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Abstract

The sequences which are fixed by the binomial transform are called self-inverse sequences.
In this paper, an identity satisfied by Fibonacci numbers is modified to provide a transform
which maps a specific subset of sequences to self-inverse sequences bijectively. The image
of some classes of sequences under this transform are explicitly found which provides a new
formulation and a class of examples of self-inverse sequences. A criterion for the solutions
of some difference equations to be self-inverse is also given.
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1. Introduction

Let A denote the set of sequences d = {d, }n>0 over a field of characteristic zero. The
binomial transform, B of a sequence d € A is defined as

n
B:A— A Bd)y= (| (=1)Fdy, n>0.
k=0 k
The ordinary generating function of a sequence d = {d,,}n>0 is the formal power series

f(T) =37 gd,T". In this case we simple write
d~ f(T).

The generating function of a sequence d and of its binomial transform are related to each
other; for any sequence d,

d~ f(T) = B(d) ~ 1_1Tf(1_—TT)

(See [3] or [4]). Tt is easy to see that B%(d) = d, so that the eigenvalues of B are 1. The
eigenspaces of B, i.e. sequences for which B(d) = £ d are of common interest. A sequence
d € A is said to be self-inverse (or invariant under B) if B(d) = d. We denote the subset
of self-inverse sequences by A1. Note that A™ is a subspace of A. Typical examples of
self-inverse sequences are

{1/2"}n>0, {nFru-1}n>0, {(—=1)"Bn}n>0,

where F,, and B, denote the n-th Fibonacci and Bernoulli numbers respectively with
Fy = 0. An extensive list of examples of both eigenspaces of B with related recurrence
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relations are proved in [4]. Also some congruences modulo prime powers involving both
eigenspaces are given in [5]. Another interesting result is that A is equal to the direct sum
of eigenspaces of B which can be proved by using the matrix representation of B, [6]. In
this paper, we shall restrict to eigenspace of B corresponding to the eigenvalue 1.

There is another convention for the binomial transform where the term (—1)* in the
summation in B is omitted, but we will adopt the above convention. The reader is referred
to [1] for the alternative convention and also a general exposition on transforms of integer
sequences.

Let Ao denote the subspace of A consisting of sequences d = {d,, },>0 for which dy = 0.
We denote the subspace of self-inverse sequences in Ay by Ag . Note that for any d € A7,
we necessarily have dy = d; = 0. Let H be the transform on Aq defined as

g’f:A0—>.A0,
[n/2]
n—k—-1 i
= — >
H(chn z( e )( ey, n > 2

where |z| denotes the greatest integer less than or equal to x. Note that the binomial
term corresponding to k = 0 is (”:11) which may be defined in different ways. But we
don’t need to care about this ambiguity since we apply H on sequences for which ¢y = 0.

So we actually have that

2y g
H(c)o = H(c)1 =0, H(c), = Z ( E—1
k=1

The main result of this paper is the following theorem.

1
)(—1)’@, n>2 cécAh. (1.1)

Theorem 1.1. For any ¢ € Ay, the sequence {nH(c)y}n>0 s a self-inverse sequence.
Moreover the map

Ag = Af, e {nH(c)n}n>0
s a bijection.

This result is a characterization of self-inverse sequences in Aar. For example the se-
quence ¢ for which cg = 0, ¢ = (—1)* for & > 1 maps to {nF,_1},>0 where {F,} is the
Fibonacci sequence (We take F_; = Fy = 0). It is possible to recover A" from A since
we have the following;

(0,0,ds,ds, ...) € A if and only if (da,ds — da,dy — ds,....) € AT, (1.2)

This follows by [4, Corollary 3.1-3.2].

The organization of the paper is as follows. In Section 2 we study the ordinary gener-
ating functions and as a result prove above theorem. The idea of the proof is expressing
the difference operator as a conjugation by a differential operator applied on ordinary
generating functions.

Section 3 is devoted to characterization of specific types of self-inverse sequences. We
shall focus on two types of sequences. We find a basis for self-inverse sequences of polyno-
mial type in Ag . We also study sequences which satisfy specific recurrence relations.



