3nd International E-Conference on Mathematical Advances and Applications (ICOMAA 2020).

Investigation of Γ-Invariant Equivalence Relations of Modular Groups and Subgroups

ISSN: 2651-544X
http://dergipark.gov.tr/cpost

İbrahim Gökcan ${ }^{1, *}$ Ali Hikmet Değer ${ }^{2}$
${ }^{1}$ Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey, ORCID:0000-0002-6933-8494
${ }^{2}$ Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey, ORCID:0000-0003-0764-715X
* Corresponding Author E-mail: gokcan4385@gmail.com

Abstract

In [2], graphs and permutation groups and in [4], permutation groups releated with combinatorial sets were studied. In [3]-[5], the modular group Γ, the movement of an element of the modular group on $\widehat{\mathbb{Q}}:=\mathbb{Q} \cup\{\infty\}$ (extended set of rational numbers), Farey graph and suborbital graphs $G_{u, n}$ and $F_{u, n}$ were investigated. Furthermore, it is indicated that any two fixed points is conjugated in Γ and the element of the modular group that fixes an element on $\widehat{\mathbb{Q}}$ is infinite period. Hence, the element of the modular group that fixes ∞ is symbolized as Γ_{∞}. In the same study, H , the subgroups of Γ of containing Γ_{∞} are obtained and its invariant equivalence relations are generated on $\widehat{\mathbb{Q}}$. Taking these points into account, in this study, we show that, the element that fixes $\frac{x}{y}$ in modular group based on the choice of $\frac{x}{y}$ for $x, y \in \mathbb{Z}$ and $(x, y)=1$, instead of a special value of set $\widehat{\mathbb{Q}}$, such as ∞.

 Similarly, we study subgroup H containing $\Gamma_{\frac{x}{y}}$ and we examine its invariant equivalence relations on $\widehat{\mathbb{Q}}$.Keywords: Infinite period, Invariant equivalence relations, Modular group.

1 Introduction

Definition 1.1. [3] Modular group is division group of $S L(2, \mathbb{Z})$ by $\{\mp I\}$. So,

$$
\begin{gathered}
\Gamma=P S L(2, \mathbb{Z}) \cong S L(2, \mathbb{Z}) /\{\mp I\} \\
\Gamma=\left\{\mp\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: a, b, c, d \in \mathbb{Z}, a d-b c=1\right\} .
\end{gathered}
$$

Thus, the elements of the Γ Modular group consist of the following matrices as

$$
\mp\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right) \in \Gamma: a, b, c, d \in \mathbb{Z}, a d-b c=1 .
$$

Each matrix is considered to be equivalent by its negative. Therefore, we will ignore the \mp difference. With elements of set Γ in $H^{+}=\{z \in$ $C: \operatorname{Im}(z)>0\}$ the upper half plane

$$
\begin{equation*}
z \longrightarrow \frac{a z+b}{c z+d} . \tag{2}
\end{equation*}
$$

It is a group that acts with Möbiüs transformations.
Lemma 1.2. [3]
i. The movement of Γ on $\widehat{\mathbb{Q}}$ is transitive.
ii. The fixed of a point is infinitely period.

For example, let $\Omega=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. We find that Ω such that $\Omega(\infty)=\infty$. If ∞ is taken as $\frac{1}{0}$, since $\Omega(\infty)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1}{0}=$ $\binom{a}{c}=\binom{1}{0}$. So, $a=1$ and $c=0$. Since $\operatorname{det} \Omega=1$ by the definition, $d=1$ is found for $a d-b c=1$. But b is provided for all \mathbb{Z}. Then for all $b \in \mathbb{Z}, \Omega=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in \Gamma_{\infty} \subset \Gamma$. Thus Γ_{∞} is a group that infinitely period that produced by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Proposition 1.3. [3] Let (G, Ω) is an transitive permutation group. In this case (G, Ω) is primitive $\Leftrightarrow G_{\alpha}$, the stabilizer of a point $\alpha \in \Omega$ is a maximal subgroup of G for $\forall \alpha \in \Omega$.

