JOURNAL OF SCIENCE

Sakarya University Journal of Science

ISSN 1301-4048 | e-ISSN 2147-835X | Period Bimonthly | Founded: 1997 | Publisher Sakarya University | http://www.saujs.sakarya.edu.tr/en/

Title: Some New Inequalities for ($\alpha, \mathrm{m} 1, \mathrm{~m} 2$)-GA Convex Functions

Authors: Mahir KADAKAL
Recieved: 2020-03-05 15:15:55
Accepted: 2020-05-10 00:00:34
Article Type: Research Article
Volume: 24
Issue: 4
Month: August
Year: 2020
Pages: 652-664

How to cite
Mahir KADAKAL; (2020), Some New Inequalities for ($\alpha, \mathrm{m} 1, \mathrm{~m} 2$)-GA Convex Functions.
Sakarya University Journal of Science, 24(4), 652-664, DOI:
https://doi.org/10.16984/saufenbilder. 699212
Access link
http://www.saujs.sakarya.edu.tr/en/pub/issue/55932/699212

Some New Inequalities for $\left(\boldsymbol{\alpha}, \boldsymbol{m}_{1}, \boldsymbol{m}_{2}\right)$-GA Convex Functions

Mahir KADAKAL ${ }^{* 1}$

Abstract

In this manuscript, firstly we introduce and study the concept of (α, m_{1}, m_{2})-GeometricArithmetically (GA) convex functions and some algebraic properties of such type functions. Then, we obtain Hermite-Hadamard type integral inequalities for the newly introduced class of functions by using an identity together with Hölder integral inequality, power-mean integral inequality and Hölder-İşcan integral inequality giving a better approach than Hölder integral inequality. Inequalities have been obtained with the help of Gamma function. In addition, results were obtained according to the special cases of α, m_{1} and m_{2}.

Keywords: $\left(\alpha, m_{1}, m_{2}\right)$-GA convex function, Hölder integral inequality, power-mean inequality, Hölder-İ̇scan inequality, Hermite-Hadamard integral inequality.

[^0]
1. INTRODUCTION

Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function defined on the interval I of real numbers and $a, b \in I$ with $a<b$. Then the following inequalities
$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}$
hold. Both inequalities hold in the reversed direction if the function f is concave $[4,6]$. The above inequalities were firstly discovered by the famous scientist Charles Hermite. This double inequality is well-known in the literature as Hermite-Hadamard integral inequality for convex functions. This inequality gives us upper and lower bounds for the integral mean-value of a convex function. Some of the classical inequalities for means can be derived from Hermite-Hadamard inequality for appropriate particular selections of the function f.

Convexity theory plays an important role in mathematics and many other sciences. It provides powerful principles and techniques to study a wide class of problems in both pure and applied mathematics. Readers can find more information in the recent studies [$1,5,8,10,11$, $15,19,20,23,24,25]$ and the references therein for different convex classes and related HermiteHadamard integral inequalities.

Definition 1. ([17,18]) A function $f: I \subseteq \mathbb{R}_{+}=$ $(0, \infty) \rightarrow \mathbb{R}$ is said to be $G A$-convex function on I if the inequality
$f\left(x^{\lambda} y^{1-\lambda}\right) \leq \lambda f(x)+(1-\lambda) f(y)$
holds for all $x, y \in I$ and $\lambda \in[0,1]$, where $x^{\lambda} y^{1-\lambda}$ and $\lambda f(x)+(1-\lambda) f(y)$ are respectively the weighted geometric mean of two positive numbers x and y and the weighted arithmetic mean of $f(x)$ and $f(y)$.

Definition 2. ([22]) A function $f:[0, b] \rightarrow \mathbb{R}$ is said to be m-convex for $m \in(0,1]$ if the inequality

$$
f(\alpha x+m(1-\alpha) y) \leq \alpha f(x)+m(1-\alpha) f(y)
$$

holds for all $x, y \in[0, b]$ and $\alpha \in[0,1]$.

Definition 3. ([12]) The function $f:[0, b] \rightarrow \mathbb{R}$, $b>0$, is said to be $\left(m_{1}, m_{2}\right)$-convex, if the inequality
$f\left(m_{1} t x+m_{2}(1-t) y\right) \leq m_{1} t f(x)+m_{2}(1-t) f(y)$
holds for all $x, y \in I, t \in[0,1]$ and $\left(m_{1}, m_{2}\right) \in$ $(0,1]^{2}$.

Definition 4. ([13]) $f:[0, b] \rightarrow \mathbb{R}, b>0$, is said to be $\left(\alpha, m_{1}, m_{2}\right)$-convex function, if the inequality
$f\left(m_{1} t x+m_{2}(1-t) y\right) \leq m_{1} t^{\alpha} f(x)+m_{2}\left(1-t^{\alpha}\right) f(y)$
holds for all $x, y \in I, t \in[0,1]$ and $\left(\alpha, m_{1}, m_{2}\right) \in$ $(0,1]^{3}$.

Definition 5. ([16]) For $f:[0, b] \rightarrow \mathbb{R}$ and $(\alpha, m) \in(0,1]^{2}$, if
$f(t x+(1-t) y) \leq t^{\alpha} f(x)+m\left(1-t^{\alpha}\right) f(y)$
is valid for all $x, y \in[0, b]$ and $t \in[0,1]$, then we say that $f(x)$ is an (α, m)-convex function on $[0, b]$.

Definition 6. ([17]) The GG-convex functions (called in what follows multiplicatively convex functions) are those functions $f: I \rightarrow J$ (acting on subintervals of $(0, \infty))$ such that
$x, y \in I$ and $\lambda<\in[0,1] \Rightarrow f\left(x^{1-t} y^{t}\right) \leq f(x)^{1-\lambda} f(y)^{\lambda}$
i.e., it is called log-convexity and it is different from the above.

Definition 7. ([9]) Let the function $f:[0, b] \rightarrow \mathbb{R}$ and $(\alpha, m) \in[0,1]^{2}$. If

$$
\begin{equation*}
f\left(x^{t} y^{m(1-t)}\right) \leq t^{\alpha} f(a)+m\left(1-t^{\alpha}\right) f(b) \tag{1.1}
\end{equation*}
$$

for all $[a, b] \in[0, b]$ and $t \in[0,1]$, then $f(x)$ is said to be (α, m)-geometric arithmetically convex function or, simply speaking, an $(\alpha, m)-G A-$ convex function. If (1.1) reversed, then $f(x)$ is
said to be (α, m)-geometric arithmetically concave function or, simply speaking, an (α, m)$G A$-concave function.

A refinement of Hölder integral inequality better approach than Hölder integral inequality can be given as follows:

Theorem 1. (Hölder-İşcan integral inequality [7]) Let $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$. If f and g are real functions defined on $[a, b]$ and if $|f|^{p},|g|^{q}$ are integrable functions on the interval $[a, b]$ then
$\int_{a}^{b}|f(x) g(x)| d x$
$\leq \frac{1}{b-a}\left\{\left(\int_{a}^{b}(b-x)|f(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}(b-x)|g(x)|^{q} d x\right)^{\frac{1}{a}}\right.$
$\left.+\left(\int_{a}^{b}(x-a)|f(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}(x-a)|g(x)|^{q} d x\right)^{\frac{1}{q}}\right\}$.

