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1. Introduction

The modular group SL(2,Z) is the group of all 2× 2 matrices of determinant 1

whose entries belong to the ring Z of integers. The modular group is known to play

a significant role in conformal field theory [3]. Every two-dimensional rational con-

formal field theory gives rise to a finite-dimensional representation of the modular

group, and the kernel of this representation has been of much interest. In particu-

lar, the question whether the kernel is a congruence subgroup of SL(2,Z) has been

investigated by several authors. For example, A. Coste and T. Gannon in their

paper [4] showed that under certain assumptions the kernel is indeed a congruence

subgroup. In the present paper, we consider the kernel of the representation of the

modular group arising from Drinfeld doubles of dihedral groups.

The group SL(2,Z) is generated by the matrices

X =

(
0 −1

1 0

)
and Y =

(
1 1

0 1

)
,

and these matrices satisfy the relations

X4 = I and (XY )3 = X2.
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In fact, the relations above are defining relations for the modular group, that is,

the modular group has the presentation

〈X,Y | X4 = 1, (XY )3 = X2〉.

Let G be a finite group, let D(G) denote the Drinfeld double of G, a quasi-

triangular semisimple Hopf algebra, and let Rep(D(G)) denote the category of

finite-dimensional complex representations of D(G). The category Rep(D(G)) is a

modular tensor category [1], and it comes equipped with a pair of invertible matrices

S and T , called the S-matrix and T -matrix of Rep(D(G)), and they satisfy the

relations

S4 = I and (ST )3 = S2. (1)

Therefore, Rep(D(G)) gives rise to a representation

ρ : SL(2,Z)→ 〈S, T 〉

of the modular group such that ρ(X) = S and ρ(Y ) = T .

In their paper [9], Y. Sommerhäuser and Y. Zhu showed that the kernels of

the representations of the modular group arising from factorizable semisimple Hopf

algebras and from Drinfeld doubles of semisimple Hopf algebras are congruence

subgroups of SL(2,Z). Later, S-H Ng and P. Schauenburg generalized the results

of Y. Sommerhäuser and Y. Zhu to spherical fusion categories [8]. It follows from

results in [9] that the kernel of ρ is a congruence subgroup. As a consequence, the

image of ρ is finite. Our work gives a direct proof of this fact for dihedral groups of

certain orders. Specifically, we show that if G is either the dihedral group of order

2n or the dihedral group of order 4n for some odd integer n ≥ 3, then the image of

ρ is isomorphic to the group PSL(2,Z/nZ)× S3, where PSL(2,Z/nZ) denotes the

projective special linear group, S3 denotes the symmetric group on three letters,

and Z/nZ denotes the ring of integers modulo n.

Organization:

In Section 2, we recall basic facts about the modular tensor category Rep(D(G)),

and a description of the S-matrix and T -matrix for the dihedral groups.

In Section 3, we recall a presentation of the projective special linear group

PSL(2,Z/nZ), and a description of its normal subgroups.

Section 4 contains our main result in which we establish that when G is either

the dihedral group of order 2n or the dihedral group of order 4n for some odd

integer n ≥ 3, the image of ρ is isomorphic to the group PSL(2,Z/nZ)× S3.
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Convention and notation:

Throughout this paper we work over the field C of complex numbers. The

multiplicative group of nonzero complex numbers is denoted C×. We will use the

Kronecker symbol δx,y, which is equal to 1 if x = y and zero otherwise. For any

character α of a group, degα denotes the degree of α, and α denotes the complex

conjugate of α. We denote by [x]n the image of the integer x in the ring Z/nZ
of integers modulo n; on occasions we will suppress the brackets as well as the

subscript n.

2. Drinfeld doubles of finite groups

Let G be a finite group, let D(G) denote the Drinfeld double of G, a quasi-

triangular semisimple Hopf algebra, and let Rep(D(G)) denote the category of

finite-dimensional representations of D(G). The category Rep(D(G)) is a modular

tensor category [1]. The simple objects of Rep(D(G)) are in bijection with the

set of pairs (x, α), where x is a representative of a conjugacy class of G, and α

is an irreducible character of the centralizer CG(x) of x in G. The S-matrix and

the T -matrix of Rep(D(G)) are square matrices indexed by the simple objects of

Rep(D(G)), and are given by the following formulas [1,5].

S(x,α),(y,β) =
1

|CG(x)||CG(y)|
∑

g∈G(x,y)

α(gyg−1)β(g−1xg),

T(x,α),(y,β) = δx,yδα,β
α(x)

degα
,

where G(x, y) denotes the set {g ∈ G | xgyg−1 = gyg−1x}. The function G(x, y)→
G(y, x) that sends each element g to g−1 is a bijection, and as a consequence the

matrix S is symmetric.

