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ABSTRACT This work presents a simple method of designing pseudo-random bit generator by generating
multiple bits per iteration from the decimal part of a chaotic map. This is done by extracting the decimal part
of the state in each iteration and comparing each digit separately to a threshold value. This way, more than
one bits can be generated in each iteration, in contrast to most well-known generators based on discrete-time
chaotic maps, which generate only one bit. The method is tested on multiple maps and it is seen that for most,
around 8 digits can be extracted each time, so that the final bitstream passes all NIST tests. The generated
PRBG is then studied through a simple image encryption application, by combining shuffling and the XOR
operation.
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INTRODUCTION

It has been well documented that chaotic systems are suitable in
a plethora of applications related to encryption, like text, image
and video encryption, watermarking, user authentication, secure
communications and many more, see for example Strogatz (2018);
Stojanovski and Kocarev (2001); Roy et al. (2017); Wang et al. (2017,
2019a); Sheng and Wu (2012); Kang et al. (2014); Zhang et al. (2004);
Jamal et al. (2013); Boutayeb et al. (2002); Özkaynak (2018) and the
works cited therein.

The main reason for which chaotic systems have found use in
such a plethora of applications is the combination of complexity,
with a deterministic nature. Chaotic systems are deterministic
systems described by differential/difference equations, that can
generate extremely complex behavior, using very few terms. Thus,
a user can create very fast simulations and generate values that
possess random properties, without relying on stochastic processes
or noise from a natural source. Moreover, the sensitivity of chaotic
systems to initial conditions can also help in building secure de-
signs that are practically impossible for an outsider to replicate
or interpret, without knowing the key parameters of the system,

Manuscript received: 22 June 2020,
Revised: 15 July 2020,
Accepted: 16 July 2020.

1 lmousis@physics.auth.gr (Corresponding author)
2 avtutueva@etu.ru
3 volos@physics.auth.gr
4 dnbutusov@etu.ru

making such designs resistant to brute force attacks Alvarez and
Li (2006).

Among the most prominent applications of chaotic systems are
pseudo-random bit generators (PRBGs) Stojanovski and Kocarev
(2001); Wang et al. (2017); Akgül et al. (2019); Patidar et al. (2009);
Ahmad et al. (2018); Zhao et al. (2019); Datcu et al. (2020). In this
application, the values of a chaotic system are used to generate
a stream of bits, using a simple rule. The aim is to have the final
bitstream possess properties similar to a random series, which is
tested using the National Institute of Standards and Technology
(NIST) statistical test suite Rukhin et al. (2001). There are numerous
techniques to generate the bitstream from the values of a chaotic
map. A common technique is to compare the value of the map in
each iteration to a threshold value, and producing a zero or one
depending on the result Irfan et al. (2020); Ursulean (2004); Volos
et al. (2013a); Demir and Ergün (2018); El-Naggary and Moussa
(2020); Wang and Xie (2012); Kang et al. (2014).

Based on this technique, a question that arises is whether we can
generate more that one bits per iteration, by comparing each digit
in the decimal part of the chaotic map to a threshold value. Also,
in case this is possible for a chaotic map, we need to determine
what is the maximum number of bits that can be extracted in each
iteration. Hence, in this work, we try to give an answer to the
above questions, by considering a collection of one-dimensional
chaotic maps, and comparing their decimal parts digit by digit, to
the threshold value of 5. It is seen that for most maps, around 8
digits can be extracted in each iteration using this technique, so
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that the resulting bitstream passes all NIST tests.
Finally, we apply the generated bitstreams to the problem of

image encryption Gao and Chen (2008); Shaukat et al. (2020); Pak
and Huang (2017); Zhou et al. (2014); Han (2019); Khanzadi et al.
(2014); Özkaynak (2018); Zhu et al. (2018); Moafimadani et al. (2019);
Kang et al. (2014); Ge et al. (2019). The encryption consists of
two simple steps. The rows and columns of the source image
are first shuffled using the values from a PRBG to generate the
shuffling matrices. Then, the image is reshaped in vector form
and is combined with another bitstream from a PRBG using the
XOR operator. A series of tests are then performed on the original,
shuffled and encrypted images to test how well do the resulting
images mask their information. Two test images are considered, a
black and white QR code, and a grayscale Lena image.