A note on a transform to self-inverse sequences 1125

2. Main theorem

We define the formal differential operator D on the ring of formal power series as
d
D = Td—T, explicitly if f(T) =Y 02, dp,T™ then

oo

Df(T)=> nd,T".

n=1
By abuse of notation we may also use D to denote the corresponding transform on A and
write D(d) = {nd,}n>0 for any d € A. Clearly D does not have an inverse. But if we
restrict D to Ag, then D is invertible with inverse D~! where

D7V Ay — A,
D~ Yd)y =0, D7Y(d),, = d,/n for n>1

In terms of generating functions we have

o0 [e.o] d
=Y d,T" = D'f(T)=) 1"
We define another transform B’ on Ay as B’ = D~1 B D, explicitly for any d € A
~ -1
B'(d)o = 0, B/( Z(” >dk( 1)k for n > 1.
k=1
Equivalently, we can define B’ by B'(d), = B(d), — B(d),—1 for n > 1. This differ-

ence operator in relation to self-inverse sequences allows one to obtain formulas involving
harmonic numbers and Stirling numbers, [2].
But we emphasize the relation B’ = D~'B D on Ag which simply implies that

B'(d) =d if and only if B(D(d)) = D(d) (2.1)

for d € Ag. We say that d is invariant under B’ if B'(d) = d. So we shall study the
invariant sequences under B’ and then relate to B. Note that if d € Ajg is invariant under
B (or B’) then necessarily dy = d; = 0. We have a simple description of B’ in terms of
the ordinary generating functions.

Lemma 2.1. Letd € Ag andd ~ f(T). Then

(@)~ f (7).

h AL
= .
werel_T nz::()

Proof. Recall that for any a € A, if a ~ f(T') then

1 T
Bla)~ 1—Tf<1—T>'
Since D(d) ~ T'f'(T) we have that

BD(d) ~ (1 :TT)Z f (1_—TT) '

But by chain rule we also see that

b {f (1_—TT)] e :1;)2 4 (1_—TT)'

Applying D~! we obtain

B'(d) =D 'BD() ~ f (JTT) .
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In particular, for any sequence d ~ f(T') we have that
-T
B(d)=(d) <= f(T)=f (1—T) .
So we shall investigate the formal power series which are symmetricin T and —T'/(1—T).
The simplest nonzero power series symmetric in 7" and —7/(1 — T) is
_ _ _m2
v —L _p L _ T
1-T 1-T7 1-T
As a consequence any sequence in Ay with an ordinary generating function of the form
f(=T%/(1 =1T)) for some f(T) is invariant under B’.

Example 2.2. Let d ~ f(T) = In?(1 — T)/2 where In(1 —T) = —>°°, %, so that
d € Ayg. We may easily verify that

(1) =f5(=T/1-1)),
which implies that B’(d) = d. But by computing the square of In(1 — T') we can also see
that

sy =y Mt
k=2

where Hy,_1 =1+1/2+1/3+...41/(k—1) are the harmonic numbers. Then we have that
D(d) ={0,0,Hy, Hy,...}. By (2.1), D(d) is invariant under B, i.e. we have the recurrence

Z (Z) (_1)ka71 =H, 1,n>2.

k=2
Note that this fact can also be derived by applying (1.2) to the self-inverse sequence

{1,1/2,1/3,...}.
Theorem 2.3. For any ¢ € Ay, the sequence {nH(c)p}n>0 s a self-inverse sequence.
Moreover the map
.Ao — Aar, C — {n}f(c)n}nzo
is a bijection.

Proof. Let c € Ay and ¢ ~ g(T). For the first part of the theorem by (2.1) it is enough to
prove that 3{(c) is invariant under B’. Let d be the sequence for which d ~ g(—T2/(1-T)).
By Lemma 2.1 and the conclusion following it, d is invariant under B’. Now we will show
that indeed d = H(c). Let g(T) = 322, cxT*. Then

—r2\ & (-2 \' & 1
(i) =50 (1) e o

— ;;1 (1) (11: 11>Tl+k.

=k

In the last equality we use that 1/(1 — T)% = 320, (\-})T'* for k > 1 which can be
proven inductively. We set n = [ + k and obtain that

12 ) > s (n—k—1

() = a3 (T e
(1 -T k=1 noan \ -1

We interchange the indices k£ and n and deduce that

I T
g(l_TT>:nZQ(Z ( k:l)%(_l)k) r

k=1
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which completes the proof of the first part of the theorem.

For the second part, first we note that the map ¢ — {nH(c)p}n>0 on Ag is linear. If
H(c)(n) = 0 for all » > 2 then by induction it follows that ¢, = 0 for £ > 1. So the map
c— {nH(c)n}n>0 on Ap is injective.