In accordance with the proposition given above, the following features are provided:
i. (G, Ω) is transitive \Leftrightarrow There is $\exists g \in G$ such that $g(x)=y$ for $\forall x, y \in \Omega$.
ii. (G, Ω) permutation group is not impritive, for $G_{\alpha} \varsubsetneqq H \varsubsetneqq G, \alpha \in \Omega$.
iii. G_{α} is a maximal subgroup of $G \Leftrightarrow G_{\alpha}=H$ or $H=G$ when $G_{\alpha} \leq H \leq G$.
iv. Let assume that $G_{\alpha}<H<G$. Since G transitive, each element of set Ω is in the form of $g(\alpha)$ for a $g \in G$.
v. Let show that $\Omega=\{g(\alpha): g \in G\}=[\alpha]$ (So there is an only one orbid). Since G transitive on Ω, there is an $\exists g \in G$ such that $g(\alpha)=\beta$ for $\forall \alpha, \beta \in \Omega$. From here $\beta \in[\alpha]$. If $g=e$ is taken, $\beta=g(\alpha)=e(\alpha)=\alpha$.So $\beta \in[\alpha]=[\beta]$ is $\Omega \subset[\alpha]$. On the contrary, it is obvious that
$[\alpha] \subset \Omega$. Because $s: G \times \Omega \longrightarrow \Omega,(g, \alpha):=g \alpha=g(\alpha)$. From here $\Omega=[\alpha]$ is obtained. So, if the action is transitive, there is only one orbid.

2 Some Equivalence Subgroups of Γ

The basic equivalence subgroup for Γ is defined as

$$
\Gamma(n)=\left\{\left(\begin{array}{ll}
a & b \tag{3}\\
c & d
\end{array}\right) \in \Gamma: a \equiv d \equiv 1, b \equiv c \equiv 0(\bmod n)\right\}
$$

Some basic congruence subgroups can be given as follows:

$$
\begin{gather*}
\Gamma_{1}(n)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: a \equiv d \equiv 1, c \equiv 0(\bmod n)\right\} \tag{4}\\
\Gamma_{0}(n)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: c \equiv 0(\bmod n)\right\} \tag{5}\\
\Gamma^{0}(n)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: b \equiv 0(\bmod n)\right\} \tag{6}\\
\Gamma_{0}^{0}(n)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: b \equiv c \equiv 0(\bmod n)\right\} \tag{7}
\end{gather*}
$$

Among these equivalence groups, there is an order as $\Gamma(n) \leq \Gamma_{1}(n) \leq \Gamma_{0}^{0} \leq \Gamma_{0}(n)\left(\Gamma^{0}(n)\right)$ [1].
Let Γ is an element of Modular group that acting on $\widehat{\mathbb{Q}}$. If there is a relation other than $\alpha \approx \beta \Leftrightarrow \alpha=\beta$ (Identity Relation) for all $\alpha, \beta \in \widehat{\mathbb{Q}}$ and $\alpha \approx \beta$ (Universal Relation) for all $\alpha, \beta \in \widehat{\mathbb{Q}},(\Gamma, \widehat{\mathbb{Q}})$ is imprimitive, otherwise primitive.
Let $\Gamma_{\alpha}<H<\Gamma$ such that the stabilizer Γ_{α} of α. By finding subgroups H covering Γ_{α} equivalence groups on Γ were found.
For $g, g \in \Gamma_{\alpha}, " \approx$ " equivalence relation given by $g(\alpha) \approx g(\alpha) \Leftrightarrow g \in g H$ is well defined [3].
Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $g^{\prime}=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in \Gamma$. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): \frac{x}{y} \rightarrow \frac{a x+b y}{c x+d y}=u$ and $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right): \frac{x}{y} \rightarrow \frac{e x+f y}{g x+h y}=v$;
$u \approx v \Leftrightarrow g^{-1} g^{\prime} \in H$.
$g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \Rightarrow g^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ and $g^{-1} g^{\prime}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)=\left(\begin{array}{cc}d e-b g & d f-b h \\ a g-e c & a h-c f\end{array}\right) \in H$
If $g^{-1} g^{\prime} \in H=\Gamma_{0}(n), a g-e c \equiv 0(\bmod n)$. So, $\frac{a}{c} \equiv \frac{e}{g}(\bmod n)$
If $g^{-1} g^{\prime} \in H=\Gamma^{0}(n), d f-b h \equiv 0(\bmod n)$. So, $\frac{d}{b} \equiv \frac{h}{f}(\bmod n)$
If $g^{-1} g^{\prime} \in H=\Gamma_{0}^{0}(n), a g-e c \equiv 0(\bmod n), d f-b h \equiv 0(\bmod n)$. So, $\frac{a}{c} \equiv \frac{e}{g}(\bmod n), \frac{d}{b} \equiv \frac{h}{f}(\operatorname{modn})$

