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Abstract: A semilinear Sobolev equation ∂t(u−∆u)−∆u = f(∇u) with a Dirichlet-type integral boundary condition is investi-
gated in this contribution. Using the Rothe method which is based on a semi-discretization of the problem under consideration
with respect to the time variable, we prove the existence and uniqueness of a weak solution. Moreover, a suitable approach for the
numerical solution based on Legendre spectral-method is presented.
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1 Introduction

Various phenomena in diverse areas of engineering, physics, and biological systems lead to nonlocal boundary value problem for partial
differential equations. This kind of problems have been investigated extensively by many researchers (see e.g [3]-[4]).

In this contribution we aim to study the solvability of the following problem:

∂tu− ∂t∆u−∆u = f(∇u) , (x, t) ∈ QT := Ω× [0, T ],

u(x, t) =

∫
Ω
K(x, z)u(z, t)dz , (x, t) ∈ Γ× [0, T ],

u(x, 0) = u0(x) , x ∈ Ω,

(1)

where Ω with is a bounded sub-domain of Rd, d ≥ 1 with smooth and regular boundary Γ.
As mentioned previously, partial differential equations have been extensively studied in the literature. The main reason for such widespread

interest in this class of problems is that some problems in physics, chemistry and many other fields of sciences can be modelled using nonlocal
problems [2]-[3]-[4]-[5].

Plenty of papers have been developed to examine the solvability of initial boundary value problems of PDEs with nonlocal Dirichlet boundary
condition. While much literature basically focuses on parabolic and hyperbolic equations [1]-[9]-[10]-[11], there are very few works concerning
pseudo-parabolic equations, in particular Sobolev-type equations, with nonlocal boundary conditions. Motivated by the work of A. Guezane-
Lakoud and D. Belakroum [7] , in which, an integrodifferential Sobolev-type equation subject to purely integral conditions is considered.
Following the same approach as in [12], we study the problem (1) in two aspects, first, the existence and uniqueness of solution is proved using
Rothe method [8], and second, the problem under consideration is studied form numerical point of view.

The outline of this paper is as follows: In the next section, we transform the problem (1) to its weak formulation and give some conditions
on the kernel K to ensures the uniqueness of the solution, in the same section, we discretize the problem in time direction using an explicit
schema and derive some a priori estimates, which helps us to establish the convergence of the method and the existence of a unique solution. In
the third section, Legendre pseudo-spectral method is employed for the space discretization that leads to fully-discretization. Finally, numerical
tests are presented in the last section to demonstrate the effectiveness and accuracy of the proposed approach.

2 Solvability of the problem

In this section we establish the existence and uniqueness of the weak solution to problem; first we reduce the nonlocal problem (1) into an
appropriate weak problem. For this purpose, multiplying both sides of equation (1) by a test function φ ∈ H1

0 (Ω) and integrate over Ω, then
applying Green formula leads to the following weak problem,

© CPOST 2020 11



Find u ∈ C(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) such that:

(∂tu, φ) + (∂t∇u,∇φ) + (∇u,∇φ) = (f(∇u), φ) ∀φ ∈ H1
0 (Ω),

u(x, t) = Ku(x, t) :=

∫
Ω
K(x, z)u(z, t)dz on ∂Ω× [0, T ] .

(2)

Now, we derive two auxiliary inequalities, which we will needed later. Their derivation is based on the Cauchy inequality.

|(v(t),Ku(t))| ≤
∣∣∣∣∫

Ω
v(x, t)

∫
Ω
K(x, z)u(z, t)dz

∣∣∣∣
≤

∫
Ω
|v(x, t)|

(∫
Ω
|K(x, z)|2dz

) 1
2

dx

(∫
Ω
|u(y, t)|2dy

) 1
2

≤ αK‖v(t)‖.‖u(t)‖

(3)

|(∇v(t),∇Ku(t))| ≤
∣∣∣∣∫

Ω
∇v(x, t)

∫
Ω
∇xK(x, z)u(z, t)dz

∣∣∣∣
≤

∫
Ω
∇|v(x, t)|

(∫
Ω
∇x|K(x, z)|2dz

) 1
2

dx

(∫
Ω
|u(y, t)|2dy

) 1
2

≤ βK‖∇v(t)‖.‖u(t)‖

(4)

with αK =
(∫

Ω

∫
Ω |K(x, z)|2dzdx

) 1
2

and βK =
(∫

Ω

∫
Ω∇x|K(x, z)|2dzdx

) 1
2

.

Throughout this paper we denote by C,Cε and ε generic positive constants where Cε = C( 1
ε ) and ε is sufficiently small.

2.1 Uniqueness

We establish the uniqueness of a solution to problem (2) by stating the following theorem.

Theorem 2.1. Let f be Lipschitz continuous function, and the kernel K belongs to L2(Ω× Ω), moreover, we assume that: αK < 1
2 and

βK < C. Then the variational problem (2) admits at most one solution.

