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Abstract: In [2], graphs and permutation groups and in [4], permutation groups releated with combinatorial sets were studied.
In [3]-[5], the modular group T, the movement of an element of the modular group on Q := QU {0} (extended set of rational
numbers), Farey graph and suborbital graphs Gu,» and Fu,» were investigated. Furthermore, it is indicated that any two fixed
points is conjugated in T" and the element of the modular group that fixes an element on Q is infinite period. Hence, the element of
the modular group that fixes oo is symbolized as I'«. In the same study, H, the subgroups of I of containing I'sc are obtained and
its invariant equivalence relations are generated on Q. Taking these points into account, in this study, we show that, the element
. x . . T . . =~
that fixes — in modular group based on the choice of M forz,y € Z and (z,y) = 1, instead of a special value of set Q, such as co.
Yy

Similarly, we study subgroup H containing I'= and we examine its invariant equivalence relations on Q.
Y
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1 Introduction

Definition 1.1. [3] Modular group is division group of SL(2,Z) by {FI} . So,

T = PSL(2,Z) = SL(2,Z)/{FI}

F:{:F(Z Z)GF:a,b,c,dEZ,adfbc:l}.

Thus, the elements of the I' Modular group consist of the following matrices as

:F(i Z)EF:a,b,c,dGZ,adfbc:l. (1)

Each matrix is considered to be equivalent by its negative. Therefore, we will ignore the F difference. With elements of set I'in H+ = {z €
C': Im(z) > 0} the upper half plane

az+b
cz+d’

(€5

It is a group that acts with Mobiiis transformations.
Lemma 1.2. [3]

i. The movement of I" on @ is transitive.
ii. The fixed of a point is infinitely period.

For example, let @ = [ ¢ b € I" . We find that 2 such that Q(oc0) = oo. If 0o is taken as l, since Q(c0) = ( ¢ b L) =
P c d 0 c d 0
< Z ) = ( (1) ) So, a = 1 and ¢ = 0. Since det() = 1 by the definition, d = 1 is found for ad — bc = 1. But b is provided for all Z. Then
forallbe Z,Q = ( Z cbl ) = ( (1) 11) ) € I'oo C I'. Thus I'ws is a group that infinitely period that produced by < é i )
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Proposition 1.3. [3] Let (G, Q) is an transitive permutation group. In this case (G, ) is primitive< G, the stabilizer of a point a € 2 is a
maximal subgroup of G for Va € 2.

In accordance with the proposition given above, the following features are provided:

i. (G, Q) is transitive < There is 3g € G such that g(x) = y for Vz,y € .

ii. (G, Q) permutation group is not impritive, for G S H S G, a € Q.

iii. G is a maximal subgroup of G < Go = Hor H = Gwhen G, < H < G.

iv. Let assume that G < H < G. Since G transitive, each element of set 2 is in the form of g(«) forag € G.

v. Let show that = {g(«) : g € G}=[c] (So there is an only one orbid). Since G transitive on €2, there is an 3g € G such that g(«) = 3 for
Vo, 8 € Q. From here 8 € [a]. If g = eis taken, 8 = g(a) = e(a) = a.So B8 € [a]=[8] is 2 C [a]. On the contrary, it is obvious that

[a] C Q. Because s : G x Q@ — §,(g, @) :=ga=g(c). From here Q=[«] is obtained. So, if the action is transitive, there is only one orbid.

2 Some Equivalence Subgroups of T’

The basic equivalence subgroup for I' is defined as

F(n):{(i Z)ef:azdzl,bzczo(modn)}. 3)
Some basic congruence subgroups can be given as follows:
Fl(n):{(z g)ef:azdzl,cEO(modn)} 4)
Fo(n):{< : Z)eF:CEO(modn)} ©)
Fo(n):{( : 2>€F:b50(modn)} (6)
F8(n):{(i g)el":bzczo(modn)}. (7)

Among these equivalence groups, there is an order as I'(n) < T'1(n) < ) < To(n)(M%(n)) [1]. R
Let I is an element of Modular group that acting on Q. If there is a relation other than « ~ 3 < a=/ (Identity Relation) for all v, 5 € Q

and o =~ B (Universal Relation) for all o, 5 € @, (T, @) is imprimitive, otherwise primitive.
LetI'o < H < I such that the stabilizer I, of . By ﬁnding subgrouPs H covering I', equivalence groups on I" were found.