Theorem 2.1. [3] For each positive integer $n \neq 2,5$ there is a Γ-invariant equivalence relation on $\widehat{\mathbb{Q}}$ with n blocks.

3 Results

Theorem 3.1. The fixed point of an arbitrary point is infinite period on $\widehat{\mathbb{Q}}$.
Proof:
Let the stabilizer of any two points are conjugated. For $\frac{x}{y} \in \widehat{\mathbb{Q}}$ and $(x, y)=1 ; a, b, c, d \in \mathbb{Z}$, from here
$c(a x+b y)-a(c x+d y)=c a x+c b y-a c x-a d y=(c b-a d) y=-y$
$d(a x+b y)-b(c x+d y)=d a x+d b y-b c x-b d y=(a d-b c) x=x$.
So, we find $(a x+b y, c x+d y)=1$. Let assume that $\frac{a x+b y}{c x+d y}$ is in reduced form.
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): \frac{x}{y} \rightarrow \frac{a x+b y}{c x+d y}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is an element of modular group that leaves $\frac{x}{y} \in \widehat{\mathbb{Q}}$ constant. So, $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): \frac{x}{y} \rightarrow \frac{x}{y}$. For $\frac{a x+b y}{c x+d y}=\frac{x}{y} ;$

1. $a x+b y=x \Rightarrow(a-1) x+b y=0$
$c x+d y=y \Rightarrow c x+(d-1) y=0$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ identity matrix is obtained for especially $x, y \neq 0, a=1, b=0, c=0$ and $d=1$.
2. Let $b, c \neq 0$. For $a=1$ and $d=1,\left(\begin{array}{ll}1 & b \\ c & 1\end{array}\right): \frac{x}{y} \rightarrow \frac{x+b y}{c x+y}=\frac{x}{y}$,

If $x=0,\left(\begin{array}{ll}1 & b \\ c & 1\end{array}\right): \frac{0}{y} \rightarrow \frac{0+b y}{y}=\frac{0}{y} \rightarrow b=0$,
$\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right) \in \Gamma$ that leaves fixed $\frac{x}{y} \in \widehat{\mathbb{Q}}$ for $x=0$ and for all $c \in \mathbb{Z}$ is infinite period.
If $y=0,\left(\begin{array}{ll}1 & b \\ c & 1\end{array}\right): \frac{x}{0} \rightarrow \frac{x}{c x}=\frac{x}{0} \rightarrow c=0$
$\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in \Gamma$ that leaves fixed $\frac{x}{y} \in \widehat{\mathbb{Q}}$ for $y=0$ and for all $b \in Z$ is infinite period.
3. Let $b, c \neq 0$. For $a=1$ and $d=1,\left(\begin{array}{ll}1 & b \\ c & 1\end{array}\right): \frac{x}{y} \Rightarrow \frac{x+b y}{c x+y}=\frac{x}{y}$
$x y+b y^{2}=c x^{2}+x y, b y^{2}=c x^{2} \Rightarrow \frac{x}{y}=\sqrt{\frac{b}{c}}$.
4. Let $b, c \neq 0$. For $a \neq 1$ and $d \neq 1,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): \frac{x}{y} \Rightarrow \frac{a x+b y}{c x+d y}=\frac{x}{y}$
$a x y+b y^{2}=c x^{2}+d x y$
$y=\frac{\mp x \sqrt{a^{2}-2 a d+4 b c+d^{2}}-a x+d x}{2 b}$
Proposition 3.2.Let $(\Gamma, \widehat{\mathbb{Q}})$ is a transitive permutation group. In this case $(\Gamma, \widehat{\mathbb{Q}})$ is primitive $\Leftrightarrow \Gamma_{\alpha}$, the stabilizer of $\alpha \in \widehat{\mathbb{Q}}$, is a maximal subgroup of Γ for all $\alpha \in \widehat{\mathbb{Q}}$.

