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Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass 
Damper under Moving Load Excitation 

 

Mehmet Akif KOÇ*1 

 

Abstract 

In this study, dynamic analysis of Euler-Bernoulli beam and Tuned Mass Damper (TMD) 
interaction problem under the effect of moving load was carried out by the mode superposition 
method. After the differential equations of TMD are derived by Lagrange method, beams and 
TMD motion equations are integrated and matrices belonging to the motion equation of the 
whole system are obtained. The motion equation of the system is solved in the time domain 
using the Newmark-β algorithm. The effect of TMD on damping vibrations has been examined 
in terms of parameters such as frequency, damping rate, mass ratio and moving load speed. In 
addition, the effect of TMD on Dynamic Amplification Factor (DAF) was examined. As a 
result, with the TMD application carried out in this study, approximately 14% to 24% 
improvement was achieved in beam deformations and accelerations. 

Keywords: TMD, moving load, Newmark-Beta, DAF 

 

1. INTRODUCTION 

The damping of mechanical and structural 
vibrations is of great importance in the machine 
elements industry, in the fields of construction, 
automotive, aerospace and robotics. In the past 
few decades, researchers have made a lot of effort 
to reduce vibrations on engineering structures [1–
3]. The most traditional method of damping 
vibrations is passive vibration damping 
techniques, and this technology has been applied 
in the literature quite a lot [1, 4–7]. Thanks to 
recent tremendous advances in digital signal 
processing, sensors and actuator technologies, 
active vibration control algorithms have been 
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quickly applied to different engineering problems 
[8, 9].   

Beam type structures have many applications in 
engineering, especially robotics, mechanics, 
aviation and construction. The low damping of 
such structures and the increasing trend of 
designing especially lighter structures recently 
cause the beam type structures to vibrate at low 
mode frequencies. For this reason, one of the 
biggest challenges engineers face is to protect 
these types of structures from excessive 
vibrations and prevent them from being damaged. 

The idea of protecting the main structure from 
excessive vibrations in control engineering is 
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based on Tuned Mass Damper (TMD) 
technology, which is connected to this main 
structure with spring and damping elements, 
which absorbs vibration energy. The frequency of 
this secondary structure connected to the main 
structure is usually adjusted to the frequency of 
the primary structure. Thus, the main structure is 
protected from the destructive effect caused by 
excessive vibrations. Due to the simplicity and 
low cost of TMD technology, it has been possible 
to apply it in many engineering fields [10, 11]. 

A good mathematical model was needed to 
represent the physical model of the Beam-TMD 
in order to effectively implement TMD in beam 
type structures and to optimize the position, 
frequency and basic parameters of this secondary 
structure, which will be placed in the main 
structure. One of the most used methods for 
modeling beam-TMD interaction is the Finite 
Elements Method (FEM). In the study [12] FEM 
was used in the analysis of the TMD model used 
to reduce vibrations in the Timoshenko beam 
under harmonic and random excitation force. 
Dynamic Vibration absorber has been used to 
reduce vibrations in the Timoshenko beam under 
the effect of harmonic distributed load [13]. Wu 
[14]  proposed using a dynamic vibration damper 
to the middle of the bridge to dampen the 
vibrations of the beam under the action of a 
moving load. After obtaining the equation of 
motion of the system, they used FEM to 
determine the beam dynamics. The simple model 
used to obtain the optimal resistance and damping 
ratio of the vibration absorber with Den Hartog's 
approach is given in [15].Greco and Santini [16] 

analyzed the beam with a rotary viscous damper 
placed on both ends under the effect of a moving 
load. Scientists have shown in their work that the 
performance of the damper depends on the speed 
of the moving load. 

When we examine the literature, analytical 
methods, FEM, energy equations and series 
expansion methods are used to solve such 
problems. In this study, the mode superposition 
method was used to analyze the beam TMD 
interaction problem. In this way, it has been 
proven that the beam absorber interaction 
problems can be analyzed effectively with the 
presented method. In the study, a TMD was 
placed in the middle of the bridge beam to reduce 
vibrations in the Euler-Bernoulli beam. The 
dynamic response of the beam is analyzed for 
different moving load speeds and different mass 
ratios. 

2. FORMULATION OF EULER-
BERNOULLI BEAM COUPLED TO A 

DYNAMIC MASS DAMPER 

In this section, initially the equations of motion in 
the differential form for and Euler-Bernoulli 
beam with simply supported boundary conditions 
and attached n TMDs, as illustrated Figure 1, has 
been derived. The parameters x and P on the 
figure show the time-dependent position and 
force value of the moving load on the beam 
relative to the reference point taken from the left 
end of the bridge, respectively. 