Definition 8. (Gamma function) The classic gamma function is usually defined for Rez >0 by
$\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$.
The main purpose of this paper is to introduce the concept of (α, m_{1}, m_{2})-geometric arithmetically (GA) convex functions and establish some results connected with new inequalities similar to the Hermite-Hadamard integral inequality for these classes of functions.

2. MAIN RESULTS FOR $\left(\alpha, m_{1}, m_{2}\right)$-GA CONVEX FUNCTIONS

In this section, we introduce a new concept, which is called (α, m_{1}, m_{2})-GA convex functions and we give by setting some algebraic properties for the $\left(\alpha, m_{1}, m_{2}\right)$-GA convex functions, as follows:

Definition 9. Let the function $f:[0, b] \rightarrow \mathbb{R}$ and $\left(\alpha, m_{1}, m_{2}\right) \in(0,1]^{3}$. If
$f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right) \leq m_{1} t^{\alpha} f(a)+m_{2}\left(1-t^{\alpha}\right) f(b)$
for all $[a, b] \in[0, b]$ and $t \in[0,1]$, then the function f is said to be $\left(\alpha, m_{1}, m_{2}\right)$-geometric arithmetically convex function, if the inequality (2.1) reversed, then the function f is said to be (α, m_{1}, m_{2})-geometric arithmetically concave function.

Example 1. $f(x)=c, c<0$ is a $\left(\alpha, m_{1}, m_{2}\right)$ geometric arithmetically convex function.

We discuss some connections between the class of the (α, m_{1}, m_{2})-GA convex functions and other classes of generalized convex functions.

Remark 1. When $m_{1}=m_{2}=\alpha=1$, the (α, m_{1}, m_{2})-geometric arithmetically convex (concave) function becomes a geometric arithmetically convex (concave) function defined in [17, 18].

Remark 2. When $m_{1}=1, m_{2}=m$, the (α, m_{1}, m_{2})-geometric arithmetically convex (concave) function becomes an (α, m)-geometric arithmetically convex (concave) function defined in [9].

Remark 3. When $m_{1}=m_{2}=1$ and $\alpha=s$, the (α, m_{1}, m_{2})-geometric arithmetically convex (concave) function becomes a geometric arithmetically-s convex (concave) function defined in [14].

Remark 4. When $\alpha=1$, the $\left(\alpha, m_{1}, m_{2}\right)$ geometric arithmetically convex (concave) function becomes a $\left(m_{1}, m_{2}\right)-G A$ convex (concave) function defined in [21].

Proposition 1. The function $f: I \subset(0, \infty) \rightarrow \mathbb{R}$ is (α, m_{1}, m_{2})-GA convex function on I if and only if $f \circ$ exp: $\ln I \rightarrow \mathbb{R}$ is $\left(\alpha, m_{1}, m_{2}\right)$-convex function on the interval $\ln I=\{\ln x \mid x \in I\}$.

Proof. (\Rightarrow) Let $f: I \subset(0, \infty) \rightarrow \mathbb{R}\left(\alpha, m_{1}, m_{2}\right)$ GA convex function. Then, we write
$(f \circ \exp)\left(m_{1} t \ln a+m_{2}(1-t) \ln b\right)$
$\leq m_{1} t^{\alpha}(f \circ \exp)(\ln a)+m_{2}\left(1-t^{\alpha}\right)(f \circ \exp)(\ln b)$.
From here, we get
$f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right) \leq m_{1} t^{\alpha} f(a)+m_{2}\left(1-t^{\alpha}\right) f(b)$.
Hence, the function $f \circ \exp$ is $\left(\alpha, m_{1}, m_{2}\right)$ convex function on the interval $\ln I$.

$$
(\Leftarrow) \text { Let } f \circ \exp : \ln I \rightarrow \mathbb{R}, \quad\left(\alpha, m_{1}, m_{2}\right)-
$$ convex function on the interval $\ln I$. Then, we obtain

$f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right)=f\left(e^{m_{1} t \ln a+}{ }_{2}(1-t) \ln b\right)$
$=(f \circ \exp)\left(m_{1} t \ln a+m_{2}(1-t) \ln b\right)$
$\leq m_{1} t^{\alpha} f\left(e^{\ln a}\right)+m_{2}\left(1-t^{\alpha}\right) f\left(e^{\ln b}\right)$
$=m_{1} t^{\alpha} f(a)+m_{2}\left(1-t^{\alpha}\right) f(b)$,
which means that the function $f(x)\left(\alpha, m_{1}, m_{2}\right)$ GA convex function on I.

Theorem 2. Let $f, g: I \subset \mathbb{R} \rightarrow \mathbb{R}$. If f and g are (α, m_{1}, m_{2})-GA convex functions, then $f+g$ is an $\left(\alpha, m_{1}, m_{2}\right)-G A$ convex function and $c f$ is an $\left(\alpha, m_{1}, m_{2}\right)$-GA convex function for $c \in \mathbb{R}_{+}$.

Proof. Let f, g be $\left(\alpha, m_{1}, m_{2}\right)$-GA convex functions, then

$$
\begin{aligned}
& (f+g)\left(a^{m_{1} t} b^{m_{2}(1-t)}\right) \\
& =f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right)+g\left(a^{m_{1} t} b^{m_{2}(1-t)}\right) \\
& \leq m_{1} t^{\alpha} f(a)+m_{2}\left(1-t^{\alpha}\right) f(b) \\
& +m_{1} t^{\alpha} g(a)+m_{2}\left(1-t^{\alpha}\right) g(b) \\
& \quad=m_{1} t^{\alpha}(f+g)(a)+m_{2}\left(1-t^{\alpha}\right)(f+g)(b)
\end{aligned}
$$

Let f be $\left(\alpha, m_{1}, m_{2}\right)$-GA convex function and $c \in \mathbb{R}(c \geq 0)$, then
$(c f)\left(a^{m_{1} t} b^{m_{2}(1-t)}\right)$
$\leq c\left[m_{1} t^{\alpha} f(x)+m_{2}\left(1-t^{\alpha}\right) f(y)\right]$
$=m_{1} t^{\alpha}(c f)(x)+m_{2}\left(1-t^{\alpha}\right)(c f)(y)$.

This completes the proof of the theorem.

Theorem 3. If $f: I \rightarrow J$ is a $\left(m_{1}, m_{2}\right)-G G$ convex and $g: J \rightarrow \mathbb{R}$ is a $\left(\alpha, m_{1}, m_{2}\right)-G A$ convex function and nondecreasing, then $g \circ f: I \rightarrow \mathbb{R}$ is $a\left(\alpha, m_{1}, m_{2}\right)-G A$ convex function.

Proof. For $a, b \in I$ and $t \in[0,1]$, we get
$(g \circ f)\left(a^{m_{1} t} b^{m_{2}(1-t)}\right)$
$=g\left(f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right)\right)$
$\leq g\left([f(a)]^{m_{1} t}[f(b)]^{m_{2}(1-t)}\right)$
$\leq m_{1} t^{\alpha} g(f(x))+m_{2}\left(1-t^{\alpha}\right) g(f(y))$.
This completes the proof of the theorem.

