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Abstract: In [2], graphs and permutation groups and in [4], permutation groups releated with combinatorial sets were studied.
In [3]-[5], the modular group Γ, the movement of an element of the modular group on Q̂ := Q ∪ {∞} (extended set of rational
numbers), Farey graph and suborbital graphs Gu,n and Fu,n were investigated. Furthermore, it is indicated that any two fixed
points is conjugated in Γ and the element of the modular group that fixes an element on Q̂ is infinite period. Hence, the element of
the modular group that fixes∞ is symbolized as Γ∞. In the same study, H, the subgroups of Γ of containing Γ∞ are obtained and
its invariant equivalence relations are generated on Q̂. Taking these points into account, in this study, we show that, the element
that fixes

x

y
in modular group based on the choice of

x

y
for x, y ∈ Z and (x, y) = 1, instead of a special value of set Q̂, such as∞.

Similarly, we study subgroup H containing Γ x
y

and we examine its invariant equivalence relations on Q̂.
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1 Introduction

Definition 1.1. [3] Modular group is division group of SL(2,Z) by {∓I} . So,

Γ = PSL(2,Z) ∼= SL(2,Z)/{∓I}

Γ =

{
∓
(
a b
c d

)
∈ Γ : a, b, c, d ∈ Z, ad− bc = 1

}
.

Thus, the elements of the Γ Modular group consist of the following matrices as

∓
(
a b
c d

)
∈ Γ : a, b, c, d ∈ Z, ad− bc = 1. (1)

Each matrix is considered to be equivalent by its negative. Therefore, we will ignore the ∓ difference. With elements of set Γ in H+ = {z ∈
C : Im(z) > 0} the upper half plane

z −→ az + b

cz + d
. (2)

It is a group that acts with Möbiüs transformations.

Lemma 1.2. [3]

i. The movement of Γ on Q̂ is transitive.
ii. The fixed of a point is infinitely period.

For example, let Ω =

(
a b
c d

)
∈ Γ . We find that Ω such that Ω(∞) =∞. If ∞ is taken as

1

0
, since Ω(∞) =

(
a b
c d

)(
1
0

)
=(

a
c

)
=

(
1
0

)
. So, a = 1 and c = 0. Since detΩ = 1 by the definition, d = 1 is found for ad− bc = 1. But b is provided for all Z. Then

for all b ∈ Z, Ω =

(
a b
c d

)
=

(
1 b
0 1

)
∈ Γ∞ ⊂ Γ. Thus Γ∞ is a group that infinitely period that produced by

(
1 1
0 1

)
.
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Proposition 1.3. [3] Let (G,Ω) is an transitive permutation group. In this case (G,Ω) is primitive⇔ Gα, the stabilizer of a point α ∈ Ω is a
maximal subgroup of G for ∀α ∈ Ω.

In accordance with the proposition given above, the following features are provided:

i. (G,Ω) is transitive⇔ There is ∃g ∈ G such that g(x) = y for ∀x, y ∈ Ω.
ii. (G,Ω) permutation group is not impritive, for Gα � H � G, α ∈ Ω.
iii. Gα is a maximal subgroup of G⇔ Gα = H or H = G when Gα ≤ H ≤ G .
iv. Let assume that Gα < H < G. Since G transitive, each element of set Ω is in the form of g(α) for a g ∈ G.
v. Let show that Ω = {g(α) : g ∈ G}=[α] (So there is an only one orbid). Since G transitive on Ω, there is an ∃g ∈ G such that g(α) = β for
∀α, β ∈ Ω. From here β ∈ [α]. If g = e is taken, β = g(α) = e(α) = α.So β ∈ [α]=[β] is Ω ⊂ [α]. On the contrary, it is obvious that
[α] ⊂ Ω. Because s : G× Ω −→ Ω,(g, α) :=gα=g(α). From here Ω=[α] is obtained. So, if the action is transitive, there is only one orbid.