We have

T exp(G) = I, (2)

where exp(G) denotes the exponent of G. In fact, the order of T is precisely exp(G)

[5].

There is an involution ∗ on the set of simple objects of Rep(D(G)) given by

(x, α)∗ = (g−1x−1g, χg), where g is an element of G such that g−1x−1g is the

element chosen to represent the conjugacy class of x−1. The so-called charge conju-

gation matrix is the square matrix C indexed by the simple objects of Rep(D(G))

defined by C(x,α),(y,β) = δ(x,α)∗,(y,β). We have S2 = C [1].
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The S-matrix and T -matrix of Rep(D(G)) when G = G1 ×G2 for finite groups

G1 and G2 are given by the Kronecker products S1⊗S2 and T1⊗T2, where Si and

Ti denote the S-matrix and T -matrix of Rep(D(Gi)), i = 1, 2.

Example 2.1. Let n be an integer with n ≥ 3, and let Dihn denote the Dihedral

group of order 2n generated by the elements a and b subject to the relations an = e,

b2 = e, and ba = a−1b.

(a) Suppose that n is even. Then there are (n/2)+3 conjugacy classes in Dihn,

and they are

{e}, {an/2}, {ak, a−k} (1 ≤ k < n/2), {a2kb | 0 ≤ k < n/2},

{a2k+1b | 0 ≤ k < n/2}.

We choose the elements e, ak (1 ≤ k ≤ n/2), b, and ab as representatives of

the conjugacy classes. The centralizers of these elements are

C(e) = Dihn

C(an/2) = Dihn

C(ak) = 〈a〉 (1 ≤ k < n/2)

C(b) = {e, b, an/2, an/2b}

C(ab) = {e, ab, an/2, a1+n/2b}.

The center of Dihn is the subgroup {e, an/2}, and the character table of

Dihn is

e ak b ab

χ0 1 1 1 1

χ1 1 (−1)k 1 −1

χ2 1 1 −1 −1

χ3 1 (−1)k −1 1

ψi 2 2 cos
(
2πik
n

)
0 0

where 1 ≤ i ≤ (n/2)− 1 and 1 ≤ k ≤ n/2.

Let ζ = e
2πi
n , a primitive nth root of unity. For each 1 ≤ i ≤ n, let

αi : 〈a〉 → C×

denote the group homomorphism that sends a to ζi. For i, j ∈ {0, 1}, let

βi,j : {e, b, an/2, an/2b} → C×
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denote the group homomorphism that sends b to (−1)i and sends an/2 to

(−1)j , and let

γi,j : {e, ab, an/2, a1+n/2b} → C×

denote the group homomorphism that sends ab to (−1)i and sends an/2 to

(−1)j .

The simple objects of Rep(D(Dihn)) are in bijection with the set con-

sisting of the following pairs.

(e, χi) 0 ≤ i ≤ 3

(e, ψi) 1 ≤ i ≤ (n/2)− 1

(an/2, χi) 0 ≤ i ≤ 3

(an/2, ψi) 1 ≤ i ≤ (n/2)− 1

(ak, αi) 1 ≤ k < n/2, 1 ≤ i ≤ n

(b, βi,j) i, j ∈ {0, 1}

(ab, γi,j) i, j ∈ {0, 1}

Set

∆i =

1 if i = 0, 1

−1 if i = 2, 3
and ∆′i =

1 if i = 0, 3

−1 if i = 1, 2.

Then the S-matrix is given by the first three tables below, and the T -matrix

is given by the fourth table below.

S (e, χj) (e, ψj) (an/2, χj) (an/2, ψj) (a`, αj)

(e, χi)
1
2n

1
n

1
2n

· (−1)ni/2 1
n
· (−1)ni/2 1

n
· (−1)`i

(e, ψi)
1
n

2
n

1
n
· (−1)i 2

n
· (−1)i 2

n
· cos

(
2π`i
n

)
(an/2, χi)

1
2n

· (−1)nj/2 1
n
· (−1)j 1

2n
· (−1)n(i+j)/2 1

n
· (−1)j+(ni/2) 1

n
· (−1)j+`i

(an/2, ψi)
1
n
· (−1)nj/2 2

n
· (−1)j 1

n
· (−1)i+(nj/2) 2

n
· (−1)i+j 2(−1)j

n
· cos

(
2π`i
n

)
(ak, αi)

1
n
· (−1)kj 2

n
· cos

(
2πkj
n

)
1
n
· (−1)i+kj 2(−1)i

n
· cos

(
2πkj
n

)
2
n
·
(

2π(`i+kj)
n

)
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S (b, βi′,j′)