 

 
Figure 1. Euler-Bernoulli beam with a linear TMD traversed by a moving load.
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2.1. Deriving Equation of Motion for TMD 

The kinetic and potential energies for the TMDs 
shown in Figure 1 are written as follows: 
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Similarly, the damping function is written as 
shown in Equation (2). 
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The system's Lagrange function is written taking 
into account the difference between kinetic 
energy and potential energy. The Lagrange 
function is written as follows: 

i
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Using the Lagrange function specified in 
Equation (3), the motion equation of TMD is 
written as follows: 
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2.2. Deriving Equation of Motion for Beam 

In the problem of interaction between moving 
load, Euler-Bernoulli beam and TMD, the 
following assumptions are made: 

 The moving load is always in contact with 
the beam. 

 Beam cross-sectional area is fixed and 
modeled in accordance with Euler-
Bernoulli theorem. 

 The speed of the moving load on the 
beam is constant and any accelerated 
movement is excluded from the scope of 
this study. 

 Absorbers placed on the beam are 
considered to have linear characteristics. 

With all these assumptions, according to the 
Euler-Bernoulli beam theory, the motion equation 
for the bridge beam over which the moving load 
passes is written as follows: 

       
4 2
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 (5) 

Parameters E, I, ρ and cb in Equation (5) are 
bridge beam elasticity module, bridge beam 
constant cross-sectional area, mass of unit length 
and damping coefficient, respectively. However, 
parameter w(x,t) represents the transverse 
deformation of the bridge beam at position x at 
any time t. In Equation (5), as is customary, the 
prime symbol indicates the derivative with 
respect to the spatial variable, i.e. 𝑤ᇱ(𝑥, 𝑡) =

𝑑𝑤 𝑑𝑥⁄ , and the dot symbol is derivative with 
respect to the time coordinate, i.e. 𝑤̇(𝑥, 𝑡) = 𝑑𝑤 𝑑𝑡⁄ . 
Parameter Pb(x,t) is an external load function and 
is expressed as follows. 
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Thee parameters ki and ci in Equation (6) are the 
spring and damping coefficients of the TMD 
which connected to the bridge, respectively. The 
parameter zi parameter is the vertical 
displacement of the ith absorber connected to the 
beam. The parameter Nv in Equation (6) 
represents the number of moving loads on the 
beam. In this study, it is accepted that only one 
moving load passes over the beam. The 
expression δ(x-vt) in Equation (6) is the Dirac-
delta function in the x direction, expressed as: 
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According to Galerkin's formulation, the 
transverse deformation of any point on the beam 
is expressed as follows. 
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The expressions φi (x) and ηi (t) in Equation (8) 
are the mode function and modal coordinate 
obtained with the boundary conditions of the 
beam, respectively. The parameter N in Equation 
(8) represents the number of modes for 
calculation of the bridge dynamic. The mode 
function for the simply supported beam is written 
as follows:  
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The orthogonality conditions between the mode 
functions given in Equation (9) are written as 
follows. 
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The equation of motion given by equation (5) is 
written as follows with the expressions of 
Galerkin function, Equation (4) and orthogonality 
conditions given by Equation (10). 
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The expression ζn in equation (11) is the damping 
ratio corresponding to the nth mode of the beam, 
and is expressed as follows depending on the 
damping coefficient of the beam.    
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n
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The parameter ωn in Equation (12) represent nth 
natural frequency of beam and expressed as 
follows: 
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2.3. Coupling Beam and TMD Equation of 
motions 

The equation of motion given by equation (11) is 
written in matrix form as follows.  

[𝑴(𝑡)]൛𝒀̈ൟ + [𝑪(𝑡)]൛𝒀̇ൟ + [𝑲(𝑡)]{𝒀} = 𝑸(𝑡) (14) 

In equation (14), [M], [C] and [K] are the mass, 
damping and stiffness matrices of the beam-TMD 
system, respectively, written as follows:  
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Similarly, the terms ൛𝒀̈ൟ, ൛𝒀̇ൟ and {𝒀}  are 
acceleration, velocity, and displacement vectors 
respectively, which are expressed as follows:  
 

൛𝒀̈ൟ = {𝑦̈ଵ, 𝑦̈ଶ, … , 𝑦̈௡ , 𝜂̈ଵ, 𝜂̈ଶ, … , 𝜂̈௡}் (16a) 
 

൛𝒀̇ൟ = {𝑦̇ଵ, 𝑦̇ଶ, … , 𝑦̇௡ , 𝜂̇ଵ, 𝜂̇ଶ, … , 𝜂̇௡}் (16b) 
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2.4. Numerically Solution Algorithm  

In this study, the Newmark-β algorithm is used to 
solve the equation of motion given by Equation 
(14), and the solution algorithm is as follows.   