In accordance with the proposition given above, the following features are provided:
i. $(\Gamma, \widehat{\mathbb{Q}})$ is transitive \Leftrightarrow There is $g \in \Gamma$ such that $g(x)=y$ for $\forall x, y \in \widehat{\mathbb{Q}}$.

Since Γ acts as transitive on $\widehat{\mathbb{Q}}$, there is $g \in \Gamma$ such that $g(x)=y$ for $\forall x, y \in \widehat{\mathbb{Q}}$.
ii. $(\Gamma, \widehat{\mathbb{Q}})$ permutation group is not primitive for $\Gamma_{\alpha} \supsetneqq H \supsetneqq \Gamma, \alpha \in \widehat{\mathbb{Q}}$.

Since $\Gamma_{\alpha} \nRightarrow H$, the relation given is not identity or universal relation.
Suppose there is an identity relation.
$g(\alpha) \approx g\left(\alpha^{\prime}\right) \Leftrightarrow g(\alpha)=g\left(\alpha^{\prime}\right)$. From here, $g^{\prime} g^{-1}(\alpha)=\alpha \Rightarrow g^{\prime} \in g \Gamma_{\alpha}$. Then $\Gamma_{\alpha} \ngtr H, \exists h_{0} \in H$ such that $h_{0} \notin H$. So $h_{0} \alpha \neq \alpha=e(\alpha)$ ve $e(\alpha) \approx h_{0} \alpha$. Because, $h_{0} \in e H=H$. From here, $e(\alpha)=h_{0} \alpha \Rightarrow h_{0} \in e \Gamma_{\alpha}$, but contradicts with $h_{0} \notin \Gamma_{\alpha}$.

Suppose there is an universal relation.
Since $H \supsetneqq \Gamma$, there is $\exists g_{0} \in \Gamma$ such that $g_{0} \notin H$. So $e(\alpha) \approx g_{0}$. But this is only possible with $g_{0} \in e H=H$. This is a contradiction. Hence it is not an universal relation.

Hence $(\Gamma, \widehat{\mathbb{Q}})$ permutation group is imprimitive.
iii. Γ_{α} is a maximal subgroup of $\Gamma \Leftrightarrow \Gamma_{\alpha}=H$ or $H=\Gamma$ when $\Gamma_{\alpha} \leq H \leq \Gamma$.
iv. Let assume that $\Gamma_{\alpha}<H<\Gamma$. Since Γ transitive, each element of set $\widehat{\mathbb{Q}}$ is in the form of $g(\alpha)$ for a $g \in \Gamma$.
v. Let show that $\widehat{\mathbb{Q}}=\{g(\alpha): g \in \gamma\}=[\alpha]$ (So there is an only one orbid). Since Γ transitive on $\widehat{\mathbb{Q}}$, there is $g \in \Gamma$ such that $g(\alpha)=\beta$ for all $\alpha, \beta \in \widehat{\mathbb{Q}}$. From here $\beta \in[\alpha]$. If $g=e$,then $\beta=g(\alpha)=e(\alpha)=\alpha$. So, $\beta \in[\alpha]=[\beta]$ is $\widehat{\mathbb{Q}} \subset[\alpha]$. On the contrary, it is obvious that $[\alpha] \subset \widehat{\mathbb{Q}}$. Because $s: \Gamma \times \widehat{\mathbb{Q}} \longrightarrow \widehat{\mathbb{Q}}, s(g, \alpha):=g \alpha=g(\alpha)$. From here $\widehat{\mathbb{Q}}=[\alpha]$ is obtained. So, if the action is transitive, there is only one orbid.
vi. " \approx " equivalence relation on $\widehat{\mathbb{Q}}$ given by $g(\alpha) \approx g^{\prime}(\alpha) \Leftrightarrow g^{\prime} \in g H$ is well defined G-invariant relation.