2 Some Equivalence Subgroups of Γ

The basic equivalence subgroup for Γ is defined as

Γ(n) =

{(
a b
c d

)
∈ Γ : a ≡ d ≡ 1, b ≡ c ≡ 0(modn)

}
. (3)

Some basic congruence subgroups can be given as follows:

Γ1(n) =

{(
a b
c d

)
∈ Γ : a ≡ d ≡ 1, c ≡ 0(modn)

}
(4)

Γ0(n) =

{(
a b
c d

)
∈ Γ : c ≡ 0(modn)

}
(5)

Γ0(n) =

{(
a b
c d

)
∈ Γ : b ≡ 0(modn)

}
(6)

Γ0
0(n) =

{(
a b
c d

)
∈ Γ : b ≡ c ≡ 0(modn)

}
. (7)

Among these equivalence groups, there is an order as Γ(n) ≤ Γ1(n) ≤ Γ0
0 ≤ Γ0(n)(Γ0(n)) [1].

Let Γ is an element of Modular group that acting on Q̂. If there is a relation other than α ≈ β ⇔ α=β (Identity Relation) for all α, β ∈ Q̂
and α ≈ β (Universal Relation) for all α, β ∈ Q̂, (Γ, Q̂) is imprimitive, otherwise primitive.
Let Γα < H < Γ such that the stabilizer Γα of α. By finding subgroups H covering Γα equivalence groups on Γ were found.
For g, g

′
∈ Γα, "≈" equivalence relation given by g(α) ≈ g

′
(α)⇔ g

′
∈ gH is well defined [3].

Let g=
(
a b
c d

)
and g

′
=
(
e f
g h

)
∈ Γ. For

(
a b
c d

)
:
x

y
→ ax+ by

cx+ dy
= u and

(
e f
g h

)
:
x

y
→ ex+ fy

gx+ hy
= v ;

u ≈ v ⇔ g−1g
′
∈ H .

g =

(
a b
c d

)
⇒ g−1 =

(
d −b
−c a

)
and g−1g

′
=

(
d −b
−c a

)(
e f
g h

)
=

(
de− bg df − bh
ag − ec ah− cf

)
∈ H

If g−1g
′
∈ H = Γ0(n), ag − ec ≡ 0(modn). So,

a

c
≡ e

g
(modn)

If g−1g
′
∈ H = Γ0(n), df − bh ≡ 0(modn). So,

d

b
≡ h

f
(modn)

If g−1g
′
∈ H = Γ0

0(n), ag − ec ≡ 0(modn), df − bh ≡ 0(modn). So,
a

c
≡ e

g
(modn),

d

b
≡ h

f
(modn)

Theorem 2.1. [3] For each positive integer n 6= 2, 5 there is a Γ-invariant equivalence relation on Q̂ with n blocks.

3 Results

Theorem 3.1. The fixed point of an arbitrary point is infinite period on Q̂.

Proof:

Let the stabilizer of any two points are conjugated. For
x

y
∈ Q̂ and (x, y) = 1;a, b, c, d ∈ Z , from here

c(ax+ by)− a(cx+ dy) = cax+ cby − acx− ady = (cb− ad)y = −y

d(ax+ by)− b(cx+ dy) = dax+ dby − bcx− bdy = (ad− bc)x = x.

So, we find (ax+ by, cx+ dy) = 1. Let assume that
ax+ by

cx+ dy
is in reduced form.
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(
a b
c d

)
:
x

y
→ ax+ by

cx+ dy
and

(
a b
c d

)
is an element of modular group that leaves

x

y
∈ Q̂ constant. So,

(
a b
c d

)
:
x

y
→ x

y
. For

ax+ by

cx+ dy
=
x

y
;

1. ax+ by = x⇒ (a− 1)x+ by = 0

cx+ dy = y ⇒ cx+ (d− 1)y = 0(
a b
c d

)
=

(
1 0
0 1

)
identity matrix is obtained for especially x, y 6= 0, a = 1, b = 0, c = 0 and d = 1.

2. Let b, c 6= 0. For a = 1 and d = 1,
(

1 b
c 1

)
:
x

y
→ x+ by

cx+ y
=
x

y
,

If x = 0,
(

1 b
c 1

)
:

0

y
→ 0 + by

y
=

0

y
→ b = 0,(

1 0
c 1

)
∈ Γ that leaves fixed

x

y
∈ Q̂ for x = 0 and for all c ∈ Z is infinite period.