(e, χi)
1
4 ·∆i

(e, ψi) 0

(an/2, χi)
1
4 ·∆i · (−1)j

′

(an/2, ψi) 0

(ak, αi) 0

(b, βi,j)
1
4 ·

(−1)i+i
′
+ (−1)i+j+i

′+j′ if 4 | n

(−1)i+i
′

if 4 - n

(ab, γi,j)

0 if 4 | n
1
4 · (−1)i+j+i

′+j′ if 4 - n

S (ab, γi′,j′)

(e, χi)
1
4 ·∆

′
i

(e, ψi) 0

(an/2, χi)
1
4 ·∆

′
i · (−1)j

′

(an/2, ψi) 0

(ak, αi) 0

(b, βi,j)

0 if 4 | n
1
4 · (−1)i+j+i

′+j′ if 4 - n

(ab, γi,j)
1
4 ·

(−1)i+i
′
+ (−1)i+j+i

′+j′ if 4 | n

(−1)i+i
′

if 4 - n

T (e, χi) (e, ψi) (an/2, χi) (an/2, ψi) (ak, αi) (b, βi,j) (ab, γi,j)

1 1 (−1)ni/2 (−1)i ζki (−1)i (−1)i
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(b) Suppose that n is odd. Then there are (n+ 3)/2 conjugacy classes in Dihn,

and they are

{e}, {ak, a−k} (1 ≤ k ≤ (n− 1)/2), {akb | 0 ≤ k < n}.

We choose the elements e, ak (1 ≤ k ≤ (n− 1)/2), and b as representatives

of the conjugacy classes. The centralizers of these elements are

C(e) = Dihn

C(ak) = 〈a〉 (1 ≤ k ≤ (n− 1)/2)

C(b) = {e, b}.

The center of Dihn is trivial in this case, and the character table of Dihn is

e ak b

χ0 1 1 1

χ1 1 1 −1

ψi 2 2 cos
(
2πik
n

)
0

where 1 ≤ i ≤ (n− 1)/2 and 1 ≤ k ≤ (n− 1)/2.

Let ζ = e
2πi
n , a primitive nth root of unity. For each 1 ≤ i ≤ n, let

αi : 〈a〉 → C×

denote the group homomorphism that sends a to ζi. For i ∈ {0, 1}, let

βi : {e, b} → C×

denote the group homomorphism that sends b to (−1)i.

The simple objects of Rep(D(Dihn)) are in bijection with the set con-

sisting of the pairs

(e, χi) i ∈ {0, 1}

(e, ψi) 1 ≤ i ≤ (n− 1)/2

(ak, αi) 1 ≤ k ≤ (n− 1)/2, 1 ≤ i ≤ n

(b, βi) i ∈ {0, 1},
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and the S-matrix and the T -matrix are given by the following tables.

S (e, χj) (e, ψj) (a`, αj) (b, βj)

(e, χi)
1
2n

1
n

1
n

1
2 · (−1)i

(e, ψi)
1
n

2
n

2
n · cos

(
2π`i
n

)
0

(ak, αi)
1
n

2
n · cos

(
2πkj
n

)
2
n · cos

(
2π(kj+`i)

n

)
0

(b, βi)
1
2 · (−1)j 0 0 1

2 · (−1)i+j

T (e, χi) (e, ψi) (ak, αi) (b, βi)

1 1 ζki (−1)i

3. Projective special linear groups

For any commutative ring R, the special linear group SL(2, R) is the group

consisting of all 2×2 matrices
(
a b
c d

)
with a, b, c, d ∈ R such that ad− bc = 1. Let n

be a positive integer. Of particular interest is the special linear group SL(2,Z/nZ),

where Z/nZ is the ring of integers modulo n. The order of SL(2,Z/nZ) for n ≥ 2

is given by the following formula [6].

|SL(2,Z/nZ)| = n3
∏
p|n

(
1− 1

p2

)
,

where p runs over all primes that divide n.

If n is odd, then〈
X,Y X4 = 1, (XY )3 = X2, Y n = 1,

(
XY

n+1
2 XY 2

)3
= 1

〉
is a presentation of SL(2,Z/nZ) [2], and if n is a power of 2, then〈

X,Y X4 = 1, (XY )3 = X2, Y n = 1,W (k)XW (k) = X,W (k)Y = Y k
2

W (k)
〉

is a presentation of SL(2,Z/nZ) [9,4], where k runs over all odd integers between

1 and n, W (k) = XY `X−1Y kXY `, and ` is an integer such that k` ≡ 1 (mod n).