The rest of the paper is structured as follows: Section 2 presents
the proposed PRBG technique. In Section 3 the chaotic maps tested
are presented. In Section 4 the statistical test results are shown.
In Section 5 the application to image encryption is considered.
Section 6 concludes the work.

PSEUDO-RANDOM BIT GENERATION

In the proposed design we will consider several one-dimensional
chaotic maps that give a mapping to the interval [0, 1]. To design a
PRBG from each map, we will extract the last F decimal digits of
the value xi in each iteration, and compare each digit d1, ..., dF to
the threshold value of 5. This value is chosen since it is the mean
value of the numbers zero to nine. Depending on the result, a 0
or 1 will be generated. The individual bits bi are then combined
into a row vector Bi, which is then appended to a single bitstream
B. This way, F bits are generated per iteration, until the desired
bitstream length is reached. Of course, for a bitstream of length `,
only `

F + 1 iterations are required. The procedure is outlined in
Fig. 1.

Notice, that since there are five digits smaller than 5 (0,1,2,3,4)
and four digits greater than it (6,7,8,9), the threshold comparison
assigns the bit value of 1 if di ≥ 5 and 0 if di < 5. This way,
the equality is assigned to digits that are greater than 5, and the
comparison is balanced.

Figure 1 Procedure for bit generation.

Based on this technique, assuming a double-precision 16-digit
accuracy, and also that the map used takes values in the range of
[−1, 1], leaving 16 digits available in the decimal part, a maximum
of 16 bits can be generated in each iteration. The question that rises
though is if the generated bitstream is random enough. To verify so,
starting fromF = 16 digits, a set of 50× 106 bistreams is generated
and tested through the NIST statistical test suite. This toolbox
consists of 15 tests that can verify the randomness of a sequence.
For each test, a P-value is returned, and if it is higher than a chosen
significance level a, then the test is successful. The significance
value here is taken as the default a = 0.01. The value a = 0.01

means that for 100 sequences, only one sequence is expected to be
rejected. Thus, a P-value≥ 0.01 means that the sequence can be
considered random with a confidence of 99% Rukhin et al. (2001).

If the bitstream fails to pass any of the 15 tests provided, that is,
if the returned P-value in any test is lower than a = 0.01, then the
first decimal digit of xi is discarded in the bit generation, and the
bitstream is generated again using the least significant F̂ = F − 1
digits. This process continues until the bitstream passes all the
tests.

THE UTILIZED MAPS

To test how this method works with different maps, we consid-
ered several 1D chaotic maps that all to [0, 1] or [−1, 1] and can
achieve different maximum Lyapunov exponent values. The maps
considered are:

The Logistic map May (1976); Phatak and Rao (1995); Pareek
et al. (2005); Patidar et al. (2009); Wang et al. (2016); Irfan et al. (2020);
Han (2019) is given by:

xi = kxi−1(1− xi−1) (1)

This is a one parameter map, with a full mapping to [0, 1] for k = 4.
Its bifurcation diagram is shown in Fig. 2 and the diagram of
Lyapunov exponent (LE) in Fig 3. It is seen that the highest value
of LE is around 0.7.

The Sine map Belazi and El-Latif (2017); Pareek et al. (2005);
Hua and Zhou (2016) is given by:

xi = k sin(πxi−1) (2)

This is a single parameter map with a full mapping to [0, 1] for
k = 1. Its bifurcation diagram and diagram of LE is shown in Fig.
4 and 5. The map can achieve higher values of LE, although at
these parameter values, the mapping is outside the interval [0, 1].

The Renyi map Alzaidi et al. (2018); Addabbo et al. (2007) is:

xi = mod (kxi−1, 1) (3)

For k > 1 the map is chaotic and maps to [0, 1]. Its bifurcation
diagram and diagram of LE is shown in Fig. 6 and 7. For k = 10
the LE can reach a value above 2.

The Chebysev map Liu et al. (2016); Stoyanov and Kordov
(2015); Huang (2012); Stoyanov (2013) is:

xi = cos(k arccos xi−1) (4)

For k > 2 it maps to [0, 1]. Its bifurcation diagram and diagram of
LE is shown in Fig. 8 and 9. For k = 10 the LE can reach a value
above 2.

The Cubic map Pareek et al. (2005); Sarmah and Das (2014) is:

xi = kxi−1(1− x2
i−1) (5)

For k = 2.6 it gives a full mapping on [0, 1]. Its bifurcation diagram
and diagram of LE is shown in Fig. 10 and 11. The LE diagram is
similar to that of the classic logistic map.