Proof: Let u and v be two solutions of (1), we set w = u− v. By subtracting the corresponding variational formulations for both solutions
from each other and put φ = ∂t(z −Kz) for any t ∈ [0, T ], one can obtain,

‖∂tz(t)‖2 + ‖∂t∇z(t)‖2 +
1

2

d

dt
‖∇z(t)‖2 = (f(∇u−∇v), ∂tz − ∂tKz) + (∂tz, ∂tKz) + (∂t∇z, ∂t∇Kz) + (∇z, ∂t∇Kz) (5)

Using Cauchy and ε-Young inequalities and basic estimates (3)-(4), we can bound the right hand-side of the above identity as the following,

|R.H.S| ≤ (
1

2
+ αK + ε)‖∂tz(t)‖2 +

α2
K

2
‖∂t∇z(t)‖2 + Cε‖∇z(t)‖2. (6)

Putting things together and fixing ε sufficiently, we obtain,

‖∂tz(t)‖2 + ‖∂t∇z(t)‖2 +
d

dt
‖∇z(t)‖2 ≤ C‖∇z(t)‖2. (7)

Integrating (7) over [0, t] and applying Gronwall inequality gives,∫ t
0
‖∂tz(s)‖2ds+

∫ t
0
‖∂t∇z(s)‖2ds+ ‖∇z(t)‖2 ≤ 0. (8)

This yields that u(x, t) = v(x, t) = z(x, t) = 0 almost everywhere in Ω× (0, T ), which concludes the proof. �

2.2 Existence

To prove the existence of a solution to weak problem (2) we will use the Rothe method of time discretization. To this end, we divide the time
interval [0, T ] into n ∈ N equidistant subintervals [ti, ti−1] with ti = iτ where τ = T

n . We introduce the following notation,

vi = v(ti), δvi =
vi − vi−1

τ
.

We suggest the following time-discrete variational formulation,

(δui, φ) + (δ∇ui,∇φ) + (∇ui,∇φ) = (f(∇ui), φ) , ∀φ ∈ H1
0 (Ω),

ui = Kui−1 on ∂Ω.
(9)

Therefore, the weak problem (2) is approximated by a sequence of linear elliptic boundary value problem that have to be solved. The well-
posedness of (9) is addressed in the following lemma.
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Lemma 2.1. Let the assumptions of Theorem (2.1) be satisfied and u0 ∈ H2(Ω). Then for any i = 1, · · · , n, the variational problem (9)
admits unique solution ui ∈ H1(Ω).

Proof: We set vi = ui −Kui−1 . Then the variational problem (9) can be read as: Find vi ∈ H1
0 (Ω) such that,

A(vi, φ) = F(φ) , ∀φ ∈ H1
0 (Ω),

A(vi, φ) = (vi, φ) + (δ∇vi,∇φ) + (∇vi,∇φ),

F(φ) = (f(∇ui−1), φ) + (δKui−1 , φ) + (δ∇Kui−1 , φ) + (∇Kui−1 , φ).

(10)

Obviously,A(·, ·) is a continuous coercive bilinear functional on H1
0 (Ω)×H1

0 (Ω) and F(·) is a bounded linear functional on H1
0 (Ω). By the

aid of Lax–Milgram lemma, we obtain the existence of a unique solution vi for (10), therefore there exists a unique solution ui to (9). �

Next, we state some stability results of ui.

Lemma 2.2. Let the assumptions of Lemma (2.1) be fulfilled. Then there exists C > 0 such that,

τ

n∑
i=1

‖δui‖2 + τ

n∑
i=1

‖δ∇ui‖2 + max
0≤j≤n

‖∇ui‖2 +

n∑
i=1

‖∇ui −∇ui−1‖2 ≤ C. (11)

Proof: Put φ = τ(δui − δKui−1) into (2) and sum it up for i = 1, · · · , j. We obtain,

τ

j∑
i=1

‖δui‖2 + τ

j∑
i=1

‖δ∇ui‖2 +
1

2
‖∇uj‖2 +

j∑
i=1

‖∇ui −∇ui−1‖2 −
1

2
‖∇u0‖2 =

4∑
k=1

Ik, (12)

where

I1 = τ

j∑
i=1

(f(∇ui−1), δui −∇Kui−1),

I2 = τ

j∑
i=1

(δui, δKui−1),

I3 = τ

j∑
i=1

(δ∇ui, δ∇Kui−1),

I4 = τ

j∑
i=1

(∇ui, δ∇Kui−1).