The matrices

X =

(
0 −1

1 0

)
and Y =

(
1 1

0 1

)
,

where the entries of the matrices are identified with their images in the ring Z/nZ,

satisfy the relations in both the cases above.
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The projective special linear group PSL(2,Z/nZ) is defined by

PSL(2,Z/nZ) = SL(2,Z/nZ)/± I,

where I is the identity matrix. If n is odd, then〈
X,Y X2 = 1, (XY )3 = 1, Y n = 1,

(
XY

n+1
2 XY 2

)3
= 1

〉
is a presentation of PSL(2,Z/nZ) [2]. The cosets

X = ±

(
0 −1

1 0

)
and Y = ±

(
1 1

0 1

)
,

satisfy the relations given above.

The group homomorphism SL(2,Z) → SL(2,Z/nZ) induced by the ring homo-

morphism Z→ Z/nZ is surjective [6]. It follows that for each positive divisor r of

n, the group homomorphism

φnr : SL(2,Z/nZ)→ SL(2,Z/rZ)

induced by the ring homomorphism Z/nZ→ Z/rZ is surjective.

Let r be a positive divisor of n. A subgroup H of SL(2,Z/nZ) is said to be of

level r if there exists a subgroup K of SL(2,Z/rZ) such that H = (φrn)
−1

(K) and

r is minimal with this property. We record the following result for later use.

Lemma 3.1. Let n be a positive integer.

(a) If r1 and r2 are positive divisors of n such that r2 divides r1, then Kerφnr1 ≤
Kerφnr2 .

(b) If H is a subgroup of SL(2,Z/nZ) of level r such that r 6= n, then H contains

Kerφnn/p for some prime p that divides n.

Let n = n1n2 · · ·nt denote the decomposition of n into a product of powers of

distinct primes. Choose integers u1, u2, . . . , ut such that

n

ni
· ui ≡ 1 (mod ni)

for i = 1, 2, . . . , t. The function

t∏
i=1

Z/niZ
∼−−−→ Z/nZ : ([a1]n1

, [a2]n2
, . . . , [at]nt) 7→

[
t∑
i=1

n

ni
· ui · ai

]
n

is a ring isomorphism, and it induces a group isomorphism

SL

(
2,

t∏
i=1

Z/niZ

)
∼−−−→ SL(2,Z/nZ).
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Using the natural group isomorphism

t∏
i=1

SL (2,Z/niZ)
∼−−−→ SL

(
2,

t∏
i=1

Z/niZ

)
we obtain the group isomorphism

t∏
i=1

SL (2,Z/niZ)
∼−−−→ SL(2,Z/nZ)

that sends the tuple((
[a1]n1 [b1]n1

[c1]n1
[d1]n1

)
,

(
[a2]n2 [b2]n2

[c2]n2
[d2]n2

)
, . . . ,

(
[at]nt [bt]nt

[ct]nt [dt]nt

))
of matrices to the matrix[∑t

i=1
n
ni
· ui · ai

]
n

[∑t
i=1

n
ni
· ui · bi

]
n[∑t

i=1
n
ni
· ui · ci

]
n

[∑t
i=1

n
ni
· ui · di

]
n

 .

We will use this isomorphism in the next section.

The following result was proved by D. L. McQuillan in the paper [7].

Theorem 3.2. Let n be an odd positive integer. The normal subgroups of level n

of SL(2,Z/nZ) are precisely the subgroups of the center of SL(2,Z/nZ), with the

exception that if 3 | n and 32 - n, then in addition there are normal subgroups KC,

where K is the image in SL(2,Z/nZ) of the unique Sylow 2-subgroup of SL(2,Z/3Z)

and C is a subgroup of the center of SL(2,Z/nZ).

Let π : SL(2,Z/nZ)→ PSL(2,Z/nZ) denote the natural projection. We deduce

immediately the following from Theorem 3.2.

Corollary 3.3. Let n be an odd positive integer. The subgroups

C

π(H)

π(K)C (if 3 | n and 32 - n)

exhaust all the normal subgroups of PSL(2,Z/nZ), where C is a subgroup of the

center of PSL(2,Z/nZ), H is a subgroup of SL(2,Z/nZ) of level less than n, and

K is the image in SL(2,Z/nZ) of the unique Sylow 2-subgroup of SL(2,Z/3Z).