Theorem 4. Let $b>0$ and $f_{\beta}:[a, b] \rightarrow \mathbb{R}$ be an arbitrary family of $\left(\alpha, m_{1}, m_{2}\right)-G A$ convex functions and let $f(x)=\sup _{\beta} f_{\beta}(x)$. If $J=$ $\{u \in[a, b]: f(u)<\infty\}$ is nonempty, then J is an interval and f is an $\left(\alpha, m_{1}, m_{2}\right)-G A$ convex function on J.

Proof. Let $t \in[0,1]$ and $x, y \in J$ be arbitrary. Then

$$
\begin{aligned}
& f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right) \\
& =\sup _{\beta} f_{\beta}\left(a^{m_{1} t} b^{m_{2}(1-t)}\right) \\
& \leq \sup _{\beta}\left[m_{1} t^{\alpha} f_{\alpha}(x)+m_{2}\left(1-t^{\alpha}\right) f_{\beta}(y)\right] \\
& \leq m_{1} t^{\alpha} \sup _{\beta} f_{\beta}(x)+m_{2}\left(1-t^{\alpha}\right) \sup _{\beta} f_{\beta}(y) \\
& =m_{1} t^{\alpha} f(x)+m_{2}\left(1-t^{\alpha}\right) f(y)<\infty .
\end{aligned}
$$

This shows simultaneously that J is an interval since it contains every point between any two of its points, and that f is an $\left(\alpha, m_{1}, m_{2}\right)$-GA convex function on J. This completes the proof of the theorem.

Theorem 5. If the function $f:[a, b] \rightarrow \mathbb{R}$ is an $\left(\alpha, m_{1}, m_{2}\right)$-GA convex function then f is bounded on the interval $[a, b]$.

Proof. Let $K=\max \left\{m_{1} f(a), m_{2} f(b)\right\}$ and $x \in$ $[a, b]$ is an arbitrary point. Then there exists a $t \in$ $[0,1]$ such that $x=a^{m_{1} t} b^{m_{2}(1-t)}$. Thus, since $m_{1} t^{\alpha} \leq 1$ and $m_{2}\left(1-t^{\alpha}\right) \leq 1$ we have
$f(x)=f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right)$
$\leq m_{1} t^{\alpha} f(a)+m_{2}\left(1-t^{\alpha}\right) f(b) \leq 2 K=M$.
Also, for every $x \in\left[a^{m_{1}}, b^{m_{2}}\right]$ there exists a $\lambda \in$ $\left[\sqrt{\frac{a^{m_{1}}}{b^{m_{2}}}}, 1\right]$ such that $x=\lambda \sqrt{a^{m_{1}} b^{m_{2}}}$ and $x=$ $\frac{\sqrt{a^{m_{1}} b^{m_{2}}}}{\lambda}$. Without loss of generality we can suppose $x=\lambda \sqrt{a^{m_{1}} b^{m_{2}}}$. So, we have
$f\left(\sqrt{a^{m_{1}} b^{m_{2}}}\right)$
$=f\left(\sqrt{\left[\lambda \sqrt{a^{m_{1}} b^{m_{2}}}\right]\left[\frac{\sqrt{a^{m_{1} b^{m_{2}}}}}{\lambda}\right]}\right)$
$\leq \sqrt{f(x) f\left(\frac{\sqrt{a^{m_{1} b^{m_{2}}}}}{\lambda}\right)}$.
By using M as the upper bound, we obtain
$f(x) \geq \frac{f^{2}\left(\sqrt{a^{m_{1}} b^{m_{2}}}\right)}{f\left(\frac{\sqrt{a^{m_{1}} b^{m_{2}}}}{\lambda}\right)} \geq \frac{f^{2}\left(\sqrt{a^{m_{1}} b^{m_{2}}}\right)}{M}=m$.
This completes the proof of the theorem.

3. HERMITE-HADAMARD INEQUALITY FOR (α, m_{1}, m_{2})-GA CONVEX FUNCTION

This section aims to establish some inequalities of Hermite-Hadamard type integral inequalities for $\left(\alpha, m_{1}, m_{2}\right)$-GA convex functions. In this section, we will denote by $L[a, b]$ the space of (Lebesgue) integrable functions on the interval $[a, b]$.

Theorem 6. Let $f:[a, b] \rightarrow \mathbb{R}$ be an $\left(\alpha, m_{1}, m_{2}\right)$ GA convex function. If $a<b$ and $f \in L[a, b]$,
then the following Hermite-Hadamard type integral inequalities hold:

$$
\begin{align*}
f\left(\sqrt{a^{m_{1}} b^{m_{2}}}\right) & \leq \frac{1}{\ln ^{m_{2}}-\ln a^{m_{1}}} \int_{a^{m_{1}}}^{b^{m_{2}}} \frac{f(u)}{u} d u \\
& \leq \frac{m_{1} f(a)}{\alpha+1}+\frac{\alpha m_{2} f(b)}{\alpha+1} . \tag{3.1}
\end{align*}
$$

Proof. Firstly, from the property of the (α, m_{1}, m_{2})-GA convex function of f, we can write
$f\left(\sqrt{a^{m_{1}} b^{m_{2}}}\right)=f\left(\sqrt{a^{m_{1} t} b^{m_{2}(1-t)} a^{m_{1}(1-t)} b^{m_{2}} t}\right)$
$\leq \frac{f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right)+f\left(a^{m_{1}(1-t)} b^{m_{2} t}\right)}{2}$.
Now, if we take integral in the last inequality with respect to $t \in[0,1]$, we deduce that
$f\left(\sqrt{a^{m_{1}} b^{m_{2}}}\right)$
$\leq \frac{1}{2} \int_{0}^{1} f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right) d t+\frac{1}{2}\left(a^{m_{1}(1-t)} b^{m_{2} t}\right) d t$
$=\frac{1}{2} \frac{1}{\ln m_{2}-\ln ^{m_{1}}} \int_{a^{m_{1}}}^{b^{m_{2}}} \frac{f(u)}{u} d u$
$+\frac{1}{2} \frac{1}{{\ln b^{m_{2}}-\operatorname{lna}^{m_{1}}}^{b^{m_{1}}}} \int_{m^{m_{2}}}^{b^{2}} \frac{f(u)}{u} d u$
$=\frac{1}{\ln ^{m_{2}}-\ln a^{m_{1}}} \int_{a^{m_{1}}}^{b^{m_{2}}} \frac{f(u)}{u} d u$.
Secondly, by using the property of the $\left(\alpha, m_{1}, m_{2}\right)$-GA convex function of f, if the variable is changed as $u=a^{m_{1} t} b^{m_{2}(1-t)}$, then
$\frac{1}{\operatorname{lnb}^{m_{2}}-\ln ^{m_{1}}} \int_{a^{m_{1}}}^{b^{m_{2}}} \frac{f(u)}{u} d u$
$=\int_{0}^{1} f\left(a^{m_{1} t} b^{m_{2}(1-t)}\right) d t$
$\leq \int_{0}^{1}\left[m_{1} t^{\alpha} f(a)+m_{2}\left(1-t^{\alpha}\right) f(b)\right] d t$
$=m_{1} f(a) \int_{0}^{1} t^{\alpha} d t+m_{2} f(b) \int_{0}^{1}\left(1-t^{\alpha}\right) d t$
$=\frac{m_{1} f(a)}{\alpha+1}+\frac{\alpha m_{2} f(b)}{\alpha+1}$
This completes the proof of the theorem.