If y = 0,
(

1 b
c 1

)
:
x

0
→ x

cx
=
x

0
→ c = 0(

1 b
0 1

)
∈ Γ that leaves fixed

x

y
∈ Q̂ for y = 0 and for all b ∈ Z is infinite period.

3. Let b, c 6= 0. For a = 1 and d = 1,
(

1 b
c 1

)
:
x

y
⇒ x+ by

cx+ y
=
x

y

xy + by2 = cx2 + xy , by2 = cx2⇒x

y
=

√
b

c
.

4. Let b, c 6= 0. For a 6= 1 and d 6= 1,
(
a b
c d

)
:
x

y
⇒ ax+ by

cx+ dy
=
x

y
axy + by2 = cx2 + dxy

y =
∓x
√
a2 − 2ad+ 4bc+ d2 − ax+ dx

2b

Proposition 3.2.Let (Γ, Q̂) is a transitive permutation group. In this case (Γ, Q̂) is primitive⇔ Γα, the stabilizer of α ∈ Q̂, is a maximal
subgroup of Γ for all α ∈ Q̂.

In accordance with the proposition given above, the following features are provided:

i. (Γ, Q̂) is transitive⇔ There is g ∈ Γ such that g(x) = y for ∀x, y ∈ Q̂.

Since Γ acts as transitive on Q̂, there is g ∈ Γ such that g(x) = y for ∀x, y ∈ Q̂.

ii. (Γ, Q̂) permutation group is not primitive for Γα � H � Γ, α ∈ Q̂.

Since Γα � H , the relation given is not identity or universal relation.

Suppose there is an identity relation.

g(α) ≈ g(α
′
)⇔ g(α) = g(α

′
). From here, g

′
g−1(α) = α⇒ g

′
∈ gΓα. Then Γα � H ,∃h0 ∈ H such that h0 /∈ H . So h0α 6= α = e(α)

ve e(α) ≈ h0α. Because, h0 ∈ eH = H . From here, e(α) = h0α⇒ h0 ∈ eΓα, but contradicts with h0 /∈ Γα.

Suppose there is an universal relation.

Since H � Γ, there is ∃g0 ∈ Γ such that g0 /∈ H . So e(α) ≈ g0. But this is only possible with g0 ∈ eH = H . This is a contradiction. Hence
it is not an universal relation.

Hence (Γ, Q̂) permutation group is imprimitive.

iii. Γα is a maximal subgroup of Γ⇔ Γα = H or H = Γ when Γα ≤ H ≤ Γ .

iv. Let assume that Γα < H < Γ. Since Γ transitive, each element of set Q̂ is in the form of g(α) for a g ∈ Γ.

v. Let show that Q̂ = {g(α) : g ∈ γ}=[α] (So there is an only one orbid). Since Γ transitive on Q̂, there is g ∈ Γ such that g(α) = β for all
α, β ∈ Q̂. From here β ∈ [α]. If g = e,then β = g(α) = e(α) = α. So, β ∈ [α]=[β] is Q̂ ⊂ [α]. On the contrary, it is obvious that [α] ⊂ Q̂.
Because s : Γ× Q̂ −→ Q̂,s(g, α) :=gα=g(α). From here Q̂=[α] is obtained. So, if the action is transitive, there is only one orbid.

vi. ”≈” equivalence relation on Q̂ given by g(α) ≈ g
′
(α)⇔ g

′
∈ gH is well defined G-invariant relation.
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Let h ∈ H be arbitrary. First we have to show that

g(α) ≈ g
′
(α)⇔ h(g(α)) ≈ h(g

′
(α)).

g(α) ≈ g
′
(α)⇔ g

′
∈ gH ⇔ hg

′
∈ hgH

h(g(α)) ≈ h(g
′
(α))⇔ hg(α) ≈ hg

′
(α)⇔ hg

′
∈ hgH .

vii. If β ∈ Q̂, there is g ∈ Γ such that β = g(α). So [β] block containing β given by M = {gh(α) : h ∈ H} set.

[β] = {γ ∈ Q̂ : γ ≈ β} ve β = g(α) for g ∈ Γ. Then γ ∈ Q̂, there is ∃s ∈ Γ such that γ = s(α).

