Conference Proceeding Science and Technology, 3(1), 2020, 110-114

3nd International E-Conference on Mathematical Advances and Applications (ICOMAA 2020).

Investigation of Γ -Invariant Equivalence Relations of Modular Groups and Subgroups

ISSN: 2651-544X http://dergipark.gov.tr/cpost

İbrahim Gökcan^{1,*} Ali Hikmet Değer²

¹ Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey, ORCID:0000-0002-6933-8494

² Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey, ORCID:0000-0003-0764-715X * Corresponding Author E-mail: gokcan4385@gmail.com

Abstract: In [2], graphs and permutation groups and in [4], permutation groups releated with combinatorial sets were studied. In [3]-[5], the modular group Γ , the movement of an element of the modular group on $\widehat{\mathbb{Q}} := \mathbb{Q} \cup \{\infty\}$ (extended set of rational numbers), Farey graph and suborbital graphs $G_{u,n}$ and $F_{u,n}$ were investigated. Furthermore, it is indicated that any two fixed points is conjugated in Γ and the element of the modular group that fixes an element on $\widehat{\mathbb{Q}}$ is infinite period. Hence, the element of the modular group that fixes ∞ is symbolized as Γ_{∞} . In the same study, H, the subgroups of Γ of containing Γ_{∞} are obtained and its invariant equivalence relations are generated on $\widehat{\mathbb{Q}}$. Taking these points into account, in this study, we show that, the element that fixes $\frac{x}{y}$ in modular group based on the choice of $\frac{x}{y}$ for $x, y \in \mathbb{Z}$ and (x, y) = 1, instead of a special value of set $\widehat{\mathbb{Q}}$, such as ∞ . Similarly, we study subgroup H containing $\Gamma_{\frac{x}{y}}$ and we examine its invariant equivalence relations on $\widehat{\mathbb{Q}}$.

Keywords: Infinite period, Invariant equivalence relations, Modular group.

1 Introduction

Definition 1.1. [3] Modular group is division group of $SL(2,\mathbb{Z})$ by $\{\mp I\}$. So,

$$\Gamma = PSL(2, \mathbb{Z}) \cong SL(2, \mathbb{Z}) / \{ \mp I \}$$
$$\Gamma = \left\{ \mp \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

Thus, the elements of the Γ Modular group consist of the following matrices as

$$\mp \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \Gamma : a, b, c, d \in \mathbb{Z}, ad - bc = 1.$$
(1)

Each matrix is considered to be equivalent by its negative. Therefore, we will ignore the \mp difference. With elements of set Γ in $H^+ = \{z \in C : Im(z) > 0\}$ the upper half plane

$$z \longrightarrow \frac{az+b}{cz+d}.$$
(2)

It is a group that acts with Möbiüs transformations.

Lemma 1.2. [3]

i. The movement of Γ on $\widehat{\mathbb{Q}}$ is transitive.

ii. The fixed of a point is infinitely period.

For example, let
$$\Omega = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$
. We find that Ω such that $\Omega(\infty) = \infty$. If ∞ is taken as $\frac{1}{0}$, since $\Omega(\infty) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. So, $a = 1$ and $c = 0$. Since $det\Omega = 1$ by the definition, $d = 1$ is found for $ad - bc = 1$. But b is provided for all \mathbb{Z} . Then for all $b \in \mathbb{Z}$, $\Omega = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in \Gamma_{\infty} \subset \Gamma$. Thus Γ_{∞} is a group that infinitely period that produced by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Proposition 1.3. [3] Let (G, Ω) is an transitive permutation group. In this case (G, Ω) is primitive $\Leftrightarrow G_{\alpha}$, the stabilizer of a point $\alpha \in \Omega$ is a maximal subgroup of G for $\forall \alpha \in \Omega$.

In accordance with the proposition given above, the following features are provided:

- i. (G, Ω) is transitive \Leftrightarrow There is $\exists g \in G$ such that g(x) = y for $\forall x, y \in \Omega$.
- ii. (G, Ω) permutation group is not impritive, for $G_{\alpha} \leq H \leq G$, $\alpha \in \Omega$. iii. G_{α} is a maximal subgroup of $G \Leftrightarrow G_{\alpha} = H$ or H = G when $G_{\alpha} \leq H \leq G$.

iv. Let assume that $G_{\alpha} < H < G$. Since G transitive, each element of set Ω is in the form of $g(\alpha)$ for a $g \in G$. v. Let show that $\Omega = \{g(\alpha) : g \in G\} = [\alpha]$ (So there is an only one orbid). Since G transitive on Ω , there is an $\exists g \in G$ such that $g(\alpha) = \beta$ for $\forall \alpha, \beta \in \Omega$. From here $\beta \in [\alpha]$. If g = e is taken, $\beta = g(\alpha) = e(\alpha) = \alpha$. So $\beta \in [\alpha] = [\beta]$ is $\Omega \subset [\alpha]$. On the contrary, it is obvious that $[\alpha] \subset \Omega$. Because $s : G \times \Omega \longrightarrow \Omega, (g, \alpha) := g\alpha = g(\alpha)$. From here $\Omega = [\alpha]$ is obtained. So, if the action is transitive, there is only one orbid.