We note that the center of PSL(2,Z/nZ) consists of all cosets of the form ± ( a 0
0 a )

with a2 ≡ 1 (mod n) [7], and the unique Sylow 2-subgroup of SL(2,Z/3Z) is the

subgroup 〈
(
0 −1
1 0

)
,
(−1 −1
−1 1

)
〉.
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4. Main result

Let n be an odd integer with n ≥ 3, and let Dihn denote the Dihedral group of

order 2n generated by the elements a and b subject to the relations an = e, b2 = e,

and ba = a−1b. In this section, we determine the group structure of the image of

the representation of the modular group SL(2,Z) arising from the modular tensor

category Rep(D(Dihn)). For a description of the simple objects of Rep(D(Dihn))

and the corresponding S-matrix and T -matrix we refer the reader to Example 2.1.

The charge conjugation matrix associated to Rep(D(Dihn)) is the identity, and

so S2 = I Therefore, the relations in (1) reduce to the following.

S2 = I and (ST )3 = I. (3)

Since the group Dihn has exponent 2n, the relation in (2) gives T 2n = I. We note

that, in fact, the order of T is precisely 2n.

We will need the matrices STnS, STn+1S, and STn−1S, described below.

STnS (e, χj) (e, ψj) (a`, αj) (b, βj)

(e, χi)
1
2 0 0 1

2 · (−1)i+j

(e, ψi) 0 δi,j 0 0

(ak, αi) 0 0 δi,jδk,` 0

(b, βi)
1
2 · (−1)i+j 0 0 1

2

STn+1S (e, χj) (e, ψj) (a`, αj) (b, βj)

(e, χi)
1
2n + 1

2 · (−1)i+j 1
n

1
n · ζ

−`j 0

(e, ψi)
1
n

2
n

2
n · cos

(
2π`i
n

)
· ζ−`j 0

(ak, αi)
1
n · ζ

−ki 2
n · cos

(
2πkj
n

)
· ζ−ki 2

n · cos
(

2π(kj+`i)
n

)
· ζ−(ki+`j) 0

(b, βi) 0 0 0 δi,j
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STn−1S (e, χj) (e, ψj) (a`, αj) (b, βj)

(e, χi)
1
2n + 1

2 · (−1)i+j 1
n

1
n · ζ

`j 0

(e, ψi)
1
n

2
n

2
n · cos

(
2π`i
n

)
· ζ`j 0

(ak, αi)
1
n · ζ

ki 2
n · cos

(
2πkj
n

)
· ζki 2

n · cos
(

2π(kj+`i)
n

)
· ζki+`j 0

(b, βi) 0 0 0 δi,j

The computations involved in determining the matrices above are routine, albeit

tedious. As a sample, we show the computation of one entry. The entry of the

matrix STn+1S corresponding to the pair ((ak, αi), (a
`, αj)) can be computed as

follows.

∑
r=0,1

STn+1
(ak,αi),(e,χr)

S(e,χr),(a`,αj) +

(n−1)/2∑
r=1

STn+1
(ak,αi),(e,ψr)

S(e,ψr),(a`,αj)

+

(n−1)/2∑
r=1

n∑
s=1

STn+1
(ak,αi),(ar,αs)

S(ar,αs),(a`,αj)

=
∑
r=0,1

1

n2
+

n∑
r=1

4

n2
· cos

(
2πkr

n

)
· cos

(
2π`r

n

)

+

(n−1)/2∑
r=1

n∑
s=1

4

n2
· cos

(
2π(ks+ ri)

n

)
· cos

(
2π(rj + `s)

n

)
· ζrs

Applying a trigonometric identity, we get the following expression.

=
2

n2
+

2

n2

n∑
r=1

[
cos

(
2πr(k + `)

n

)
+ cos

(
2πr(k − `)

n

)]

+
2

n2

(n−1)/2∑
r=1

n∑
s=1

[
cos

(
2π(ks+ ri+ rj + `s)

n

)
+ cos

(
2π(ks+ ri− rj − `s)

n

)]
· ζrs
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=
2

n2
+

1

n2
(−2 + nδk,`) +

1

n2

(n−1)/2∑
r=1

n∑
s=1

[
ζr(i+j) · ζ(k+`+r)s + ζ−r(i+j) · ζ(−k−`+r)s

+ζr(i−j) · ζ(k−`+r)s + ζ−r(i−j) · ζ(−k+`+r)s
]

=
1

n
·
(
ζ−(k+`)(i+j) + ζ(`−k)(i−j)

)
=

2

n
· cos

(
2π(kj + `i)

n

)
· ζ−(ki+`j),

where we used the formulas

(n−1)/2∑
i=1

2 cos

(
2πki

n

)
=

n− 1 if n | k

−1 if n - k

and

n∑
i=1

ζki =

n if n | k

0 if n - k.

Lemma 4.1. Let n be an odd integer with n ≥ 3, let S and T denote the matrices

associated to the modular tensor category Rep(D(Dihn)), and let A = STnSTn

and B = Tn. The matrices A and B have orders 3 and 2, respectively, and satisfy

the relation BA = A−1B, and therefore the group 〈A,B〉 generated by A and B is

isomorphic to S3.