γ ≈ β ⇔ s(α) ≈ g(α)⇔ g ∈ sH

∃h ∈ H : g = sh⇒ s =
g

h
⇒ s = gh−1

γ = s(α) = gh−1(α) ∈M ⇒ [β] ⊂M .

Conversely, we have to show that gh(α) ≈ β for gh(α) ∈M .

Then β = g(α), gh(α) ≈ g(α)⇔ g ∈ ghH = gH

g ∈ gH ⇒ gh(α) ∈ [β]⇒M ⊂ [β]. Consequently, M = [β].

Especially, [α] block is H(α) = {h(α) : h ∈ H} orbit.

If α = e(α)

[α] = [e(α)] = {eh(α) : h ∈ H} = {h(α) : h ∈ H} = H(α).

viii. The fixed of any two points in Q̂ is also conjugate in Γ.

Let us p, q ∈ Q̂. We have to show Sp and Sq conjugate in Γ, where

Sp = {T1 ∈ Γ : T1p = p}, Sq = {T2 ∈ Γ : T2q = q}.

There is T3 ∈ Γ such that Sp = T3SqT
−1
3 . p, q ∈ Q̂ and since Γ transitive on Q̂, there is L ∈ Γ such that Lp = q.

Let us T ∈ Sp. We find S ∈ Sq such that T = LSL−1. Then LTL−1(q) = q, LTL−1 ∈ Sq and L−1TL = S.

From here LSL−1 = T ∈ LSqL−1, Sp ⊂ LSqL−1.

Similarly, there is T3 ∈ Γ such that Sq = T3SpT
−1
3 . p, q ∈ Q̂ and since Γ transitive on Q̂, there is L ∈ Γ such that Lq = p.

Let us T ∈ Sq . We find S ∈ Sp such that T = LSL−1. Then LTL−1(p) = p, LTL−1 ∈ Sp and L−1TL = S.

From here LSL−1 = T ∈ LSpL−1, Sq ⊂ LSpL−1.

Lemma 3.3. [3] ψ(n) = n
∏

(1 +
1

p
), where the product is over the distinct primes p dividing n.

Example 3.4. 2 and 3 are primes dividing 6, ψ(6) = 6.(1 +
1

2
)(1 +

1

3
) = 6.

3

2
.
4

3
= 12.

Especially, if n is a p prime number, there is ψ(p) = p+ 1 blocks. These blocks are

[0], [1], ..., [p− 1], [∞],where

[j] = {x
y
∈ Q : x ≡ jy(modp)}, j 6=∞

[∞] = {x
y
∈ Q : y ≡ 0(modp)},

In this study, we examined Modular group and its subgroups. Elements of the Modular group can be represented as Möbius transformations.
For example;
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(
a b
c d

)
∈ Γ⇒ az + b

cz + d
∈Möb.

(
1 1
0 1

)
∈ Γ⇒ 1z + 1

0z + 1
= z + 1 ∈Möb.

As a result of the transitive action on Q̂, an element of Modular group permutate vertices transitively. If we take the first two vertices as∞
and

u

n
respectively, graph is denoted by Gu,n. Especially if we take u = n = 1, we find Farey graph.

In [3], ≈n non-trivial equivalence relation on Q̂ defined;

v ≈n w ⇔ x ≡ ur(modn), y ≡ us(modn), where v =
r

s
, w =

x

y
and (u, n) = 1.

Lemma 3.5. [5] Gu,n = Gu′ ,n′ ⇔ n = n
′

and u ≡ u
′
(modn).

Lemma 3.6. [3] Gu,n is self-paired⇔ u2 ≡ −1(modn).

Lemma 3.7. [3] The suborbital graph paired with Gu,n is G−u,n, where uu ≡ 1(modn).

Lemma 3.8. [3]
r

s
→ x

y
∈ Gu,n ⇔ x ≡ ∓ur(modn), y ≡ ∓us(modn), ry − sx = ∓n.

Lemma 3.9. [3]
r

s
→ x

y
∈ Fu,n ⇔ x ≡ ∓ur(modn), ry − sx = ∓n.
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