 Step 1:  Input bridge absorber parameters 
 Step 2: Set the initial value X0=0, V0=0, 

t=0. 
 Step 3: Calculate the location of the 

moving car 
 Step 4:  Create M, C and K matrix and Q 

force vector  
 Step 5: Calculate acceleration with  

𝑨଴ = 𝑴\(𝑸 − 𝑪𝑽𝟎 − 𝑲𝑿𝟎) (17a) 
 

𝑿𝟏 = 𝑿𝟎 + 𝑽𝟎𝑑𝑡 + 1/2𝑨𝟎𝑑𝑡ଶ (17b) 
 

𝑽𝟏 = 𝑽𝟎 + 𝑨𝟎𝑑𝑡 (17c) 
 

𝑨𝟏 = 𝑴\(𝑸 − 𝑪𝑽𝟏 − 𝑲𝑿𝟏) (17d) 

 Step 6: Calculate acceleration with  

 
𝑿𝟐 = 𝑿𝟎 + 𝑽𝟎𝑑𝑡 + (−1/2)𝑨𝟎𝑑𝑡ଶ

+ 𝟏/𝟒𝑨𝟏𝑑𝑡ଶ 
(17e) 

 
𝑽𝟐 = 𝑽𝟎 + (−1/2)𝑨𝟎𝑑𝑡 + 1/2𝑨𝟏𝑑𝑡 (17f) 

 

𝑨𝟐 = 𝑴\(𝑸 − 𝑪𝑽𝟐 − 𝑲𝑿𝟐) (17g) 

 Step 7: Determine A1 =A2, V1=V2, X1 =X2  
 Step 8: if error is not small enough, go to 

step Step 6. İf it is enough ti=ti+dt. 
 Step 9:if ti<=T go to Step 3 

3. SIMULATION RESULTS 

In this section, the beam and load parameters 
given in Table 1 are used to analyze the beam and 
TMD interaction under the effect of the moving 
load shown in Figure 1.   

Table 1. Bridge and moving load parameters used in 
this study. 

Bridge parameters 

Elastic modulus  (E), (GPa) 207 
Mass per unit length (ρ), (Ton) 20 
Cross-sectional inertia moment (I), (m4)  0.174 
Beam length (L), (m) 100 

Damping coefficient (c), (Ns/m) 1750 

Number of modes (n) 4 

3.1. Defining Mode Number, Mod Frequencies 
and Critical Speeds    

Before starting numerical analysis, the number of 
beam modes to be used in the analyses was 
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determined. For this, first of all, simulation is 
done in different modes and the results are 
compared. Since the beam used in the study and 
the parameter values given in Table 1 is a large 
and bulky structure, it vibrates under the influence 
of low mode frequencies. Therefore, in this study, 
the first four modes of beam are taken into 
account in calculations. 

The ratio of the bridge excitation frequency ω of 
the vehicle on the bridge to the natural frequency 
of the bridge i.(i=1,2,…,n) is called the speed 
parameter and is expressed as in equation (18). If 
ω = ωi, an event called resonance occurs, which 
has a negative effect for the bridge. 

1/2

22j j kr

vL v

f j EI v

  
  

     
 

 (18) 

Table 2. Beam frequencies used in this study. 

Mode Number 1 2 3 4 

Frequency (Hz.) 0.2108 0.8432 1.8972 3.3728 
Critical speed (m/s) 42.15 168.63 379.43 674.55 

In Table 2, vibration frequencies of the first four 
modes of beam used in this study and critical 
speed values of these frequencies are given.  

3.2. Determining TMD Parameters  

In this section, basic parameters are determined 
for damped TMD placed at the midpoint of the 
beam. The first is the mass ratio and is determined 
as follows:  

,

2
, , ,

,

,   2 ,

  , 1

TMD
cr i i i

structure

i
TMD i d i n i i

cr i

M
c m

M

c

c

 
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 

  
 (19) 

Within equation (17), MTMD represents the mass 
of the absorber placed in the central point of the 
beam, and Mstructure represents the total mass of the 
beam structure. Similarly, within equation (19), 
ccr,i, ζTMD,i, ωd,i represent the critical damping 
value, damping rate and damped natural 
frequency of the absorber respectively. Table 3 

shows the values used in the study for the first 
mode of the beam. 