2 Some Equivalence Subgroups of Γ

The basic equivalence subgroup for Γ is defined as

$$\Gamma(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : a \equiv d \equiv 1, b \equiv c \equiv 0 (modn) \right\}.$$
(3)

Some basic congruence subgroups can be given as follows:

$$\Gamma_1(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : a \equiv d \equiv 1, c \equiv 0 (modn) \right\}$$
(4)

$$\Gamma_0(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : c \equiv 0 (modn) \right\}$$
(5)

$$\Gamma^{0}(n) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma : b \equiv 0 (modn) \right\}$$
(6)

$$\Gamma_0^0(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : b \equiv c \equiv 0 (modn) \right\}.$$
⁽⁷⁾

Among these equivalence groups, there is an order as $\Gamma(n) \leq \Gamma_1(n) \leq \Gamma_0(n) \leq \Gamma_0(n) (\Gamma^0(n))$ [1].

Let Γ is an element of Modular group that acting on \mathbb{Q} . If there is a relation other than $\alpha \approx \beta \Leftrightarrow \alpha = \beta$ (Identity Relation) for all $\alpha, \beta \in \mathbb{Q}$ and $\alpha \approx \beta$ (Universal Relation) for all $\alpha, \beta \in \widehat{\mathbb{Q}}$, $(\Gamma, \widehat{\mathbb{Q}})$ is imprimitive, otherwise primitive.

Let $\Gamma_{\alpha} < H < \Gamma$ such that the stabilizer Γ_{α} of α . By finding subgroups H covering Γ_{α} equivalence groups on Γ were found.

For
$$g, g \in \Gamma_{\alpha}$$
, " \approx " equivalence relation given by $g(\alpha) \approx g(\alpha) \Leftrightarrow g \in gH$ is well defined [3].
Let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $g' = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \in \Gamma$. For $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$: $\frac{x}{y} \to \frac{ax + by}{cx + dy} = u$ and $\begin{pmatrix} e & f \\ g & h \end{pmatrix}$: $\frac{x}{y} \to \frac{ex + fy}{gx + hy} = v$;
 $u \approx v \Leftrightarrow g^{-1}g' \in H$.
 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow g^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ and $g^{-1}g' = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} de - bg & df - bh \\ ag - ec & ah - cf \end{pmatrix} \in H$
If $g^{-1}g' \in H = \Gamma_0(n)$, $ag - ec \equiv 0(modn)$. So, $\frac{d}{b} \equiv \frac{h}{f}(modn)$
If $g^{-1}g' \in H = \Gamma_0^0(n)$, $ag - ec \equiv 0(modn)$, $df - bh \equiv 0(modn)$. So, $\frac{a}{c} \equiv \frac{e}{g}(modn)$, $\frac{d}{b} \equiv \frac{h}{f}(modn)$

Theorem 2.1. [3] For each positive integer $n \neq 2, 5$ there is a Γ -invariant equivalence relation on $\widehat{\mathbb{Q}}$ with *n* blocks.

3 Results

Theorem 3.1. The fixed point of an arbitrary point is infinite period on $\widehat{\mathbb{Q}}$.

Proof:

Let the stabilizer of any two points are conjugated. For $\frac{x}{y} \in \widehat{\mathbb{Q}}$ and $(x, y) = 1; a, b, c, d \in \mathbb{Z}$, from here c(ax + by) - a(cx + dy) = cax + cby - acx - ady = (cb - ad)y = -y

d(ax + by) - b(cx + dy) = dax + dby - bcx - bdy = (ad - bc)x = x.