For g,g € Tw, "~" equivalence relation given by g(a) =~ g (o) < g € gH is well defined [3].
Letg=<a b)andg/=<e f)eF.For “ _>(m:+by7 € f) m M*v
c d g h c
=g
a
c

s

= d LT
cx + dy wan (9 h -

, y o grthy
g cH.
b -1 d —b 1! —b e f\_( de—bg df—bh
dijg _<—c a )andg —c a )(g h ) \ ag—ec ah—cf €H

Qo
—
< |8

Il
VR
U

g
Ifg~ g/ € H =Ty(n),ag — ec = 0(modn). So, % = g(modn)
Ifgflg/ € H =T°(n),df — bh = 0(modn). So, % = %(modn)
. 0 _ _ a € d _ h
Ifg~ g € H=Ty(n),ag — ec = 0(modn),df — bh = 0(modn). So, - = E(modn)7 5= ?(modn)

Theorem 2.1. [3] For each positive integer n # 2, 5 there is a I'-invariant equivalence relation on @ with n blocks.

3 Results
Theorem 3.1. The fixed point of an arbitrary point is infinite period on @
Proof:
Let the stabilizer of any two points are conjugated. For g € @ and (z,y) = L;a,b,c,d € Z , from here
c(ax + by) — a(cx + dy) = cazx + cby — acx — ady = (cb — ad)y = —y
d(azx + by) — b(cx + dy) = daz + dby — bex — bdy = (ad — be)z = x.

+ by

So, we find (ax + by, cx + dy) = 1. Let assume that oy
cx + dy

is in reduced form.
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( a b ) : g - +by and ( Z Z > is an element of modular group that leaves g € @ constant. So, (

o
[SURS
N—
< |8
<8
lgs|
[}
=

c d cx +dy
ar +by _ w,
cx+dy y’

lLax+by=2z=(a—1)z+by=0
ct+dy=y=cx+(d—1y=0

< ccl Z ) = ( (1) (1) ) identity matrix is obtained for especially z,y # 0,a = 1,b=0,c=0and d = 1.

c 1 u’

2.Letb7c;£0.Fora:1andd:1,( . ) :fﬁﬂ:x
Yy cxr +y Yy

If;z::O,(l ?):Qawzg—wzo,
¢ y y y
( (1: (1) ) € I that leaves fixed z € @for:c = 0 and for all ¢ € Z is infinite period.
Y
1 b T T T
Ify=0 - = —=—=c=0
Y ’( c 1 ) 0 e 0 ¢
< (1) ll) > € I that leaves ﬁxedg € @fory = 0 and for all b € Z is infinite period.

1 b) T z+by =z
= = =
Y cxt+y Yy

3.Letb,c7é().F0ra:1andd:1,( c 1

zy + by? = cx® + zy , by? ==t = 9
Y c
4.Letb7c;£0.Fora;£1andd;£1,((Cl b>,m$ax+by:m

Ty cr+dy vy

i hnd
axy + by2 =cz? + dxy

Fava? — 2ad + 4be + d? — ax + dx
v= 2%

Proposition 3.2.Let (T, @)Ais a transitive permutation group. In this case (T', @) is primitive< I'y, the stabilizer of o € @ is a maximal
subgroup of I for all @ € Q.

In accordance with the proposition given above, the following features are provided:
i. (T, Q) is transitive <> There is g € I such that g(z) = y for Yz, y € Q.

Since I acts as transitive on @, there is g € T" such that g(z) = y for Va,y € @

ii. (T, @) permutation group is not primitive forI'a S H ST, a € Q.

Since 'y S H, the relation given is not identity or universal relation.

Suppose there is an identity relation.

’ ’

g(a) = g(a ) & g(a) = g(a ). From here, g/g_l(a) =a= g, € gTa. Then 'y S H,3hg € H such that hg ¢ H. So hpa # o = e(a)
ve e(a) = hoo. Because, hg € eH = H. From here, e(a) = hgae = hg € el'q, but contradicts with hg ¢ T'q.

Suppose there is an universal relation.

Since H S T, there is 3gg € I such that go ¢ H. So e(a) ~ go. But this is only possible with go € eH = H. This is a contradiction. Hence
it is not an universal relation.