Corollary 1. By considering the conditions of Theorem 6 , if we take $m_{1}=m_{2}=1$ and $\alpha=1$ in the inequality (3.1), then we get
$f(\sqrt{a b}) \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(u)}{u} d u \leq \frac{f(a)+f(b)}{2}$.
This inequality coincides with the inequality in [2].

Corollary 2. By considering the conditions of Theorem 6, if we take $\alpha=1$ in the inequality (3.1), then we get
$f\left(\sqrt{a^{m_{1}} b^{m_{2}}}\right) \leq \frac{1}{\ln ^{m_{2}}-\ln m_{1}} \int_{a^{m_{1}}}^{b^{m_{2}}} \frac{f(u)}{u} d u$
$\leq \frac{m_{1} f(a)+m_{2} f(b)}{2}$.
This inequality coincides with the inequality in [14].

4. SOME NEW INEQUALITIES FOR (α, m_{1}, m_{2})-GA CONVEX FUNCTIONS

The main purpose of this section is to establish new estimates that refine HermiteHadamard integral inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is (α, m_{1}, m_{2})-GA convex function. Ji et al. [9] used the following lemma. Also, we will use this lemma to obtain our results.

Lemma 1. ([3]) Let $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \rightarrow \mathbb{R}$ be differentiable function and $a, b \in I$ with $a<b$. If $f^{\prime} \in L([a, b])$, then

$$
\begin{aligned}
& \frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x \\
& =\frac{\ln b-\ln a}{2} \int_{0}^{1} a^{3(1-t)} b^{3 t} f^{\prime}\left(a^{1-t} b^{t}\right) d t .
\end{aligned}
$$

Theorem 7. Let the function $f: \mathbb{R}_{0}=[0, \infty) \rightarrow$ \mathbb{R} be a differentiable function and $f^{\prime} \in L[a, b]$ for $0<a<b<\infty$. If $\left|f^{\prime}\right|$ is $\left(\alpha, m_{1}, m_{2}\right)-G A$ convex on $\left[0, \max \left\{a^{\frac{1}{m_{1}}}, b^{\frac{1}{m_{2}}}\right\}\right]$ for $\left[\alpha, m_{1}, m_{2}\right] \in$
$(0,1]^{3}$, then the following integral inequalities hold
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right|$
$\leq \frac{m_{1}}{2}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|$
$\left[\frac{b^{3}-a^{3}}{3}-\frac{a^{3} \Gamma(\alpha+1,3(\ln a-\ln b))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln a-\ln b)^{\alpha}}\right]$
$+\frac{m_{2}}{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|\left[\frac{a^{3} \Gamma(\alpha+1,3(\ln a-\ln b))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln a-\ln b)^{\alpha}}\right]$,
where Γ is the Gamma function.
Proof. By using Lemma 1 and the inequality

$$
\begin{aligned}
& \left|f^{\prime}\left(a^{1-t} b^{t}\right)\right|=\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)} f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2} t}\right| \\
& \leq m_{1}\left(1-t^{\alpha}\right)\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|+m_{2} t^{\alpha}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|
\end{aligned}
$$

we get

$$
\begin{aligned}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \\
& \leq \frac{\ln (b / a)}{2} \int_{0}^{1}\left|a^{3(1-t)} b^{3 t}\right|\left|f^{\prime}\left(a^{1-t} b^{t}\right)\right| d t \\
& \leq \frac{\ln (b / a)}{2} \int_{0}^{1} a^{3(1-t)} b^{3 t}\left[\begin{array}{c}
m_{1}\left(1-t^{\alpha}\right)\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right| \\
+m_{2} t^{\alpha}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|
\end{array}\right] d t \\
& =m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right| \frac{\ln (b / a)}{2} \int_{0}^{1}\left(1-t^{\alpha}\right) a^{3(1-t)} b^{3 t} d t \\
& +m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right| \frac{\ln (b / a)}{2} \int_{0}^{1} t^{\alpha} a^{3(1-t)} b^{3 t} d t \\
& =\frac{m_{1}}{2}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|\left[\frac{b^{3}-a^{3}}{3}\right. \\
& \left.-\frac{a^{3} \Gamma(\alpha+1,3(\ln a-\ln b))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln a-\ln b)^{\alpha}}\right] \\
& +\frac{m_{2}}{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|\left[\frac{a^{3} \Gamma(\alpha+1,3(\ln a-l}{3^{\alpha+1}(\ln a-\ln b)^{\alpha}}\right)-a^{3} \Gamma(\alpha+1,0)
\end{aligned} .
$$

This completes the proof of the theorem.

Corollary 3. By considering the conditions of Theorem 7, if we take $m_{1}=m_{2}=1$ and $\alpha=1$ then we get
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right|$
$\leq \frac{\left|f^{\prime}(a)\right|}{6}\left[L\left(a^{3}, b^{3}\right)-a^{3}\right]+\frac{\left|f^{\prime}(b)\right|}{6}\left[b^{3}-L\left(a^{3}, b^{3}\right)\right]$,
where L is the logarithmic mean.

Corollary 4. By considering the conditions of Theorem 7, if we take $\alpha=1$ in the inequality (4.1), then we get

$$
\begin{aligned}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \\
& \leq \frac{m_{1}}{2}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|\left[L\left(a^{3}, b^{3}\right)-a^{3}\right] \\
& +\frac{m_{2}}{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|\left[b^{3}-L\left(a^{3}, b^{3}\right)\right] .
\end{aligned}
$$

Theorem 8. Let the function $f: \mathbb{R}_{0}=[0, \infty) \rightarrow$ \mathbb{R} be a differentiable function and $f^{\prime} \in L[a, b]$ for $0<a<b<\infty$. If $\left|f^{\prime}\right|^{q}$ is $\left(\alpha, m_{1}, m_{2}\right)-G A$ convex on $\left[0, \max \left\{a^{\frac{1}{m_{1}}}, b^{\frac{1}{m_{2}}}\right\}\right]$ for $\left[\alpha, m_{1}, m_{2}\right] \in$ $(0,1]^{3}$ and $q \geq 1$ then
$\left|f^{\prime}\right|^{q}$ on the interval $\left[0, \max \left\{a^{\frac{1}{m_{1}}}, b^{\frac{1}{m_{2}}}\right\}\right]$, that is, the inequality

$$
\begin{aligned}
& \left|f^{\prime}\left(a^{1-t} b^{t}\right)\right|=\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)} f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2} t}\right|^{q} \\
& \leq m_{1}\left(1-t^{\alpha}\right)\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}+m_{2} t^{\alpha}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q},
\end{aligned}
$$