So, we find (ax + by, cx + dy) = 1. Let assume that $\frac{ax + by}{cx + dy}$ is in reduced form.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : \frac{x}{y} \to \frac{ax + by}{cx + dy} \text{ and } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ is an element of modular group that leaves } \frac{x}{y} \in \widehat{\mathbb{Q}} \text{ constant. So, } \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \frac{x}{y} \to \frac{x}{y} \text{ . For } \frac{ax + by}{cx + dy} = \frac{x}{y};$$

1. $ax + by = x \Rightarrow (a - 1)x + by = 0$

 $cx + dy = y \Rightarrow cx + (d - 1)y = 0$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ identity matrix is obtained for especially } x, y \neq 0, a = 1, b = 0, c = 0 \text{ and } d = 1.$ 2. Let $b, c \neq 0$. For a = 1 and d = 1, $\begin{pmatrix} 1 & b \\ c & 1 \end{pmatrix} : \frac{x}{y} \rightarrow \frac{x + by}{cx + y} = \frac{x}{y}$, If x = 0, $\begin{pmatrix} 1 & b \\ c & 1 \end{pmatrix} : \frac{0}{y} \rightarrow \frac{0 + by}{y} = \frac{0}{y} \rightarrow b = 0$, $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \in \Gamma$ that leaves fixed $\frac{x}{y} \in \widehat{\mathbb{Q}}$ for x = 0 and for all $c \in \mathbb{Z}$ is infinite period. If y = 0, $\begin{pmatrix} 1 & b \\ c & 1 \end{pmatrix} : \frac{x}{0} \rightarrow \frac{x}{cx} = \frac{x}{0} \rightarrow c = 0$ $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in \Gamma$ that leaves fixed $\frac{x}{y} \in \widehat{\mathbb{Q}}$ for y = 0 and for all $b \in Z$ is infinite period. 3. Let $b, c \neq 0$. For a = 1 and d = 1, $\begin{pmatrix} 1 & b \\ c & 1 \end{pmatrix} : \frac{x}{y} \Rightarrow \frac{x + by}{cx + y} = \frac{x}{y}$ $xy + by^2 = cx^2 + xy$, $by^2 = cx^2 \Rightarrow \frac{x}{y} = \sqrt{\frac{b}{c}}$. 4. Let $b, c \neq 0$. For $a \neq 1$ and $d \neq 1$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} : \frac{x}{y} \Rightarrow \frac{ax + by}{cx + dy} = \frac{x}{y}$ $axy + by^2 = cx^2 + dxy$ $y = \frac{\mp x\sqrt{a^2 - 2ad + 4bc + d^2} - ax + dx}{2b}$

Proposition 3.2.Let $(\Gamma, \widehat{\mathbb{Q}})$ is a transitive permutation group. In this case $(\Gamma, \widehat{\mathbb{Q}})$ is primitive $\Leftrightarrow \Gamma_{\alpha}$, the stabilizer of $\alpha \in \widehat{\mathbb{Q}}$, is a maximal subgroup of Γ for all $\alpha \in \widehat{\mathbb{Q}}$.

In accordance with the proposition given above, the following features are provided:

i. $(\Gamma, \widehat{\mathbb{Q}})$ is transitive \Leftrightarrow There is $g \in \Gamma$ such that g(x) = y for $\forall x, y \in \widehat{\mathbb{Q}}$.

Since Γ acts as transitive on $\widehat{\mathbb{Q}}$, there is $g \in \Gamma$ such that g(x) = y for $\forall x, y \in \widehat{\mathbb{Q}}$.

ii. $(\Gamma, \widehat{\mathbb{Q}})$ permutation group is not primitive for $\Gamma_{\alpha} \leq H \leq \Gamma, \alpha \in \widehat{\mathbb{Q}}$.

Since $\Gamma_{\alpha} \lneq H$, the relation given is not identity or universal relation.

Suppose there is an identity relation.

 $g(\alpha) \approx g(\alpha^{'}) \Leftrightarrow g(\alpha) = g(\alpha^{'})$. From here, $g^{'}g^{-1}(\alpha) = \alpha \Rightarrow g^{'} \in g\Gamma_{\alpha}$. Then $\Gamma_{\alpha} \lneq H, \exists h_{0} \in H$ such that $h_{0} \notin H$. So $h_{0}\alpha \neq \alpha = e(\alpha)$ ve $e(\alpha) \approx h_{0}\alpha$. Because, $h_{0} \in eH = H$. From here, $e(\alpha) = h_{0}\alpha \Rightarrow h_{0} \in e\Gamma_{\alpha}$, but contradicts with $h_{0} \notin \Gamma_{\alpha}$.

Suppose there is an universal relation.

Since $H \nleq \Gamma$, there is $\exists g_0 \in \Gamma$ such that $g_0 \notin H$. So $e(\alpha) \approx g_0$. But this is only possible with $g_0 \in eH = H$. This is a contradiction. Hence it is not an universal relation.