Hence (T, Q) permutation group is imprimitive.
iii. ' is @a maximal subgroup of I' & T'o, = Hor H =['when 'y, < H <T'.
iv. Let assume that I'o, < H < I'. Since I transitive, each element of set @ is in the form of g(«) forag € T.

v. Let show that Q = {g() : g € v}=[a] (So there is an only one orbid). Since I' transitive on Q. there is g € T such that g(r) = 3 for all
a, 8 € Q. From here § € [a]. If g = e,then 8 = g(a) = e(a) = a. So, B € [a]=[] is Q C [a]. On the contrary, it is obvious that [a] C Q.
Because s : I' x Q — Q,s(g, ) :==ga=g(«). From here Q=[] is obtained. So, if the action is transitive, there is only one orbid.

’

vi. ’A&” equivalence relation on @ given by g(a) = g () & gl € gH is well defined G-invariant relation.
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Let h € H be arbitrary. First we have to show that

9(0) = g (@) & h(g(@) ~ h(g (@)).

g(a) ~ gl(a) =3 g/ € gH < hgl € hgH

h(g(e)) ~ h(g () < hg(a) ~ hg (a) & hg € hgH.

vii. If 8 € Q, there is g € T such that 8 = g(a). So [B] block containing 3 given by M = {gh(«) : h € H} set.
[B]={y€Q:v~pB}veB =g(a)forg el Thenv e Q, thereis 3s € I such that v = s(c).

vy B & s(a)xgla) e g€ sH

EhGH:g:sh:s:%:s:g}fl

v =s(a)=gh~a)e M = [8] C M.

Conversely, we have to show that gh(a) ~ S for gh(a) € M.

Then 8 = g(a), gh(a) = g(a) & g € ghH = gH

g € gH = gh(a) € [8] = M C [B]. Consequently, M = [3].

Especially, [a] block is H (o)) = {h(a) : h € H} orbit.

If a = e(a)

[a] = [e(a)] ={eh(a) :h e H} = {h(a) :h€ H} = H(a).

viii. The fixed of any two points in @ is also conjugate in I'.

Letus p,q € @ We have to show Sj, and Sy conjugate in I', where

Sp={T1 €T :Tip=p}, Sq={T2 €T : Tog = q}.

There is T3 € I such that S, = TgSqT3_1. p,q € @ and since I transitive on @, there is L € I" such that L, = q.
Letus T € Sp. We find S € Sq such that 7' = LSL™'. Then LTL™'(q) = ¢, LTL™" € Sgand L™'TL = S.
From here LSL™! =T € LSyL™', S, € LS,L™ .

Similarly, there is T3 € T" such that Sq = T5SpT5 L p,q € @ and since I" transitive on @, there is L € I" such that Ly = p.

Letus T € Sq. We find S € Sp, such that T = LSL™'. Then LTL ' (p) = p, LTL™' € Spand L™'TL = S.

From here LSL™! =T € LS,L™', S c LSpL™ 1.
Lemma 3.3. /3] ¢(n) = n][(1+ 1), where the product is over the distinct primes p dividing n.
p

Example 3.4. 2 and 3 are primes dividing 6, ¢(6) = 6.(1 + 1)(1 + L

=12.
2

3)=6.

N | o
SIS

Especially, if n is a p prime number, there is 1)(p) = p + 1 blocks. These blocks are

[0]7 [1}, ey [P - 1], [OO],Where
] = {g €Q:z=jy(modp)},j # oo
[oo] = {g €Q:y=0(modp)},

In this study, we examined Modular group and its subgroups. Elements of the Modular group can be represented as Mobius transformations.
For example;
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)el“:>az+beM6b.
cz+d

/N
o
QU o

11 1lz4+1 )
(0 1)€1"é02_|_1—z—i—lEMob.

As a result of the transitive action on @, an element of Modular group permutate vertices transitively. If we take the first two vertices as oo
U . . . .
and — respectively, graph is denoted by G, . Especially if we take u = n = 1, we find Farey graph.
n

In [3], =» non-trivial equivalence relation on @ defined;

v Ry w < x = ur(modn),y = us(modn), where v = Tw="2and (u,n) =1.
S Y

Lemma 3.5. [5] Gun =G,/ v & n= n andu=u (modn).
Lemma 3.6. [3] G, is self-paired < u? = —1(modn).
Lemma 3.7. [3] The suborbital graph paired with G, n is G_5,y, Wwhere utt = 1(modn).

Lemma 3.8. [3] IL2¢ Gu,n < x = Fur(modn),y = Fus(modn), ry — sx = Fn.
S Y

Lemma 3.9. [3] g — g € Fun < z = Fur(modn),ry — st = Fn.
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