Proof. The matrix A is described below.

A = STnSTn (e, χj) (e, ψj) (a`, αj) (b, βj)

(e, χi)
1
2 0 0 1

2 · (−1)i

(e, ψi) 0 δi,j 0 0

(ak, αi) 0 0 δi,jδk,` 0

(b, βi)
1
2 · (−1)i+j 0 0 1

2 · (−1)j
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Since S and T have orders 2 and 2n, respectively, the inverse of A is TnSTnS,

which is described below.

A−1 = TnSTnS (e, χj) (e, ψj) (a`, αj) (b, βj)

(e, χi)
1
2 0 0 1

2 · (−1)i+j

(e, ψi) 0 δi,j 0 0

(ak, αi) 0 0 δi,jδk,` 0

(b, βi)
1
2 · (−1)j 0 0 1

2 · (−1)i

A routine calculation shows that A2 = A−1, and so A has order 3. The matrix B

has order 2, since T has order 2n. We have BA = TnSTnSTn = A−1B, and it

follows that the group 〈A,B〉 is isomorphic to S3. �

Lemma 4.2. Let n be an odd integer with n ≥ 3, let S and T denote the matrices

associated to the modular tensor category Rep(D(Dihn)), and let P = TSTn+1ST

and Q = Tn+1. The matrices P and Q have orders 2 and n, respectively, and they

satisfy the relations

(PQ)3 = I and
(
PQ

n+1
2 PQ2

)3
= I.

Proof. The matrices P and Q are described below.

P = TSTn+1ST (e, χj) (e, ψj) (a`, αj) (b, βj)

(e, χi)
1
2n + 1

2 · (−1)i+j 1
n

1
n 0

(e, ψi)
1
n

2
n

2
n · cos

(
2π`i
n

)
0

(ak, αi)
1
n

2
n · cos

(
2πkj
n

)
2
n · cos

(
2π(kj+`i)

n

)
0

(b, βi) 0 0 0 δi,j

Q = Tn+1 (e, χi) (e, ψi) (ak, αi) (b, βi)

1 1 ζki 1
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We have P−1 = T−1STn−1ST−1, whose description is easily obtained from the

descriptions of STn−1S and T given earlier. We find that P−1 = P , and so P has

order 2. The order of Q is 2n/ gcd(2n, n+ 1) = 2n/ gcd(2, n+ 1) = n.

A calculation shows that PQP = STn+1S. Using the descriptions of STn+1S

and T given earlier, we immediately see that the matrices STn+1S and Tn commute.

Then

Q−1PQ−1 = Tn−1(TSTn+1ST )Tn−1 = Tn(STn+1S)Tn = STn+1S = PQP,

and it follows that (PQ)3 = I.

The matrix PQ
n+1
2 PQ and its square are described below.

PQ
n+1
2 PQ2 (e, χj) (e, ψj) (a`, αj) (b, βj)

(e, χi)
1
2n + 1

2 · (−1)i+j 1
n

1
n 0

(e, ψi)
1
n

2
n

2
n · cos

(
4π`i
n

)
0

(ak, αi)
1
n · ζ

−2ki 2
n · cos

(
4πkj
n

)
· ζ−2ki 2

n · cos
(

4π(kj+`i)
n

)
· ζ−2ki 0

(b, βi) 0 0 0 δi,j

(PQ
n+1
2 PQ2)2 (e, χj) (e, ψj) (a`, αj) (b, βj)

(e, χi)
1
2n + 1

2 · (−1)i+j 1
n

1
n · ζ

2`j 0

(e, ψi)
1
n

2
n

2
n · cos

(
4π`i
n

)
· ζ2`j 0

(ak, αi)
1
n

2
n · cos

(
4πkj
n

)
2
n · cos

(
4π(kj+`i)

n

)
· ζ2`j 0

(b, βi) 0 0 0 δi,j

A routine calculation shows that the product of the two matrices above is the

identity. �

Lemma 4.3. Let n be an odd integer with n ≥ 3, let S and T denote the matrices

associated to the modular tensor category Rep(D(Dihn)), and let P = TSTn+1ST

and Q = Tn+1. The group 〈P,Q〉 generated by P and Q is isomorphic to the group

PSL(2,Z/nZ).
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Proof. As stated earlier,〈
X,Y X2 = 1, (XY )3 = 1, Y n = 1,

(
XY

n+1
2 XY 2

)3
= 1

〉
is a presentation of PSL(2,Z/nZ) [2], and the cosets

X = ±

(
0 −1

1 0

)
and Y = ±

(
1 1

0 1

)

satisfy the relations above.