Now we prove the surjectivity. Again by (2.1) it is enough to show that for any sequence
d € Aj which is invariant under B’ there exists ¢ € Ag such that H(c) = d. Let d be
invariant under B’. Note that we necessarily have dy = d; = 0. Consider the subsequence
{dom}m>1. We can uniquely determine {cj};>1 such that

Z(2m—k—1

dom =Y ( b1 )Ck(—Uk
k=1

recursively. Now we set d' = H(c), so that d’ is invariant under B’ and da,, = db,, for

m > 0. Recall that B’ = D~'B D, and that D and B are linear. So B’ is also linear which
implies that d” = d’ —d is also invariant under B’. Explicitly

" (n—1
=y <k ~ 1>d’,;(—1)k,n > 2
k=2
where dj = df = dj,, = 0 for m > 1. Inductively it follows that d = 0 also for all odd
n > 0, and so
d=d = %(c).
This completes the proof of surjectivity. O

3. Examples and applications

The well-known examples of invariant sequences under B have been given in Section 1.
A convenient reference for other examples is [4]. Here we will focus on two specific type
of self-inverse sequences using results of Section 2.

First we need to recall a difference operator required in this section. We define the
(forward) difference operator A as

(Ad)(n) =dpt1 —dp, n>0

for any sequence d = {d,, }n>0. If f is a function on N, we may write (Af) for (A d) where
d ={f(n)}n>0, ie. (Af)(n)=f(n+1)— f(n)forn>0.

We say that a sequence d € Ay is of polynomial type if there exists a polynomial f(x)
and N € N such that d,, = f(n) for all n > N. In this case we say that d is associated to
f(x). The existence of invariant sequences of polynomial type is already known. Indeed,
if f(z) is a polynomial of degree r then the sequence {d,,},>0 defined as

dn = (=1)"(A"f)(0) + f(n), n = 0

is an invariant sequence of polynomial type, [6, Theorem 3.2]. Note that in this case
d, = f(n) for n > r. In particular, for any r > 1 the sequence

dp = (—1)"n!S(r,n)+n",n >0 (3.1)

is in AJ for which d, = n" if n > r where S(r,n) denotes the Stirling numbers of the
second kind, [6, Example 3.3]. We say that a sequence d = {dp, d1, ...} is finitely supported
if there exists n € N such that d, =0 for n > N.

Lemma 3.1. The only finitely supported sequence in At is the zero sequence.

Proof. For an arbitrary sequence d, if d ~ f(7') then

B(d) ~ 1—1T / <1_TT>'
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If d is finitely supported then f(7') is a polynomial. Additionally if d € AT then f(T) =
1 =T
f ( ) But by considering the degree of f(T) we see that this is possible if

1-T 1-T
and only if f(T") = 0. O

Let d and d’ be of polynomial type, with d,, = d, = f(n) for n > N for some polynomial
[ of degree r satisfying f(0) = 0. Then {d,, — d],},>0 is also of polynomial type. But it is
also a finitely supported sequence in .Aar, so it must be the zero sequence by Lemma 3.1.

Hence there is a unique self-inverse sequence associated to any polynomial. Since {z"},>1
is a basis for the space of polynomials with zero constant term we have the following result.

Corollary 3.2. The sequences in (3.1) for r > 1 form a basis for the subspace of self-
inverse sequences of polynomial type in Aar .

Now we give another basis using the transform .

Theorem 3.3. Letl € N with [ > 1 and f; be the function on N defined as
0, n < 2l
filn) = {

(Y. n>2
Then {nfi(n)}n>0 € Ag. Conversely, let d = {d,}n>0 € A{ be of polynomial type.
Suppose that d, = f(n) forn > N where f is a polynomial of degree r satisfying f(0) = 0.
Then there exist unique aq, oo, ..., . such that

d= {n XT: azfz(n)}
=1

Proof. Note that for a fixed I > 1, {nf;(n)}n>0 is of polynomial type. Let c(!) € Ag be
the sequence for which
() _ {0, k #1

PO, k=l
Then we have {f1(n)}n>0 = H(c®). So the first part follows by Theorem 2.3.
To prove the converse, take any d and f satisfying the hypothesis of the theorem.
Without loss of generality we may assume that N > 2r. For [ > 1, the degree of the

polynomial x(m;fIl) is [, so in particular, the set

)

forms a basis for the space of polynomials with no constant term. Since f(0) = 0 there
exist unique ag, ao, ..., a, such that

n>0

Now for n > N, we have d, = f(n) = Y_j_; ey nfi(n). Also both of the sequences

{dn}>0 and {nZal fl(n)}
=1
are invariant under B. So the difference

{dn - niaz fl(n)}
=1

is a finitely supported sequence in Ag which is necessarily the zero sequence by Lemma
3.1. O

n>0

n>0



A note on a transform to self-inverse sequences 1129

So the set
Hnfiln)fnzo |1 > 1}
is also a basis for the self-inverse sequences of polynomial type in Ag. We also see that H
maps the finitely supported sequence in Ag to self-inverse sequences of polynomial type in
A bijectively.