The Cubic-Logistic map Elabady et al. (2014) is:

xi = kxi−1(1− xi−1)(2 + xi−1) (6)

Its bifurcation diagram and diagram of LE in Figs. 12 and 13 are
very similar to that of the logistic map.

The Logistic-May map Ali and Khan (2019) is:

xi = mod (xi−1e(k+9)(1−xi−1) − (k + 5)xi−1(1− xi−1), 1) (7)
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This map gives a constant mapping to [0, 1] and its LE can achieve
very high values, as seen in Figs. 14 and 15

The Coupled-Sine map Irani et al. (2019); Liu et al. (2020):

xi = a| sin(β3πxi−1)|+ (1− a)(1− | sin(k3πxi−1)(1− xi−1)|)
(8)

This map has three parameters and can give a mapping to [0, 1] for
most values. The bifurcation diagram and diagram of LE is shown
in Figs. 16 and 17 with respect to k, for a = 0.9, b = 9. The LE is
high, at around 7.

Finally, we propose a modification of the Sine map, the follow-
ing Sine-Sinh-Sine map:

xi = k sin(π sinh(π sin(πxi−1))) (9)

The bifurcation diagram and diagram of LE is shown in Figs. 18
and 19. The map gives a full mapping on [−k, k], and its LE can
achieve high values.

Note that in all of the above simulations, the LE is computed
using the method in Bovy (2004).

NIST RESULTS

This package consists of 15 tests that test the randomness of a time
series and is the most common tool in the analysis of pseudoran-
dom bit generators.

The test results for each generator based on each map are shown
in Table 1. The parameter values in each case are chosen close
to the value that gives a full mapping to [0, 1]. Yet, instead of
choosing an integer value for the parameter, a small random value
p ∈ [0, 1] is added using the rand command in Matlab. This way,
the parameter has a full 16-digit representation, which increases
its randomness. From the simulation results, we see that most
maps can give a bitstream that passes all tests with around eight
to twelve digits extracted in each iteration. This is an indication
that for most maps, the choice of eight bits per iteration is safe
for random bit generation. So this method is not limited to any
specific map, but can be used successfully with different maps as
the source for generating the bits, assuming that no more than
F = 8 digits are extracted.

Of course, for some maps, some parameter values may yield
even more bits per iteration. So in some cases, it may be possible to
generate a bitstream that passes all tests with more bits extracted
per iteration. For example, the Renyi map can pass almost all
tests for up to 13 digits extracted, with only a couple of the sub-
cases of the NonOverlappingTemplates test failing. So in all cases,
choosing a lower number of extracted digits as shown in Table 1 is
the best choice.

Note also, that it is possible to consider parameter values that
give a mapping outside the interval [−1, 1]. Yet, since in this case
there will be less digits in the decimal part of the value xi, the
procedure for digit extraction must be adjusted for that fact. In
addition, the number of digits extracted for a successful bitstream
will probably be lower.

One exception is the Logistic-May map, that despite having a
large LE, fails to produce a NIST sequence that passes the NIST
tests. This could be attributed to round-off errors due to the expo-
nential term that appears inside the modulo operator.

Finally, regarding simulation time, depending on the map used,
the algorithm takes on average 0.42− 0.5 seconds to generate a
bitstream of length 106 with 8 bits extracted per iteration, tested
on an Intel®Core™i5-3337U Processor, with 6bg of RAM, using
Matlab 2018b. This was computed by taking the average time
of 100 simulations, for each different map. The resulting mean
execution time for all maps falls between this interval.

Figure 2 Bifurcation diagram of the Logistic map.

Figure 3 Diagram of Lyapunov exponent of the Logistic map.

Figure 4 Bifurcation diagram of the Sine map.