By Lemma 4.2, the matrices P and Q satisfy the defining relations of the gorup

PSL(2,Z/nZ) with P substituted for X, and Q substituted for Y . Therefore,

there is a surjective group homomorphism ϕ : PSL(2,Z/nZ) → 〈P,Q〉 such that

ϕ(X) = P and ϕ(Y ) = Q.

Let π : SL(2,Z/nZ) → PSL(2,Z/nZ) denote the natural projection. Consider

the kernel of ϕ. By Corollary 3.3, either Kerϕ is a subgroup of the center of

PSL(2,Z/nZ), or Kerϕ = π(H) for some subgroup H of SL(2,Z/nZ) of level less

than n, or if 3 | n and 32 - n, then Kerϕ is possibly equal to π(K)C, where C is a

subgroup of the center of PSL(2,Z/nZ) and K is the image in SL(2,Z/nZ) of the

unique Sylow 2-subgroup of SL(2,Z/3Z).

A central element of PSL(2,Z/nZ) is necessarily of the form ± ( u 0
0 u ) with u2 ≡ 1

(mod n), and it is easily verified that it corresponds to (XY u)3. Suppose that for

some integer u with u2 ≡ 1 (mod n), the element (XY u)3 is in the kernel of ϕ.

Then (PQu)3 = I, equivalently, PQ−uP = QuPQu. A routine calculation shows

that (
PQ−uP

)
(e,ψ1),(a,α1)

=
2

n
· cos

(
2πu

n

)
· ζu

and

(QuPQu)(e,ψ1),(a,α1)
=

2

n
· cos

(
2π

n

)
· ζu,

where ζ = e2πi/n. Therefore, we must have cos
(
2πu
n

)
= cos

(
2π
n

)
. Then sin

(
2πu
n

)
=

± sin
(
2π
n

)
, and therefore cos

(
2πu
n

)
+i sin

(
2πu
n

)
= cos

(
2π
n

)
±i sin

(
2π
n

)
, equivalently,

ζu = ζ±1. It follows that u ≡ ±1 (mod n). We conclude that Kerϕ can not be a

nontrivial central subgroup.

Let H be a subgroup of SL(2,Z/nZ) of level less than n. By Lemma 3.1, the

subgroup H contains Kerφnn/p for some prime p that divides n, where φnn/p :

SL(2,Z/nZ) → SL(2,Z/(n/p)Z) is the reduction homomorphism. Observe that

Kerφnn/p contains the matrix
(
1 n/p
0 1

)
, and therefore the coset ±

(
1 n/p
0 1

)
, which

corresponds to Y n/p, lies in π(H). The image of Y n/p under ϕ is the matrix Qn/p.
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By Lemma 4.2, Q has order n, and so Qn/p 6= I. It follows that Kerϕ can not be

of the form π(H) for some subgroup H of SL(2,Z/nZ) of level less than n.

The group SL(2,Z/3Z) contains a unique Sylow 2-subgroup, generated by the

matrices
(

[0]3 [−1]3
[1]3 [0]3

)
and

(
[−1]3 [−1]3
[−1]3 [1]3

)
. Suppose that 3 | n and 32 - n. Then

there is an injection SL(2,Z/3Z) ↪→ SL(2,Z/nZ). Choose an integer u such that
n
3 · u ≡ 1 (mod 3). The image of the matrix

(
[0]3 [−1]3
[1]3 [0]3

)
in PSL(2,Z/nZ) is

±
(

[1−n3 ·u]n [−n3 ·u]n
[n3 ·u]n [1−n3 ·u]n

)
, and it is easily verified that it corresponds to

XY −1XY −
n
3 uXY 1+n

3 uX;

suppose that this element lies in Kerϕ. Then PQ−1PQ−
n
3 uPQ1+n

3 uP = I, equiv-

alently, Q−
n
3 uPQ1+n

3 u = PQ. A routine calculation shows that(
Q−

n
3 uPQ1+n

3 u
)
(e,χ0),(a,α1)

=
1

n
· ζ1+n

3 u

and

(PQ)(e,χ0),(a,α1)
=

1

n
· ζ,

where ζ = e2πi/n. Therefore, we must have ζ1+
n
3 u = ζ, equivalently, n

3 · u ≡ 0

(mod n), a contradiction. It follows that Kerϕ can not be of the form π(K)C where

C is a subgroup of the center of PSL(2,Z/nZ) and K is the image in SL(2,Z/nZ)

of the unique Sylow 2-subgroup of SL(2,Z/3Z).