Hence $(\Gamma, \widehat{\mathbb{Q}})$ permutation group is imprimitive.

iii. Γ_α is a maximal subgroup of $\Gamma \Leftrightarrow \Gamma_\alpha = H$ or $H = \Gamma$ when $\Gamma_\alpha \leq H \leq \Gamma$.

iv. Let assume that $\Gamma_{\alpha} < H < \Gamma$. Since Γ transitive, each element of set $\widehat{\mathbb{Q}}$ is in the form of $g(\alpha)$ for a $g \in \Gamma$.

v. Let show that $\widehat{\mathbb{Q}} = \{g(\alpha) : g \in \gamma\} = [\alpha]$ (So there is an only one orbid). Since Γ transitive on $\widehat{\mathbb{Q}}$, there is $g \in \Gamma$ such that $g(\alpha) = \beta$ for all $\alpha, \beta \in \widehat{\mathbb{Q}}$. From here $\beta \in [\alpha]$. If g = e, then $\beta = g(\alpha) = e(\alpha) = \alpha$. So, $\beta \in [\alpha] = [\beta]$ is $\widehat{\mathbb{Q}} \subset [\alpha]$. On the contrary, it is obvious that $[\alpha] \subset \widehat{\mathbb{Q}}$. Because $s : \Gamma \times \widehat{\mathbb{Q}} \longrightarrow \widehat{\mathbb{Q}}, s(g, \alpha) := g\alpha = g(\alpha)$. From here $\widehat{\mathbb{Q}} = [\alpha]$ is obtained. So, if the action is transitive, there is only one orbid.

vi. " \approx " equivalence relation on $\widehat{\mathbb{Q}}$ given by $g(\alpha) \approx g'(\alpha) \Leftrightarrow g' \in gH$ is well defined G-invariant relation.

Let $h \in H$ be arbitrary. First we have to show that

 $g(\alpha) \approx g'(\alpha) \Leftrightarrow h(g(\alpha)) \approx h(g'(\alpha)).$ $q(\alpha) \approx q^{'}(\alpha) \Leftrightarrow q^{'} \in qH \Leftrightarrow hq^{'} \in hqH$ $h(g(\alpha)) \approx h(g^{'}(\alpha)) \Leftrightarrow hg(\alpha) \approx hg^{'}(\alpha) \Leftrightarrow hg^{'} \in hgH.$ vii. If $\beta \in \widehat{\mathbb{Q}}$, there is $g \in \Gamma$ such that $\beta = g(\alpha)$. So $[\beta]$ block containing β given by $M = \{gh(\alpha) : h \in H\}$ set. $[\beta] = \{\gamma \in \widehat{\mathbb{Q}} : \gamma \approx \beta\}$ ve $\beta = g(\alpha)$ for $g \in \Gamma$. Then $\gamma \in \widehat{\mathbb{Q}}$, there is $\exists s \in \Gamma$ such that $\gamma = s(\alpha)$. $\gamma \approx \beta \Leftrightarrow s(\alpha) \approx g(\alpha) \Leftrightarrow g \in sH$ $\exists h \in H : g = sh \Rightarrow s = \frac{g}{h} \Rightarrow s = gh^{-1}$ $\gamma = s(\alpha) = gh^{-1}(\alpha) \in M \Rightarrow [\beta] \subset M.$ Conversely, we have to show that $qh(\alpha) \approx \beta$ for $qh(\alpha) \in M$. Then $\beta = q(\alpha), qh(\alpha) \approx q(\alpha) \Leftrightarrow q \in qhH = qH$ $g \in gH \Rightarrow gh(\alpha) \in [\beta] \Rightarrow M \subset [\beta]$. Consequently, $M = [\beta]$. Especially, $[\alpha]$ block is $H(\alpha) = \{h(\alpha) : h \in H\}$ orbit. If $\alpha = e(\alpha)$ $[\alpha] = [e(\alpha)] = \{eh(\alpha) : h \in H\} = \{h(\alpha) : h \in H\} = H(\alpha).$ viii. The fixed of any two points in $\widehat{\mathbb{Q}}$ is also conjugate in Γ . Let us $p, q \in \widehat{\mathbb{Q}}$. We have to show S_p and S_q conjugate in Γ , where $S_p = \{T_1 \in \Gamma : T_1 p = p\}, S_q = \{T_2 \in \Gamma : T_2 q = q\}.$ There is $T_3 \in \Gamma$ such that $S_p = T_3 S_q T_3^{-1}$. $p, q \in \widehat{\mathbb{Q}}$ and since Γ transitive on $\widehat{\mathbb{Q}}$, there is $L \in \Gamma$ such that $L_p = q$. Let us $T \in S_p$. We find $S \in S_q$ such that $T = LSL^{-1}$. Then $LTL^{-1}(q) = q$, $LTL^{-1} \in S_q$ and $L^{-1}TL = S$. From here $LSL^{-1} = T \in LS_aL^{-1}$, $S_n \subset LS_aL^{-1}$. Similarly, there is $T_3 \in \Gamma$ such that $S_q = T_3 S_p T_3^{-1}$. $p, q \in \widehat{\mathbb{Q}}$ and since Γ transitive on $\widehat{\mathbb{Q}}$, there is $L \in \Gamma$ such that $L_q = p$. Let us $T \in S_q$. We find $S \in S_p$ such that $T = LSL^{-1}$. Then $LTL^{-1}(p) = p$, $LTL^{-1} \in S_p$ and $L^{-1}TL = S$. From here $LSL^{-1} = T \in LS_pL^{-1}$, $S_q \subset LS_pL^{-1}$.