Table 3. Basic parameters for beam mode 1. 

Mode 
 Num 

μ ccr,i ζi ωd,i xa,i 

1 0.01 52956 0.35 1.24 L/2 

In Figure 2, the effect of using TMD for the 
constant transition speed v = 25 m / s from the 
moving load beam on the transverse displacement 
at the midpoint of the beam is shown. The x axis 
is given the dimensionless position of the moving 
load on the bridge. The dimensionless position is 
obtained by dividing the moving load's time 
dependent position (x=vt) on the beam by the 
beam length (L). As shown in the figure, in the 
absence of TMD, the maximum deformation at 
the midpoint of the beam is 20.33 mm, while in 
the case of the TMD beam, this value is 
determined as 17.37 mm. As can be seen, 14.55% 
improvement was achieved in maximum beam 
mid-point displacement. This situation is 
explained by the fact that TMD, which is 
connected to the middle point of the beam and 
whose natural frequency is adjusted to the first 
mode frequency of the beam, absorbs the beam 
energy. 

 

Figure 2. Beam midpoint transverse displacement. 

In Figure 3, the comparison of the bridge mid-
point transverse acceleration value with the case 
with TMD and the case without TMD is 
presented. As shown in the figure, in the absence 
of TMD, the bridge mid-point maximum 
transverse acceleration value is 0.025 m/s2, while 
in the case of TMD this value is obtained as 0.019 

0 0.2 0.4 0.6 0.8 1

x/L

-0.02

-0.015

-0.01

-0.005

0

Moving load velocity v=25 m/s

with TMD
without TMD
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m/s2. As can be seen, TMD bridge mid-point has 
a 24% reduction in maximum acceleration value 
of bridge mid-point as well as maximum 
displacement. 

 

Figure 3. Beam midpoint transverse acceleration. 
 

In Figure 4, the effect of the mass ratio given in 
Equation (19) on the maximum midpoint 
deformation of the beam is shown for different 
TMD damping rates. As seen in the figure, as the 
mass ratio increases, the maximum point 
deformations of the bridge midpoint decrease. 
Similarly, the increase in TMD damping ratio also 
caused this value to decrease. 

 

Figure 4. Maximum beam midpoint displacement for 
different TMD damping ratio ζTMD. 

In Figure 5, the effect of the constant  speed of the 
moving load over the beam on the Dynamic 
Amplification Factor (DAF) for different beam 

damping ratios (ζ = 1%, ζ = 3% and ζ = 5%.) is 
shown. 

 

Figure 5. Beam DAF value for different beam 
damping ratio. 

When the moving load passes on the DAF beam, 
the ratio of the maximum deformation (Rd (x)) 
occurring at the bridge midpoint to the static static 
deformation (Rs (x)) formed by placing the 
moving load on the bridge midpoint is as follows. 

 
 

d

s

R x
DAF

R s
  (20) 

As can be seen in Figure 5, considering the 1%, 
3% and 5% beam damping ratio values, the 
maximum DAF values were determined as 1.45, 
1.39, 1.33, respectively, for the case where there 
was no TMD. As can be seen, the dynamic 
displacement value for the beam in the case of 
moving load is about 50% more than static 
collapse. This situation proves the importance of 
moving load problems. In case of TMD, the 
maximum DAF values for the same damping rates 
are below 1. Also, as shown in the figure, the 
maximum DAF value decreases as the beam 
damping rate increases. 

4. CONCLUTIONS 

In this study, a dynamic analysis of the simply 
supported Euler-Bernoulli beam under the effect 
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of moving load was carried out. To reduce the 
maximum deformations on the beam, TMD was 
applied and the following results were obtained  

• TMD application has been shown to be 
effective in reducing maximum acceleration 
deformations in a beam. An improvement of 
about 14% at maximum deformation and 
about 24% at maximum acceleration were 
achieved. 

• The frequency at which the vibration 
absorber is adjusted is very important in TMD 
application. In cumbersome structures such as 
TMD beam, damping is more effective if it is 
set to a frequency corresponding to one of the 
low mode frequencies. 

• The absorption rate and the increase in mass 
ratio of the absorber make damping more 
effective. However, although it is 
theoretically possible to increase the mass 
ratio too much, it is not possible in practice. 

• TMD application has proven to be very 
effective in improving maximum DAF values. 
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