Figure 5 Diagram of Lyapunov exponent of the Sine map.
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n Table 1 Digit extraction for successful PRBG and test results for a bistream of length 50 · 106.
````````Test

Map
Logistic Sine Renyi Chebysev Cubic Cubic-

logistic
Logistic-
May

Coupled-
Sine

Sine-Sinh-
Sine

Parameter Values r = 3.9 +
0.1 · p

k = 0.9 +
0.1 · p

c = 9.9 +
0.1 · p

c = 9.9 +
0.1 · p

k = 2.58 +
0.01 · p

k = 1.57 +
0.01 · p

k = 9 + p k = 9 + p k = 0.9 +
0.1 · p

Digits Extracted 12 11 8 11 11 9 0 10 11

Frequency 0.616305 0.739918 0.236810 0.574903 0.657933 0.350485 fail 0.851383 0.616305

BlockFrequency 0.030806 0.935716 0.058984 0.122325 0.122325 0.699313 fail 0.851383 0.699313

CumulativeSums 0.816537 0.455937 0.319084 0.534146 0.455937 0.419021 fail 0.616305 0.350485

Runs 0.262249 0.455937 0.739918 0.262249 0.699313 0.319084 fail 0.911413 0.350485

LongestRun 0.045675 0.319084 0.153763 0.419021 0.935716 0.262249 fail 0.494392 0.020548

Rank 0.051942 0.616305 0.319084 0.289667 0.350485 0.262249 fail 0.383827 0.574903

FFT 0.699313 0.236810 0.616305 0.289667 0.137282 0.171867 fail 0.108791 0.289667

NonOverlappingTemplate 0.616305 0.319084 0.739918 0.455937 0.236810 0.494392 fail 0.494392 0.851383

OverlappingTemplate 0.045675 0.534146 0.058984 0.383827 0.236810 0.350485 fail 0.657933 0.816537

Universal 0.319084 0.816537 0.616305 0.816537 0.455937 0.657933 fail 0.213309 0.935716

ApproximateEntropy 0.739918 0.494392 0.699313 0.574903 0.779188 0.085587 fail 0.851383 0.657933

RandomExcursions 0.500934 0.534146 0.468595 0.949602 0.311542 0.324180 fail 0.074177 0.253551

RandomExcursionsVariant 0.074177 0.437274 0.253551 0.976060 0.242986 0.772760 fail 0.232760 0.671779

Serial 0.419021 0.816537 0.383827 0.657933 0.971699 0.289667 fail 0.494392 0.616305

LinearComplexity 0.350485 0.574903 0.002043 0.534146 0.494392 0.040108 fail 0.085587 0.779188

Figure 6 Bifurcation diagram of the Renyi map.

Figure 7 Diagram of Lyapunov exponent of the Renyi map.

Figure 8 Bifurcation diagram of the Chebysev map.

Figure 9 Diagram of Lyapunov exponent of the Chebysev map.
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Figure 10 Bifurcation diagram of the Cubic map.

Figure 11 Diagram of Lyapunov exponent of the Cubic map.

Figure 12 Bifurcation diagram of the Cubic-Logistic map.

Figure 13 Diagram of Lyapunov exponent of the Cubic-Logistic map.

Figure 14 Bifurcation diagram of the Logistic-May map.

Figure 15 Diagram of Lyapunov exponent of the Logistic-May map.

Figure 16 Bifurcation diagram of the Coupled Sine map.

Figure 17 Diagram of Lyapunov exponent of the Coupled Sine map.
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Figure 18 Bifurcation diagram of the Sine-Sinh-Sine map.

Figure 19 Diagram of Lyapunov exponent of the Sine-Sinh-Sine
map.

APPLICATION TO IMAGE ENCRYPTION

In this section, we apply the designed PRBG to the problem of
image encryption. The method that will be followed consists of
two simple steps. In the first step, a shuffle algorithm will be
applied to rearrange the rows and columns of the source image.
This will be done to reduce the correlation between adjacent pixels
in the original image. The shuffling algorithm uses an approach
similar to the one in Gao and Chen (2008). Then, the image will
be encrypted using the XOR operator, which is very common
in image encryption Gao and Chen (2008); Volos et al. (2013b);
Özkaynak (2018); Zhu et al. (2018); Moafimadani et al. (2019); Kang
et al. (2014); Ge et al. (2019). In both steps, the proposed PRBGs will
be utilised.

Given a M× N source image in black and white, represented
by a matrix I with entries of 0 or 255, representing the colour of
each pixel, the process is outlined in the following steps.

Shuffling
First, a shuffling on the original image is performed. To do so,
we consider the Sine-Sinh-Sine map (9), with parameter k = M.
Then, we iterate the map and compute pj = b mod (xi, M)c, until
M discrete values are generated in the interval [0, M − 1]. So if
a value is generated twice, it is discarded the second time. The
set {p1 + 1, ..., pM + 1} represents the rearrangement of the rows
of the original image. So the 1st row is moved to the row p1 + 1,
the 2nd row is moved to p2 + 1 and so on. This procedure can
be represented by left multiplication LI , where L is an invertible
matrix where each row has zero entries and 1 in the position pj.

Similarly, setting k = N, and using the value of the last iteration