Lemma 3.3. [3] $\psi(n) = n \prod (1 + \frac{1}{p})$, where the product is over the distinct primes p dividing n.

Example 3.4. 2 and 3 are primes dividing 6, $\psi(6) = 6.(1 + \frac{1}{2})(1 + \frac{1}{3}) = 6.\frac{3}{2}.\frac{4}{3} = 12.$

Especially, if n is a p prime number, there is $\psi(p) = p + 1$ blocks. These blocks are

$$\begin{split} [j] &= \{\frac{x}{y} \in \mathbb{Q} : x \equiv jy(modp)\}, j \neq \infty \\ [\infty] &= \{\frac{x}{y} \in \mathbb{Q} : y \equiv 0(modp)\}, \end{split}$$

 $[0], [1], ..., [p-1], [\infty],$ where

In this study, we examined Modular group and its subgroups. Elements of the Modular group can be represented as Möbius transformations. For example;

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \Rightarrow \frac{az+b}{cz+d} \in M \ddot{o} b.$$
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma \Rightarrow \frac{1z+1}{0z+1} = z+1 \in M \ddot{o} b.$$

As a result of the transitive action on $\widehat{\mathbb{Q}}$, an element of Modular group permutate vertices transitively. If we take the first two vertices as ∞ and $\frac{u}{n}$ respectively, graph is denoted by $G_{u,n}$. Especially if we take u = n = 1, we find Farey graph.

In [3], \approx_n non-trivial equivalence relation on $\widehat{\mathbb{Q}}$ defined;

 $v \approx_n w \Leftrightarrow x \equiv ur(modn), y \equiv us(modn), \text{ where } v = \frac{r}{s}, w = \frac{x}{y} \text{ and } (u, n) = 1.$

Lemma 3.5. [5] $G_{u,n} = G_{u',n'} \Leftrightarrow n = n'$ and $u \equiv u'(modn)$.

Lemma 3.6. [3] $G_{u,n}$ is self-paired $\Leftrightarrow u^2 \equiv -1 (modn)$.

Lemma 3.7. [3] The suborbital graph paired with $G_{u,n}$ is $G_{-\overline{u},n}$, where $u\overline{u} \equiv 1(modn)$.

Lemma 3.8. [3] $\frac{r}{s} \to \frac{x}{y} \in G_{u,n} \Leftrightarrow x \equiv \mp ur(modn), y \equiv \mp us(modn), ry - sx = \mp n.$

Lemma 3.9. [3] $\frac{r}{s} \to \frac{x}{y} \in F_{u,n} \Leftrightarrow x \equiv \mp ur(modn), ry - sx = \mp n.$

4 References

- B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, Berlin, Heidelberg, New York, (1974).
- 2
- C.C. Sims, Graphs and Finite Permutation Groups, Math. Z. 95 (1967), 75-86.
 G.A. Jones, D. Singerman and K. Wicks, The Modular Group and Generalized Farey Graphs, London Math. Soc. Lecture Notes, CUP, Cambridge, 160 (1991), 316-338.
 N. L. Biggs and A. T. White, Permutation Groups and Combinatorial Structures, London Math. Soc. Lecture Notes 33, Cambridge University Press, Cambridge, (1979). 3
- 4
- M. Akbas, On Suborbital Graphs for The Modular Group, Bull. London Math. Soc., 33 (2001), 647-652. 5