is satisfied and we get

$$
\cdot\left(\int_{0}^{1} a^{3(1-t)} b^{3 t}\left[\begin{array}{c}
m_{1}\left(1-t^{\alpha}\right)\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q} \\
+m_{2} t^{\alpha}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}
\end{array}\right] d t\right)^{\frac{1}{q}}
$$

$$
\begin{align*}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \tag{4.2}\\
& \leq \frac{\ln b-\ln a}{2} L^{1-\frac{1}{q}}\left(a^{3}, b^{3}\right) \\
& \cdot\left[m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}\binom{\frac{b^{3}-a^{3}}{3(\ln b-\ln a)}}{-\frac{a^{3} \Gamma(\alpha+1,,(\ln))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln b-l)(\ln a-\ln b)^{\alpha}}}\right.
\end{align*}
$$

$$
\begin{aligned}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \\
& \leq \frac{\ln \left(\frac{b}{a}\right)}{2}\left[\int_{0}^{1} a^{3(1-t)} b^{3 t} d t\right]^{1-\frac{1}{q}} \\
& {\left[\int_{0}^{1} a^{3(1-t)} b^{3 t}\left|f^{\prime}\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2} t}\right)\right|^{q} d t\right]^{\frac{1}{q}}} \\
& \leq \frac{\ln \left(\frac{b}{a}\right)}{2}\left[\int_{0}^{1} a^{3(1-t)} b^{3 t} d t\right]^{1-\frac{1}{q}}
\end{aligned}
$$

$$
=\frac{\ln \left(\frac{b}{a}\right)}{2}\left[\int_{0}^{1} a^{3(1-t)} b^{3 t} d t\right]^{1-\frac{1}{q}}
$$

$$
\begin{aligned}
& \times\left[\begin{array}{c}
m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q} \int_{0}^{1}\left(1-t^{\alpha}\right) a^{3(1-t)} b^{3 t} d t \\
+m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q} \int_{0}^{\frac{1}{q}} t^{\alpha} a^{3(1-t)} b^{3 t} d t
\end{array}\right] \\
& =\frac{\ln b-l}{2} L^{1-\frac{1}{q}}\left(a^{3}, b^{3}\right)
\end{aligned}
$$

$$
\left.+m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\left(\frac{a^{3} \Gamma(\alpha+1,3(\ln a-l \quad))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln b-\ln a)(\ln a-\ln b)^{\alpha}}\right)\right]^{\frac{1}{q}}, \cdot\left[m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}\binom{\frac{b^{3}-a^{3}}{3(\ln n-\ln a)}}{-\frac{a^{3} \Gamma(\alpha+1,3(\ln a-\ln b))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln b-\ln a)(\ln a-\ln b)^{\alpha}}}\right.
$$

where L is the logarithmic mean.
Proof. By using both Lemma 1, power-mean inequality and the (α, m_{1}, m_{2})-GA convexity of
$\left.+m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\left(\frac{a^{3} \Gamma(\alpha+1,3(\ln a-\ln b))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln b-\ln a)(\ln a-\ln b)^{\alpha}}\right)\right]^{\frac{1}{q}}$.
This completes the proof of the theorem.

Corollary 5. By considering the conditions of Theorem 8 , if we take $m_{1}=m_{2}=1$ and $\alpha=1$ in the inequality (4.2), then we get
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \leq \frac{\ln b-\ln a}{2} L^{1-\frac{1}{q}}\left(a^{3}, b^{3}\right)$
$\times\left[\left|f^{\prime}(a)\right|^{q} \frac{L\left(a^{3}, b^{3}\right)-b^{3}}{3(\ln b-\ln a)}+\left|f^{\prime}(b)\right|^{q} \frac{b^{3}-L\left(a^{3}, b^{3}\right)}{3(\ln b-\ln a)}\right]^{\frac{1}{q}}$,
where L is the logarithmic mean.

Corollary 6. By considering the conditions of Theorem 8, if we take $q=1$, then
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \leq$
$\times\left[\frac{m_{1}}{2}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|\left(\frac{b^{3}-a^{3}}{3}\right.\right.$
$\left.-\frac{a^{3} \Gamma(\alpha+1,3(\ln a-\ln b))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln a-\ln b)^{\alpha}}\right)$
$\left.\frac{m_{2}}{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|\left(\frac{a^{3} \Gamma(\alpha+1,3(\ln a-\ln b))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln a-\ln b)^{\alpha}}\right)\right]$.
This inequality coincides with the inequality (4.1).

Corollary 7. By considering the conditions of Theorem 8, if we take $m_{1}=m_{2}=1$ and $\alpha=$ $q=1$ in the inequality (4.2), then we get
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right|$
$\leq\left[\frac{\left|f^{\prime}(a)\right|}{6}\left(L\left(a^{3}, b^{3}\right)-b^{3}\right)+\frac{\left|f^{\prime}(b)\right|}{6}\left(b^{3}-L\left(a^{3}, b^{3}\right)\right)\right]$,
where L is the logarithmic mean.

Corollary 8. By considering the conditions of Theorem 8, if we take $m_{1}=m$ and $m_{2}=1$ in the inequality (4.2), then we get

$$
\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \leq \frac{\ln b-\ln a}{2} L^{1-\frac{1}{q}}\left(a^{3}, b^{3}\right)
$$

$\cdot\left[m\left|f^{\prime}\left(a^{\frac{1}{m}}\right)\right|^{q}\left(\frac{b^{3}-a^{3}}{3(\ln b-\ln a)}-\right.\right.$
$\left.\frac{a^{3} \Gamma(\alpha+1,3(\ln a-\ln b))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln b-\ln a)(\ln a-\ln b)^{\alpha}}\right)$
$\left.+\left|f^{\prime}(b)\right|^{q}\left(\frac{a^{3} \Gamma(\alpha+1,3(\ln a-l \quad))-a^{3} \Gamma(\alpha+1,0)}{3^{\alpha+1}(\ln b-\ln a)(\ln a-\ln b)^{\alpha}}\right)\right]^{\frac{1}{q}}$.
This inequality coincides with the inequality in [9].

Theorem 9. Let the function $f: \mathbb{R}_{0}=[0, \infty) \rightarrow \mathbb{R}$ be a differentiable function and $f^{\prime} \in L[a, b]$ for $0<a<b<\infty$. If $\left|f^{\prime}\right|^{q}$ is $\left(\alpha, m_{1}, m_{2}\right)-G A$ convex on $\left[0, \max \left\{a^{\frac{1}{m_{1}}}, b^{\frac{1}{m_{2}}}\right\}\right]$ for $\left[\alpha, m_{1}, m_{2}\right] \in$ $(0,1]^{3}$ and $q>1$, then,

$$
\begin{align*}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \leq \frac{\ln (b / a)}{2} \\
& . L^{\frac{1}{p}}\left(a^{3 p}, b^{3 p}\right)\left[\frac{\alpha m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}}{\alpha+1}+\frac{m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}}{\alpha+1}\right]^{\frac{1}{q}} \tag{4.3}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Proof. By using both Lemma 1, Hölder integral inequality and the (α, m_{1}, m_{2})-GA-convexity of the function $\left|f^{\prime}\right|^{q}$ on the interval $\left[0, \max \left\{a^{\frac{1}{m_{1}}}, b^{\frac{1}{m_{2}}}\right\}\right]$, that is, the inequality
$\left|f^{\prime}\left(a^{1-t} b^{t}\right)\right|=\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)} f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2} t}\right|^{q}$
$\leq m_{1}(1-t)\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}+m_{2} t\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}$,
we get

$$
\begin{aligned}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \\
& \leq \frac{\ln (b / a)}{2}\left[\int_{0}^{1}\left(a^{3(1-t)} b^{3 t}\right)^{p} d t\right]^{\frac{1}{p}} \\
& \times\left[\int_{0}^{1}\left|f^{\prime}\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2} t}\right)\right|^{q} d t\right]^{\frac{1}{q}}
\end{aligned}
$$