Example 3.4. [ = 1 produces the sequence dgy = d; = 0, d, = n for n > 2. This

elementary case is already known, [4]. Similarly the invariant sequence corresponding to
l=2isdy=d; =dy=d3s=0and d, =n(n—3) for n > 4.

Now we consider another type of self-inverse sequences which generalizes the Fibonacci
sequence. First we need to introduce an operator V on Ag. For any ¢ € Ay we define
V(c) as

V(c)o=0, V(c), = —cpy1 forn >1
ie. if c=(0,c1,c2,...) then V(c) = (0, —c2, —c3, ...). So the L-th power of V is

VE(e) = (0, (=) erir, (—1)Feas, ..
The images of the sequences ¢ and V(c) under H are related to each other.

Proposition 3.5. For any c € Ag and n > 1 we have that
H(VE(e)n = (AT H(c))(L +n)

Proof. We use induction on L. We set d = H(c) and d¥) = H(V(c)) to simplify the
notation. For L = 1 the problem reduces to showing that dnl) = dpyo — dpyq for n > 1.
This holds for n = 1 as d is self-inverse and dy = d; = 0.

For even n we set n = 2m for m > 2. Then

[2m/2] [(2m-1)/2]
2m —k—1 2m —k —2
dom — dom—1 =Y ( b1 )(Ukck -y ( 1 )(1)’“%

k=1

L(2(m-1)/2]

2m—1)—-k—1
Z < ( k—1 >(_1)k(—ck+1) = d52—2
k=1

In a similar way it also follows that dopy4+1 — dop = dg%_l
proof of the claim for L = 1.
Now assume that d" ™" = (AL=1d)(L—1+n). Since d¥) = H(VE(c)) = H(V(VEL(c)))
by using the case L = 1 and the induction hypothesis we obtain that
_ _ L— L—1
diP) = HOVP T ()asa = HOVE T () = 455" — dif"

= (ALY (L +1+n) — (ALY (L +n) = (AT d)(L +n).

for m > 2 which completes the

O
Corollary 3.6. Let d € Ag be invariant under B'. Then the sequence d’ = (dn)n>0
defined as
g {0, n=0
" (ALd)(L+n), n>0
is also invariant under B'. Equivalently, if {nd,}n>0 is a self-inverse sequence in Ay then

S0 18 {n(AL d)(L +n)}n>o0
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Proof. By Theorem 2.3, there exists ¢ € Ag such that d = H(c). Then the result follows
by Proposition 3.5. U

We may compare this result with [6]; if we set a,, = nd, in the notation of the above
corollary, it follows by Theorem 3.4 of [6] that {(AL a)(L+n)},>0 is also self-inverse. But
{(ATa)(L + n)}n>0 and {n(ALd)(L + n)},>o are obviously distinct sequences.

A related fact is that a sequence {nd,,_;} for which

do=0,d; =1 and (A'd)(1+n) = td,,n > 1

where t is an indeterminate is self-inverse, [4, Example 5 of Section 2|. In other words by
(2.1) the sequence (0,0, dy, da, ...) is invariant under B’. It is worthwhile to extend this fact
to higher order difference equations (A*d)(L + n) = d,, for L > 2. Consider a sequence
d € A( which satisfies the difference equation

(AYd)(L +n) =d,, n>1.
Then d is uniquely determined by the initial conditions di, ds, ...,dor. It turns out that

if the initial conditions on dg,dq, ds, ..., dor, obey the invariance under B’ then d is itself
invariant under B’.

Theorem 3.7. Letd € Ay, L € Z with L > 1 and t be an indeterminate. Suppose that
(AYd)(L +n) = tdy,n > 1.
If B'(d),, = d,, for 0 <n < 2L then B'(d) =d.

Proof. Note that by assumption dy = d; = 0. By using all even integers n between 1 and
2L we can recursively find ¢y, co, ..., ¢, such that

[n/2] n—k—1 k
d, = —1 1<n<2L,n:

n ;( b1 >( )k, 1<n<2L,n: even
By hypothesis B'(d),, = d,, for all n between 0 and 2L. So it follows that for any extension
of (0,¢1,co,...cp) to an infinite sequence ¢ = (0, ¢y, ca, ...cp, ...) we have that H(c), = d,
for all odd n € [0,2L]. In particular, we can choose ¢ so that V' (c) = tc. Hence by

Proposition 3.5 and linearity we see that
tH(C)n = H(tc)n = H(VE(C))p = (AL H())(L +n), 1 <n < 2L

Now let d’ = H(c) — d. Since the mapping a — {(A¥a)(L +n)} is linear, we see that d’
satisfies the difference equation

(ALY L+n)=td,,n>1

with the initial conditions djy = dj = ... = dy; = 0. So d’ must be the zero sequence. [
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