of the Sine-Sinh-Sine map as the initial condition x0, the map (9) is
iterated again, computing qj = b mod (xi, N)c in each iteration,
until N discrete values are generated in the interval [0, N − 1]. The

resulting set {q1 + 1, ..., qN + 1} represents the rearrangement of
the columns of the original image. This procedure can also be
represented by right multiplication IR, where R is an invertible
matrix where each column has zero entries and 1 in the position qj.

Overall, the resulting shuffled image is G = LIR. Note that the
shuffling procedure can be repeated more times if desired. The
combined shuffling of m times can be written in matrix form as
G = Lm · · · L1IR1 · · · Rm.

Encryption

After the image is shuffled, its columns are stacked to one another,
so that the image G is reshaped to a vector of length M×N. To eas-
ily convert the vector to binary form, we replace the values of 255
with 1. Then, the resulting vector V is combined with a bitstream
X of equal length generated with the technique proposed in the
previous section, using the XOR operation, yielding the encrypted
vector E = V ⊕ X. This vector can now be safely transmitted in a
secure communications scheme.

Decryption

The decryption process follows the reverse procedure of the previ-
ous steps. First, we perform Ê = E ⊕ X on the encrytped image
to obtain the original vector. We then replace 1 with 255. Then
reshape the vector to a M× N matrix Ĝ. The original image can
then be obtained as Î = L−1ĜR−1.

Note that for grayscale or RGB images, the same procedure can
be repeated with only minor adjustments. For a grayscale image,
in the encryption part, the resulting M× N vector with values in
[0, 255] can be transformed to a binary vector first, with a resulting
vector of length 8×M×N. For an RBG image, the same procedure
can be performed for each of the three submatrices of each colour.

Key Space

As for the key space, the procedure utilizes the Sine-Sinh-Sine
map with fixed parameter, and also any one of the proposed 1D
maps to generate the bitstream. Most of the proposed maps have
only only one parameter, so the overall key space consists of three
parameters, the initial value of the Sine-Sinh-Sine map, and the
parameter value and initial value of the map used in the PRBG. So,
assuming a 16-digit accuracy, an upper bound for the key space
is 1048 = (103)16 ≈ (210)16 = 2160, which is higher that the 2100

required to resist brute force attacks Alvarez and Li (2006).
Note also that in this work, we chose to use well known

maps with very simple dynamics, like the Logistics map and the
Sine map, which have only one parameter. Using different one-
dimensional maps with more parameters will certainly increase
the key space.

Simulation Analysis

For the simulation of the above procedure, we consider a 200× 200
black and white QR code image. The code provides a link to
the Wikipedia entry for QR codes. For the shuffling and XOR
operations, the Sine-Sinh-Sine map (9) is used. After successful
encryption, we perform a series of tests to the original, shuffled
and encrypted images, to test the performance of the encryption.

Figure 20 shows the original, shuffled and encrypted images.
In Fig. 21, the histograms of the original and encrypted images
are shown. It is seen that the encrypted image has a more uni-
form distribution between the 1s and 0s, which is an indication of
randomness. The shuffled image has a histogram identical to the
original image, so this is not shown.
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To study the correlation between adjacent pixels, we compute
the correlation coefficients of the original, shuffled, and encrypted
images, for horizontal, vertical, and diagonal pixels. In unen-
crypted images, the correlation between adjacent pixels is high, so
the encrypted images should have a correlation coefficient close to
zero, which is an indication of randomness. The results are shown
in Table 2. Indeed, the shuffled and encrypted images have corre-
lation close to zero, with the encrypted image having the lowest
values among the three, as expected. The correlation coefficients
are computed using the following formulas

E(x) =
1
L

L

∑
i=1

xi (10)

D(x) =
1
L

L

∑
i=1

(x− E(x))2 (11)

cov(x, y) =
1
L

L

∑
i=1

(xi − E(x))(yi − E(y)) (12)

γ(x, y) =
cov(x, y)√

D(x)
√

D(y)
(13)

where x, y are the gray values of two adjacent pixels and L the
number of adjacent pixels considered.

Finally, the information entropy is computed. For an image S ,