Let $h \in H$ be arbitrary. First we have to show that
$g(\alpha) \approx g^{\prime}(\alpha) \Leftrightarrow h(g(\alpha)) \approx h\left(g^{\prime}(\alpha)\right)$.
$g(\alpha) \approx g^{\prime}(\alpha) \Leftrightarrow g^{\prime} \in g H \Leftrightarrow h g^{\prime} \in h g H$
$h(g(\alpha)) \approx h\left(g^{\prime}(\alpha)\right) \Leftrightarrow h g(\alpha) \approx h g^{\prime}(\alpha) \Leftrightarrow h g^{\prime} \in h g H$.
vii. If $\beta \in \widehat{\mathbb{Q}}$, there is $g \in \Gamma$ such that $\beta=g(\alpha)$. So [β] block containing β given by $M=\{g h(\alpha): h \in H\}$ set.
$[\beta]=\{\gamma \in \widehat{\mathbb{Q}}: \gamma \approx \beta\}$ ve $\beta=g(\alpha)$ for $g \in \Gamma$. Then $\gamma \in \widehat{\mathbb{Q}}$, there is $\exists s \in \Gamma$ such that $\gamma=s(\alpha)$.
$\gamma \approx \beta \Leftrightarrow s(\alpha) \approx g(\alpha) \Leftrightarrow g \in s H$
$\exists h \in H: g=s h \Rightarrow s=\frac{g}{h} \Rightarrow s=g h^{-1}$
$\gamma=s(\alpha)=g h^{-1}(\alpha) \in M \Rightarrow[\beta] \subset M$.
Conversely, we have to show that $g h(\alpha) \approx \beta$ for $g h(\alpha) \in M$.
Then $\beta=g(\alpha), g h(\alpha) \approx g(\alpha) \Leftrightarrow g \in g h H=g H$
$g \in g H \Rightarrow g h(\alpha) \in[\beta] \Rightarrow M \subset[\beta]$. Consequently, $M=[\beta]$.
Especially, $[\alpha]$ block is $H(\alpha)=\{h(\alpha): h \in H\}$ orbit.
If $\alpha=e(\alpha)$
$[\alpha]=[e(\alpha)]=\{e h(\alpha): h \in H\}=\{h(\alpha): h \in H\}=H(\alpha)$.
viii. The fixed of any two points in $\widehat{\mathbb{Q}}$ is also conjugate in Γ.

Let us $p, q \in \widehat{\mathbb{Q}}$. We have to show S_{p} and S_{q} conjugate in Γ, where
$S_{p}=\left\{T_{1} \in \Gamma: T_{1} p=p\right\}, S_{q}=\left\{T_{2} \in \Gamma: T_{2} q=q\right\}$.
There is $T_{3} \in \Gamma$ such that $S_{p}=T_{3} S_{q} T_{3}^{-1} \cdot p, q \in \widehat{\mathbb{Q}}$ and since Γ transitive on $\widehat{\mathbb{Q}}$, there is $L \in \Gamma$ such that $L_{p}=q$.
Let us $T \in S_{p}$. We find $S \in S_{q}$ such that $T=L S L^{-1}$. Then $L T L^{-1}(q)=q, L T L^{-1} \in S_{q}$ and $L^{-1} T L=S$.
From here $L S L^{-1}=T \in L S_{q} L^{-1}, S_{p} \subset L S_{q} L^{-1}$.
Similarly, there is $T_{3} \in \Gamma$ such that $S_{q}=T_{3} S_{p} T_{3}^{-1} \cdot p, q \in \widehat{\mathbb{Q}}$ and since Γ transitive on $\widehat{\mathbb{Q}}$, there is $L \in \Gamma$ such that $L_{q}=p$.
Let us $T \in S_{q}$. We find $S \in S_{p}$ such that $T=L S L^{-1}$. Then $L T L^{-1}(p)=p, L T L^{-1} \in S_{p}$ and $L^{-1} T L=S$.
From here $L S L^{-1}=T \in L S_{p} L^{-1}, S_{q} \subset L S_{p} L^{-1}$.