$\leq \frac{\ln (b / a)}{2}\left[\int_{0}^{1}\left(a^{3(1-t)} b^{3 t}\right)^{p} d t\right]^{\frac{1}{p}}$
$\cdot\left[\int_{0}^{1}\left[m_{1}\left(1-t^{\alpha}\right)\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}+\right.\right.$
$\left.\left.m_{2} t^{\alpha}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\right] d t\right]^{\frac{1}{q}}$
$=\frac{\ln (b / a)}{2}\left[\int_{0}^{1} a^{3 p(1-t)} b^{3 p t} d t\right]^{\frac{1}{p}}$
$\times\left[m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q} \int_{0}^{1}\left(1-t^{\alpha}\right) d t+\right.$
$\left.m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q} \int_{0}^{1} t^{\alpha} d t\right]^{\frac{1}{q}}$
$=\frac{\ln (b / a)}{2} L^{\frac{1}{p}}\left(a^{3 p}, b^{3 p}\right)\left[\frac{\alpha m_{1}\left|f^{\prime}\left(\frac{1}{a^{\frac{1}{1}}}\right)\right|^{q}}{\alpha+1}+\frac{m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}}{\alpha+1}\right]^{\frac{1}{q}}$.
This completes the proof of the theorem.

Corollary 9. By considering the conditions of Theorem 9, if we take $m_{1}=m_{2}=1$ in the inequality (4.3), then we get
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right|$
$\leq \frac{\ln (b / a)}{2} L^{\frac{1}{p}}\left(a^{3 p}, b^{3 p}\right)\left[\frac{\alpha\left|f^{\prime}(a)\right|^{q}}{\alpha+1}+\frac{\left|f^{\prime}(b)\right|^{q}}{\alpha+1}\right]^{\frac{1}{q}}$.

Corollary 10. By considering the conditions of Theorem 9, if we take $m_{1}=m, m_{2}=1$ in the inequality (4.3) then we obtain
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right|$
$\leq \frac{\ln (b / a)}{2} L^{\frac{1}{p}}\left(a^{3 p}, b^{3 p}\right)\left[\frac{\alpha m\left|f^{\prime}\left(a^{\frac{1}{m}}\right)\right|^{q}}{\alpha+1}+\frac{\left|f^{\prime}(b)\right|^{q}}{\alpha+1}\right]^{\frac{1}{q}}$.

Corollary 11. By considering the conditions of Theorem 9, if we take $m_{1}=m_{2}=1$ in the inequality (4.3) then we obtain

$$
\begin{aligned}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \\
& \leq \frac{\ln \left(\frac{b}{a}\right)}{2} L^{\frac{1}{p}}\left(a^{3 p}, b^{3 p}\right) A^{\frac{1}{q}}\left(\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right) .
\end{aligned}
$$

Theorem 10. Let the function $f: \mathbb{R}_{0}=[0, \infty) \rightarrow$ \mathbb{R} be a differentiable function and $f^{\prime} \in L[a, b]$ for $0<a<b<\infty$. If $\left|f^{\prime}\right|^{q}$ is $\left(\alpha, m_{1}, m_{2}\right)-G A$ convex on $\left[0, \max \left\{a^{\frac{1}{m_{1}}}, b^{\frac{1}{m_{2}}}\right\}\right]$ for $\left[\alpha, m_{1}, m_{2}\right] \in$ $(0,1]^{3}$ and $q>1$, then the following integral inequalities hold
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right|$
\leq
$\frac{\ln (b / a)}{2}\left[m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|\left(\begin{array}{c}L\left(a^{3 q}, b^{3 q}\right) \\ \left.-\frac{a^{39} \Gamma_{\Gamma(\alpha+1,3 q(\ln a-\ln b))-a^{39} \Gamma_{\Gamma(\alpha+1,0)}}^{(3 q)^{\alpha+1}(\operatorname{lna}-\ln b)^{\alpha}(\operatorname{lnb}-\ln a)}}{}\right)\end{array}\right.\right.$
$\left.+m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|\left(\frac{a^{3 q^{2}} \Gamma(\alpha+1,3 q(\ln a-\ln b))-a^{3 q} \Gamma(\alpha+1,0)}{(3 q)^{\alpha+1}(\ln a-\ln b)^{\alpha}(\ln b-\ln a)}\right)\right]^{\frac{1}{a}}$,
where L is the logarithmic mean, Γ is the Gamma function and $\frac{1}{p}+\frac{1}{q}=1$.

Proof. From both Lemma 1, Hölder integral inequality and the (α, m_{1}, m_{2})-GA-convexity of the function $\left|f^{\prime}\right|^{q}$ on the interval $\left[0, \max \left\{a^{\frac{1}{m_{1}}}, b^{\frac{1}{m_{2}}}\right\}\right]$, we get
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right|$
$\leq \frac{\ln (b / a)}{2}\left(\int_{0}^{1} 1 d t\right)^{\frac{1}{p}}$
$\cdot\left[\int_{0}^{1} a^{3 q(1-t)} b^{3 q t}\left|f^{\prime}\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2} t}\right)\right|^{q} d t\right]^{\frac{1}{q}}$
$\leq \frac{\ln (b / a)}{2}\left(\int_{0}^{1} a^{3(1-t) q} b^{3 t q}\left[\begin{array}{c}m_{1}\left(1-t^{\alpha}\right)\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q} \\ +m_{2} t^{\alpha}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\end{array}\right] d t\right)^{\frac{1}{q}}$
$=\frac{\ln (b / a)}{2}\left[\begin{array}{c}m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q} \int_{0}^{1}\left(1-t^{\alpha}\right) a^{3 q(1-t)} b^{3 q t} d t \\ +m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q} \int_{0}^{1} t^{\alpha} a^{3 q(1-t)} b^{3 q t} d t\end{array}\right]$
$=$
$\frac{\ln (b / a)}{2}\left[m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|\binom{L\left(a^{3 q}, b^{3 q}\right)}{-\frac{a^{3 q} \Gamma(\alpha+1,3 q(\ln a-\ln b))-a^{3 q} \Gamma(\alpha+1,0)}{(3 q)^{\alpha+1}(\ln a-\ln b)^{\alpha}(\ln b-\ln a)}}\right.$
$\left.+m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|\left(\frac{a^{3 q} \Gamma(\alpha+1,3 q(\ln a-\ln b))-a^{3 q} \Gamma(\alpha+1,0)}{(3 q)^{\alpha+1}(\ln a-\ln b)^{\alpha}(\ln b-\ln a)}\right)\right]^{\frac{1}{q}}$.
This completes the proof of the theorem.