it is given by

H(S) = −
2n−1

∑
i=0

p(si) log2 p(si) (14)

where p(si) is the possibility of occurence of gray level i, si = i, for
i = 0, ..., 2n. In the grayscale case, since there are 256 values for the
pixels, the information entropy of a random image should be close
to log2 256 = 8, Zhu et al. (2018); Moafimadani et al. (2019). Here,
since the images tested are binary, a random image should have
information entropy close to 1. The information entropy of the
original and shuffled images is 0.99833, while for the encrypted
image is 0.99998, so it is closer to 1.

As an additional simulation, we also consider a 256 × 256
grayscale image of Lena. As mentioned in the Decryption step,
the procedure here is exactly the same, with the additional step
of transforming the grayscale values in [0, 255] to binary first, and
then using XOR. Of course, the step of replacing 255 to 1 is dis-
carded. After encryption, the vector is reshaped appropriately, to
obtain the encrypted and decrypted images. The three images are
shown in Fig. 22.

The histogram for the original and encrypted images is shown
in Fig. 23. As with the QR code, it is seen that the encrypted image
has a uniform histogram.

For the correlation analysis, Table 4 shows the correlation coeffi-
cients between adjacent pixels.The results are comparable to other
works Nosrati et al. (2017); Belazi et al. (2016); Wang et al. (2015,
2019b). Figs. 24, 25, 26 also show the correlation plots between
horizontal, vertical, and diagonal adjacent pixels, for a set of 10000
randomly chosen pixels. Indeed, the encrypted image has the most
scattered values among adjacent pixels.

Finaly, the information entropy of the original and shuffled
images is 7.4467, while for the encrypted image is 7.9968, so it is
closer to 8, which means the encrypted image is more random.
Table 3 shows the entropy of the encrypted image for different
methods.

Overall, it is seen that the proposed PRBGs can easily be applied
to the problem of encryption, both in the shuffling and encryption
steps, yielding a masked image with good randomness character-
istics.

Figure 20 (a) Original source image of the QR code, (b) Shuffled
image and (c) Encrypted image.

Figure 21 Histogram of the original and encrypted QR image.

n Table 2 Correlation coefficients for the QR image encryp-
tion.

Original Image Shuffled Encrypted

Horizontal 0.86144 0.12792 0.0036

Vertical 0.85440 0.12305 0.00319

Diagonal 0.73243 0.01335 0.00637

n Table 3 Information Entropy for the Lena image.

Original Image Encrypted

7.4467 7.9968

Nosrati et al. (2017) 7.9971

Belazi et al. (2016) 7.9963

Wang et al. (2015) 7.9970

Wang et al. (2019b) 7.9971
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Figure 22 (a) Original Lena source image, (b) Shuffled image and (c) Encrypted image.

Figure 23 Histogram of the original and encrypted Lena image.

n Table 4 Correlation coefficients for the Lena image encryption.

Original Image Shuffled Encrypted

Horizontal 0.9408 0.0835 0.0029

Vertical 0.9695 0.2420 -0.0104

Diagonal 0.9153 0.0053 -0.0049
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Figure 24 Correlation between horizontal adjacent pixels for the original, shuffled, and encrypted Lena image.

Figure 25 Correlation between vertical adjacent pixels for the original, shuffled, and encrypted Lena image.

Figure 26 Correlation between diagonal adjacent pixels for the original, shuffled, and encrypted Lena image.
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CONCLUSIONS

In this work, the extraction of multiple bits per iteration of a chaotic
map has been studied, by comparing each digit in the decimal part
to a threshold value. For most maps tested, around 8 digits can be
extracted in each iteration. The application to image encryption
was then considered.

Future works will consider the application of this technique to
continuous chaotic systems. Here, the choice of different numerical
integration method and also the step size will surely effect the
number of digits that can be extracted. Also, the combination of
multiple maps to generate more bits per iteration is an interesting
topic for future studies. Lastly, one of our future goals would
be to implement the proposed PRBG in an FPGA setup Volos
(2013); Stoyanov and Ivanova (2019); Ketthong and San-Um (2014);
Akgul et al. (2017), and to also study how fast the bitstream can be
generated.
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