Having exhausted all cases, we conclude that Kerϕ must be trivial, and hence

ϕ is an isomorphism. �

Theorem 4.4. Let n be an odd integer with n ≥ 3. The image of the repre-

sentation of the modular group SL(2,Z) arising from the modular tensor category

Rep(D(Dihn)) is isomorphic to the group PSL(2,Z/nZ)× S3.

Proof. Let S and T be the matrices associated to the modular tensor category

Rep(D(Dihn)), and as before let P = TSTn+1ST , Q = Tn+1, A = STnSTn, and

B = Tn. Then T = QB and

T (ATn)(T−1P ) = T (STnS)(STn+1S) = TST 2n+1ST = TSTST = S, (4)

where we used (3); it follows that

〈S, T 〉 = 〈P,Q〉〈A,B〉.

Using the descriptions of the matrices involved, we immediately see that P and

B commute, and Q and A commute. We have

SPS = S(TSTn+1ST )S = (ST )2Tn−1(TS)2 = T−1STn−1ST−1 = P−1 = P,
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showing that the matrices P and S commute, where we used Lemma 4.2 and (3).

It follows that the subgroups 〈P,Q〉 and 〈A,B〉 of 〈S, T 〉 commute element-wise.

Therefore, the intersection of these subgroups must be contained in the center of

〈A,B〉. By Lemma 4.1, the group 〈A,B〉 is isomorphic to S3, which has trivial

center, and so the intersection in question must be trivial. Therefore,

〈P,Q〉〈A,B〉 ∼= 〈P,Q〉 × 〈A,B〉 ∼= PSL(2,Z/nZ)× S3,

where we used Lemma 4.1 and Lemma 4.3. �

Theorem 4.5. Let n be an odd integer with n ≥ 3. The images of the represen-

tations of the modular group SL(2,Z) arising from the modular tensor categories

Rep(D(Dih2n)) and Rep(D(Dihn)) are isomorphic.

Proof. Let S and T denote the matrices associated to Rep(D(Dihn)), and let S′

and T ′ denote the matrices associated to Rep(D(Z/2Z)). Then the image of the

representation of SL(2,Z) arising from Rep(D(Dih2n)) is isomorphic to the group

〈S ⊗ S′, T ⊗ T ′〉, since Dih2n is isomorphic to Dihn×Z/2Z. We have

S′ =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 and T ′ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

Let A′ = T ′S′ and B′ = T ′. The matrices A′ and B′ have orders 3 and 2,

respectively, and they satisfy the relation B′A′ = (A′)−1B. As before, let P =

TSTn+1ST , Q = Tn+1, A = STnSTn, and B = Tn. It is easily verified that

T ′S′(T ′)n+1S′T ′ = I, (T ′)n+1 = I, S′(T ′)nS′(T ′)n = A′, (T ′)n = B′, and from this

it follows that the matrices P ⊗ I,Q⊗ I, A⊗A′, and B⊗B′ lie in 〈S⊗S′, T ⊗T ′〉.
We have T ⊗ T ′ = (B ⊗B′)(Q⊗ I), and

(T ⊗ T ′)(A⊗A′)(T ⊗ T ′)n−1(P ⊗ I) = TATn−1P ⊗ T ′A′(T ′)n−1 = S ⊗ S′,

where we used (4); it follows that

〈S ⊗S′, T ⊗ T ′〉 = 〈P ⊗ I,Q⊗ I, A⊗A′, B⊗B′〉 = 〈P ⊗ I,Q⊗ I〉〈A⊗A′, B⊗B′〉.

As seen in the proof of Theorem 4.4, the subgroups 〈P,Q〉 and 〈A,B〉 commute

element-wise, and so the subgroups 〈P ⊗ I,Q⊗ I〉 and 〈A⊗A′, B ⊗B′〉 commute

element-wise too. The group 〈A⊗A′, B⊗B′〉 is isomorphic to S3, which has trivial

center, and so the subgroups 〈P ⊗ I,Q⊗ I〉 and 〈A⊗A′, B⊗B′〉 intersect trivially.
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Then

〈P ⊗ I,Q⊗ I〉〈A⊗A′, B ⊗B′〉 ∼= 〈P ⊗ I,Q⊗ I〉 × 〈A⊗A′, B ⊗B′〉
∼= PSL(2,Z/nZ)× S3,

where we used Lemma 4.3. �
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[9] Y. Sommerhäuser and Y. Zhu, Hopf Algebras and Congruence Subgroups,

Mem. Amer. Math. Soc., 219(1028), 2012.

Deepak Naidu

Department of Mathematical Sciences

Northern Illinois University

DeKalb, Illinois 60115, USA

email: dnaidu@math.niu.edu