Corollary 12. By considering the conditions of Theorem 10, if we take $m_{1}=m_{2}=1$ in the inequality (4.4), then we get
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \leq \frac{\ln (b / a)}{2}$
$\cdot\left[\left|f^{\prime}(a)\right|\left(L\left(a^{3 q}, b^{3 q}\right)-\right.\right.$
$\left.\frac{a^{3} q \Gamma(\alpha+1,3 q(\ln a-\ln b))-a^{3} q \Gamma(\alpha+1,0)}{(3 q)^{\alpha+1}(\ln a-\ln b)^{\alpha}(\ln b-\ln a)}\right)$
$\left.+\left|f^{\prime}(b)\right|\left(\frac{a^{3 q} \Gamma(\alpha+1,3 q(\ln a-\ln b))-a^{3 q} \Gamma(\alpha+1,0)}{(3 q)^{\alpha+1}(\ln a-\ln b)^{\alpha}(\ln b-\ln a)}\right)\right]^{\frac{1}{q}}$.

Corollary 13. By considering the conditions of Theorem 10, if we take $m_{1}=m_{2}=1$ and $\alpha=1$ in the inequality (4.4), then we get
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right|$
$\leq \frac{\ln (b / a)}{2}\left[\left|f^{\prime}(a)\right|\left(\frac{L\left(a^{3 q}, b^{3 q}\right)-a^{3 q}}{3 q(\ln b-\ln a)}\right)+\right.$
$\left.\left|f^{\prime}(b)\right|\left(\frac{b^{3 q}-L\left(a^{3 q}, b^{3 q}\right)}{3 q(\ln b-\ln a)}\right)\right]^{\frac{1}{q}}$.

Theorem 11. Let the function $f: \mathbb{R}_{0}=[0, \infty) \rightarrow$ \mathbb{R} be a differentiable function and $f^{\prime} \in L[a, b]$ for $0<a<b<\infty$. If $\left|f^{\prime}\right|^{q}$ is $\left(\alpha, m_{1}, m_{2}\right)-G A$ convex function on the interval $\left[0, \max \left\{a^{\frac{1}{m_{1}}}, b^{\frac{1}{m_{2}}}\right\}\right]$ for $\left[\alpha, m_{1}, m_{2}\right] \in(0,1]^{3}$ and $q>1$, then the following integral inequalities hold

$$
\begin{align*}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \tag{4.5}\\
& \leq \frac{\ln b-\ln a}{2}\left[\frac{L\left(a^{3 p}, b^{3 p}\right)-a^{3 p}}{3(\ln b-\ln a)}\right]^{\frac{1}{p}} \\
& \cdot\left[\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}\left(\frac{\alpha(\alpha+3) m_{1}}{2\left(\alpha^{2}+3 \alpha+2\right)}\right)+\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\left(\frac{m_{2}}{\alpha^{2}+3 \alpha+2}\right)\right]^{\frac{1}{q}} \\
& +\frac{\ln b-\ln a}{2}\left[\frac{b^{3 p}-L\left(a^{3 p}, b^{3 p}\right)}{3(\ln b-\ln a)}\right]^{\frac{1}{p}} \\
& {\left[\left[m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}\left(\frac{\alpha}{2(\alpha+2)}\right)+m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\left(\frac{1}{\alpha+2}\right)\right]^{\frac{1}{q}}\right.}
\end{align*}
$$

where L is the logarithmic mean and $\frac{1}{p}+\frac{1}{q}=1$.
Proof. From Lemma 1, Hölder-İ̇scan integral inequality and the (α, m_{1}, m_{2})-GA convexity of the function $\left|f^{\prime}\right|^{q}$ on the interval $\left[0, \max \left\{a^{\frac{1}{m_{1}}}, b^{\frac{1}{m_{2}}}\right\}\right]$, we obtain
$\left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right|$
$\leq \frac{\ln b-\ln a}{2}\left[\int_{0}^{1}(1-t)\left(a^{3(1-t)} b^{3 t}\right)^{p} d t\right]^{\frac{1}{p}}$
$\cdot\left[\int_{0}^{1}(1-t)\left|f^{\prime}\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2} t}\right)\right|^{q} d t\right]^{\frac{1}{q}}$
$+\frac{\ln b-\ln a}{2}\left[\int_{0}^{1} t\left(a^{3(1-t)} b^{3 t}\right)^{p} d t\right]^{\frac{1}{p}}$
$\times\left[\int_{0}^{1} t\left|f^{\prime}\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2} t}\right)\right|^{q} d t\right]^{\frac{1}{q}}$
$\leq \frac{\ln b-\ln a}{2}\left[\int_{0}^{1}(1-t) a^{3 p(1-t)} b^{3 p t} d t\right]^{\frac{1}{p}}$
$\times\left(\int_{0}^{1}\left[\begin{array}{c}m_{1}(1-t)\left(1-t^{\alpha}\right)\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q} \\ +m_{2}(1-t) t^{\alpha}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\end{array}\right] d t\right)^{\frac{1}{q}}$
$+\frac{\ln b-\ln a}{2}\left[\int_{0}^{1} t a^{3 p(1-t)} b^{3 p t} d t\right]^{\frac{1}{p}}$
$\cdot\left[\int_{0}^{1}\left[m_{1} t\left(1-t^{\alpha}\right)\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}+\right.\right.$
$\left.\left.m_{2} t t^{\alpha}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\right] d t\right]^{\frac{1}{q}}$
$=\frac{\ln b-\ln a}{2}\left[\frac{L\left(a^{3 p}, b^{3 p}\right)-a^{3 p}}{3(\ln b-\ln a)}\right]^{\frac{1}{p}}$
$\cdot\left[\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}\left(\frac{\alpha(\alpha+3) m_{1}}{2\left(\alpha^{2}+3 \alpha+2\right)}\right)+\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\left(\frac{m_{2}}{\alpha^{2}+3 \alpha+2}\right)\right]^{\frac{1}{q}}$
$+\frac{\ln b-\ln a}{2}\left[\frac{b^{3 p}-L\left(a^{3 p}, b^{3 p}\right)}{3(\ln b-\ln a)}\right]^{\frac{1}{p}}$
$\cdot\left[m_{1}\left|f^{\prime}\left(a^{\frac{1}{m_{1}}}\right)\right|^{q}\left(\frac{\alpha}{2(\alpha+2)}\right)+m_{2}\left|f^{\prime}\left(b^{\frac{1}{m_{2}}}\right)\right|^{q}\left(\frac{1}{\alpha+2}\right)\right]^{\frac{1}{q}}$.
This completes the proof of the theorem.