Lemma 3.3. [3] $\psi(n)=n \prod\left(1+\frac{1}{p}\right)$, where the product is over the distinct primes p dividing n.

Example 3.4. 2 and 3 are primes dividing $6, \psi(6)=6 .\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)=6 \cdot \frac{3}{2} \cdot \frac{4}{3}=12$.

Especially, if n is a p prime number, there is $\psi(p)=p+1$ blocks. These blocks are
$[0],[1], \ldots,[p-1],[\infty]$, where
$[j]=\left\{\frac{x}{y} \in \mathbb{Q}: x \equiv j y(\bmod p)\right\}, j \neq \infty$
$[\infty]=\left\{\frac{x}{y} \in \mathbb{Q}: y \equiv 0(\right.$ modp $\left.)\right\}$,

In this study, we examined Modular group and its subgroups. Elements of the Modular group can be represented as Möbius transformations. For example;
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma \Rightarrow \frac{a z+b}{c z+d} \in$ Möb.
$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \Gamma \Rightarrow \frac{1 z+1}{0 z+1}=z+1 \in$ Möb.
As a result of the transitive action on $\widehat{\mathbb{Q}}$, an element of Modular group permutate vertices transitively. If we take the first two vertices as ∞ and $\frac{u}{n}$ respectively, graph is denoted by $G_{u, n}$. Especially if we take $u=n=1$, we find Farey graph.
In [3], \approx_{n} non-trivial equivalence relation on $\widehat{\mathbb{Q}}$ defined;
$v \approx_{n} w \Leftrightarrow x \equiv \operatorname{ur}(\bmod n), y \equiv u s(\bmod n)$, where $v=\frac{r}{s}, w=\frac{x}{y}$ and $(u, n)=1$.

Lemma 3.5. [5] $G_{u, n}=G_{u^{\prime}, n^{\prime}} \Leftrightarrow n=n^{\prime}$ and $u \equiv u^{\prime}(\bmod n)$.
Lemma 3.6. [3] $G_{u, n}$ is self-paired $\Leftrightarrow u^{2} \equiv-1(\bmod n)$.
Lemma 3.7. [3] The suborbital graph paired with $G_{u, n}$ is $G_{-\bar{u}, n}$, where $u \bar{u} \equiv 1$ ($\left.\operatorname{modn}\right)$.
Lemma 3.8. [3] $\frac{r}{s} \rightarrow \frac{x}{y} \in G_{u, n} \Leftrightarrow x \equiv \mp u r(\bmod n), y \equiv \mp u s(\bmod n), r y-s x=\mp n$.
Lemma 3.9. [3] $\frac{r}{s} \rightarrow \frac{x}{y} \in F_{u, n} \Leftrightarrow x \equiv \mp u r(\bmod n), r y-s x=\mp n$.

4 References

B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, Berlin, Heidelberg, New York,(1974).
C.C. Sims, Graphs and Finite Permutation Groups, Math. Z. 95 (1967), 75-86.
G.A. Jones,D. Singerman and K. Wicks, The Modular Group and Generalized Farey Graphs, London Math. Soc. Lecture Notes, CUP, Cambridge, 160 (1991), 316-338.
N. L. Biggs and A. T. White, Permutation Groups and Combinatorial Structures, London Math. Soc. Lecture Notes 33, Cambridge University Press, Cambridge, (1979).
M. Akbas, On Suborbital Graphs for The Modular Group, Bull. London Math. Soc., 33 (2001), 647-652.

