Gr(IAGmi

). Then (ab)n ∈ IAGmi
for some

integer n ≥ 1. Since each AGmi
is a G-graded valuation domain, then either a | b or

b | a. If a | b, then b2n ∈ IAGmi
and so b ∈ Li. If b | a, then a2n ∈ IAGmi

and so
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a ∈ Li. Thus Li is a G-prime ideal of AGmi
, and so G-maximal since gr-dim(A) ≤1

implies gr-dim(AGmi
) ≤1. Now, let a ∈ Gr(Qi). Then an ∈ IAGmi

for some integer

n ≥ 1 (note that a ∈ A). Consequently a ∈ Li, and so a ∈ Pi = Li ∩ A. On the

other hand, let a ∈ Pi. Then a ∈ Li, and so an ∈ Qi for some integer n ≥ 1. Hence

Gr(Qi) = Li ∩ A = Pi. Also, let a, b ∈ h(A) such that ab ∈ Pi. Then ab ∈ Li and

each Li is a G-prime ideal of AGmi
. Consequently a ∈ Pi or b ∈ Pi, and so each Pi

is a G-maximal ideal of A since gr-dim(A) ≤1. Hence by Proposition 2.5, each Qi

is a G-graded Pi-primary ideal of A. �

It is clear from the definition that a G-graded Prüfer domain and a Prüfer domain

which is graded by G are different. The following theorem shows the closeness

between primary decomposition and graded primary decomposition of a graded

ideal of a Prüfer domain which is graded by G.

Theorem 4.3. Let A be a Prüfer domain of dimension 1 and of finite character

which is graded by a finitely generated abelian group G. Let I be a graded ideal of

A, and I =
⋂r
i=1Qi be a primary decomposition. Let Q′i be the largest graded ideal

of A such that I ⊆ Q′i ⊆ Qi. Then Q′i is G-primary and I =
⋂r
i=1Q

′
i is a G-graded

primary decomposition of I.

Proof. By Theorem 2.7, I has a primary decomposition say I = Q1∩Q2∩· · ·∩Qr
where each Qi is a Pi-primary ideal of A. Let a, b ∈ h(A) such that ab ∈ Q′i ⊆ Qi.
Suppose a /∈ Q′i. Then a /∈ Qi since a is a homogeneous element and Q′i is the

largest graded ideal contained in Qi. This implies that bn ∈ Qi for some integer

n ≥ 1, and so bn ∈ Q′i since bn is homogeneous. Let P ′i be the largest graded ideal

of A such that I ⊆ P ′i ⊆ Pi for i = 1, 2, . . . , r. We show that P ′i is a G-prime ideal

of A, for let a, b ∈ h(A) such that ab ∈ P ′i . Then ab ∈ Pi, and so a ∈ Pi or b ∈ Pi.
This implies that a ∈ P ′i or b ∈ P ′i since P ′i is the largest graded ideal contained in

Pi. Thus P ′i is a G-prime ideal and it can be seen that Gr(Q′i) = P ′i . Thus each

Q′i is a G-graded P ′i -primary ideal. Hence I = Q′1 ∩ Q′2 ∩ · · · ∩ Q′r is a G-graded

primary decomposition of I. �

As an application of Theorem 4.2, we have the following:

Proposition 4.4. Let A be a G-graded Prüfer domain of G-finite character with

gr-dim(A) ≤ 1. Then the number of minimal G-prime ideals over a graded ideal I

of A is finite.

Proof. Let I be a graded ideal of A. Then by Theorem 4.2, I = Q1∩Q2∩ · · ·∩Qr
where each Qi is G-graded Pi-primary. Let P be a minimal G-prime ideal over I.



154 AJIM UDDIN ANSARI, B. K. SHARMA AND SHIV DATT KUMAR

Then Qj ⊆ P for some j. Therefore Pj = Gr(Qj) ⊆ P and so P = Pj since P is

minimal over I. Thus the number of minimal G-prime ideals over I is finite. �

Remark 4.5. Proposition 4.4 is also true without the condition gr-dim(A) ≤ 1,

because each G-prime ideal of A is contained in a unique G-maximal ideal of A.

The following theorem gives a class of examples of QGR-ring.

Proposition 4.6. Let A be a G-graded Prüfer domain of G-finite character with

gr-dim(A) ≤ 1. Then A is a QGR-ring.

Proof. Let I be a nonzero graded ideal of A. Then by Theorem 4.2, I has a

reduced G-graded primary decomposition say I = Q1 ∩Q2 ∩ · · · ∩Qr where Qi are

G-graded Pi-primary ideals of A. We need to show that Qi and Qj are co-maximal

when i 6= j. Contrary suppose Qi +Qj 6= A. Then there exists a G-maximal ideal

L such that Qi +Qj ⊆ L. This implies that Gr(Qi) +Gr(Qj) ⊆ Gr(Qi +Qj) ⊆ L,

i.e., Pi+Pj ⊆ L where Pi = Gr(Qi) is G-maximal since gr-dimension of A is 0 or 1.

But then Pi = Pj , which is a contradiction since decomposition is reduced. Thus

Qi+Qj = A, and so QiQj = Qi∩Qj when i 6= j. Consequently, I = Q1.Q2. . . . .Qr.

Hence A is a QGR-ring. �
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