Corollary 14. By considering the conditions of Theorem 11, if we take $m_{1}=m_{2}=1$ in the inequality (4.5), then we get

$$
\begin{aligned}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \\
& \leq \frac{\ln b-\ln a}{2}\left[\frac{L\left(a^{3 p}, b^{3 p}\right)-a^{3 p}}{3(\ln b-\ln a)}\right]^{\frac{1}{p}} \\
& \cdot\left[\left|f^{\prime}(a)\right|^{q}\left(\frac{\alpha(\alpha+3)}{2\left(\alpha^{2}+3 \alpha+2\right)}\right)+\left|f^{\prime}(b)\right|^{q}\left(\frac{1}{\alpha^{2}+3 \alpha+2}\right)\right]^{\frac{1}{q}} \\
& +\frac{\ln b-\ln a}{2}\left[\frac{b^{3 p}-L\left(a^{3 p}, b^{3 p}\right)}{3(\ln b-\ln a)}\right]^{\frac{1}{p}} \\
& \times\left[\left|f^{\prime}(a)\right|^{q}\left(\frac{\alpha}{2(\alpha+2)}\right)+\left|f^{\prime}(b)\right|^{q}\left(\frac{1}{\alpha+2}\right)\right]^{\frac{1}{q}}
\end{aligned}
$$

Corollary 15. By considering the conditions of Theorem 11, if we take $m_{1}=m_{2}=1$ and $\alpha=1$ in the inequality (4.5), then we get

$$
\begin{aligned}
& \left|\frac{b^{2} f(a)-a^{2} f(b)}{2}-\int_{a}^{b} x f(x) d x\right| \\
& \leq \frac{\ln b-\ln a}{2}\left[\frac{L\left(a^{3} p, b^{3 p}\right)-a^{3 p}}{3(\ln b-\ln a)}\right]^{\frac{1}{p}}\left[\frac{\left|f^{\prime}(a)\right|^{q}}{3}+\left|f^{\prime}(b)\right|^{q}\left(\frac{1}{6}\right)\right]^{\frac{1}{a}}
\end{aligned}
$$

$$
+\frac{\ln b-\ln a}{2}\left[\frac{b^{3 p}-L\left(a^{3 p}, b^{3 p}\right)}{3(\ln b-\ln a)}\right]^{\frac{1}{p}}\left[\frac{\left|f^{\prime}(a)\right|^{q}}{6}+\frac{\left|f^{\prime}(b)\right|^{q}}{3}\right]^{\frac{1}{q}} .
$$

5. CONCLUSION

New Hermite-Hadamard type integral inequalities can be obtained by using (α, m_{1}, m_{2})-GA convexity and different type identities.

Research and Publication Ethics

This paper has been prepared within the scope of international research and publication ethics.

Ethics Committee Approval

This paper does not require any ethics committee permission or special permission.

Conflict of Interests

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this paper.

REFERENCES

[1] M.K. Bakula, M.E. Özdemir, and J. Pečarić, "Hadamard type inequalities for m-convex and (α, m)-convex functions," J. Inequal. Pure Appl. Math. 9(4), Art. 96, 12 pages, 2008.
[2] S.S. Dragomir, "Inequalities of HermiteHadamard type for GA-convex functions," Annales Mathematicae Silesianae. 32(1). Sciendo, 2018.
[3] S.S. Dragomir and RP. Agarwal, "Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula," Appl. Math. Lett. 11, 91-95, 1998.
[4] S.S. Dragomir and C.E.M. Pearce, "Selected Topics on Hermite-Hadamard Inequalities and Its Applications," RGMIA

Monograph, 2002.
[5] S.S. Dragomir, J. Pečarić and LE.Persson, "Some inequalities of Hadamard Type," Soochow Journal of Mathematics, 21(3), pp. 335-341, 2001.
[6] J. Hadamard, "Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann," J. Math. Pures Appl. 58, 171-215, 1893.
[7] İ. İşcan, "New refinements for integral and sum forms of Hölder inequality," 2019:304, 11 pages, 2019.
[8] İ. İşcan and M. Kunt, "Hermite-HadamardFejer type inequalities for quasigeometrically convex functions via fractional integrals, Journal of Mathematics," Volume 2016, Article ID 6523041, 7 pages, 2016.
[9] A.P. Ji, T.Y. Zhang, F. Qi, "Integral inequalities of Hermite-Hadamard type for (α, m)-GA-convex functions," arXiv preprint arXiv:1306.0852, 4 June 2013.
[10] H. Kadakal, "Hermite-Hadamard type inequalities for trigonometrically convex functions," Scientific Studies and Research. Series Mathematics and Informatics, 28(2), 19-28, 2018.
[11] H. Kadakal, "New Inequalities for Strongly r-Convex Functions," Journal of Function Spaces, Volume 2019, Article ID 1219237, 10 pages, 2019.
[12] H. Kadakal, " $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$-convexity and some new Hermite-Hadamard type inequalities," International Journal of Mathematical Modelling and Computations, 09(04), Fall, 297-309, 2019.
[13] H. Kadakal, " $\left(\alpha, m_{1}, m_{2}\right)$-convexity and some inequalities of Hermite-Hadamard type," Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2128-

2142, 2019.
[14] M. Kadakal, " $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$-geometric arithmetically convex functions and related inequalities," Mathematical Sciences and Applications E-Notes, (Submitted to journal), 2020.
[15] M. Kadakal, H. Kadakal and İ. İşcan, "Some new integral inequalities for n-times differentiable s-convex functions in the first sense," Turkish Journal of Analysis and Number Theory, 5(2), 63-68, 2017.
[16] V.G. Miheşan, "A generalization of the convexity," Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, (Romania), 1993.
[17] C.P. Niculescu, "Convexity according to the geometric mean," Math. Inequal. Appl. 3(2), 155-167, 2000.
[18] C.P. Niculescu, "Convexity according to means," Math. Inequal. Appl. 6 (4), 571579, 2003.
[19] S. Özcan, "Some Integral Inequalities for Harmonically (α, s)-Convex Functions, Journal of Function Spaces," 2019, Article ID 2394021, 8 pages 2019.
[20] S. Özcan, and İ. İşcan, "Some new HermiteHadamard type inequalities for s-convex functions and their applications," Journal of Inequalities and Applications, Article number: 2019:201, 2019.
[21] Y. Shuang, Yin, H.P. and Qi, F., "HermiteHadamard type integral inequalities for geometric-arithmetically s-convex functions," Analysis, 33, 197-208, 2013.
[22] G. Toader, "Some generalizations of the convexity," Proc. Colloq. Approx. Optim., Univ. Cluj Napoca, Cluj-Napoca, 329-338, 1985.
[23] F. Usta, H. Budak and M.Z. Sarıkaya, "Montgomery identities and Ostrowski type
inequalities for fractional integral operators," Revista de la Real Academia de Ciencias Exactas, F13̆053'fsicas y Naturales. Serie A. Matemáticas, 113(2), 1059-1080, 2019.
[24] F. Usta, H. Budak and M.Z. Sarıkaya, "Some New Chebyshev Type Inequalities Utilizing Generalized Fractional Integral Operators," AIMS Mathematics, 5(2), 1147-1161, 2020.
[25] S. Varošanec, "On h-convexity," J. Math. Anal. Appl. 326, 303-311, 2007.

[^0]: *Corresponding Author: mahirkadakal@gmail.com
 ${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200, Giresun-Turkey.
 ORCID: 0000-0002-0240-918X