(13)

By the use of Cauchy and ε-Young inequalities besides basic estimates (3) and (4), we estimate each terms Ii separately,

|I1| ≤ Cε
j∑
i=1

τ‖∇ui−1‖2 + ε

j∑
i=1

τ‖δui‖2 + ε

j∑
i=1

τ‖δui−1‖2,

|I2| ≤
1

2

j∑
i=1

τ‖δui‖2 +
α2
K

2

j∑
i=1

τ‖δui−1‖2,

|I3| ≤
1

2

j∑
i=1

τ‖δ∇ui‖2 +
β2
K

2

j∑
i=1

τ‖δui−1‖2,

|I4| ≤ Cε
j∑
i=1

τ‖∇ui‖2 + ε

j∑
i=1

τ‖δui−1‖2.

(14)

Combining (14) with (12), we can obtain:

τ

j∑
i=1

‖δui‖2 + τ

j∑
i=1

‖δ∇ui‖2 +
1

2
‖∇uj‖2 +

j∑
i=1

‖∇ui −∇ui−1‖2 ≤

Cε

j∑
i=1

τ‖∇ui‖2 +
1

2

j∑
i=1

τ‖δui‖2 + (
α2
K + β2

K

2
+ ε)

j∑
i=1

τ‖δui−1‖2 +
1

2

j∑
i=1

τ‖δ∇ui‖2. (15)

Fixing ε < 1
2 −

α2
K+β2

K
2 and applying Gronwall’s lemma, we conclude the proof. �
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Now, let us introduce the following piecewise linear in time functions un(t) and ūn(t),

un = t 7→

{
u0 , t = 0

ui−1 + (t− ti−1)δui , t ∈ (ti−1, ti], 1 ≤ i ≤ n

ūn = t 7→

{
u0 , t = 0

ui , t ∈ (ti−1, ti], 1 ≤ i ≤ n

Using this notation, we can rewrite (2) as follows:

(∂tun(t), φ) + (∂t∇un(t),∇φ) + (∇ūn(t),∇φ) = (f(∇ūn(t− τ)), φ) , ∀φ ∈ H1
0 (Ω)

ūn = Kū(t−τ) on ∂Ω.
(16)

Lemma 2.3. Let the assumptions of Lemma (2.1) be fulfilled. There exists a subsequence of (un), which is a Cauchy sequence in
L2(0, T ;H1(Ω)).

Proof: Lemma (2.2) together with [8, Lemma 1.3.13] imply the existence of a subsequence of (un) (denoted, by the same symbol again) which
is a Cauchy sequence in C(0, T ;L2(Ω)). Moreover, ūn(t) ⇀ u(t) in H1(Ω) for all t ∈ [0, T ] and ∂un ⇀ ∂tu in L2(0, T ;L2(Ω)) Take the
difference of (2) for n = p and (2) for n = q, then put φ = ūp − ūq −Kūp(t−τ) +Kūq(t−τ), and integrate over (0, T ). One obtains:

∫T
0
‖∇up(t)−∇uq(t)‖2dt = J1 + J2 + J3 + J4,

J1 =

∫T
0

(
‖∇up(t)−∇uq(t)‖2 − ‖∇ūp(t)−∇ūq(t)‖2

)
dt,

J2 =

∫T
0

(∂tup(t)− ∂tuq(t), φ)dt,

J3 =

∫T
0

(∂t∇up(t)− ∂t∇uq(t),∇φ)dt,

J4 =

∫T
0

(∇ūp(t)−∇ūq(t),∇Kūp(t−τ) −∇Kūq(t−τ)),

J5 =

∫T
0

(f(∇ūp(t)−∇ūq(t)), φ).

(17)

Now, we estimate the terms Ji, i = 1, · · · , 5, seperatly . The procedure is standard. We employ the Cauchy inequality, (3), (4) and Lemma
(2.2). We arrive at:

|J1| ≤ C1(τp + τq),

|J2| ≤ C2

√
τ2
p + τ2

q +

∫T
0
‖up(t)− uq(t)‖2dt,

|J3| ≤ C3

√
τ2
p + τ2

q +

∫T
0
‖up(t)− uq(t)‖2dt,

|J4| ≤ C4(τp + τq +

∫T
0
‖up(t)− uq(t)‖dt),

|J5| ≤ C5

√
τ2
p + τ2

q +

∫T
0
‖up(t)− uq(t)‖2dt.

(18)

Since (un) is a Cauchy sequence in C(0, T ;L2(Ω)) so ‖up(t)− uq(t)‖ → 0 as p, q →∞, which implies that (∇un) is a Cauchy sequence
in C(0, T ;L2(Ω)). �

Now, we are in a position to prove the solvability of (1)

Theorem 2.2. Let the assumptions of Lemma (2.1) be fulfilled. Then the direct problem (1) admits a unique solution u ∈ C(0, T ;L2(Ω) ∩
L∞((0, T ), H1(Ω)) obeying ∂tu ∈ L2(0, T ;L2(Ω)).
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Proof: Integrate (16) over (0, t) to get:

(un(t)− u0, φ) + (∇un(t)−∇u0,∇φ)

∫ t
0
(∇∇ūn(s)−∇u0,∇φ)ds =

∫ t
0
(f(∇ū(s− τ)), φ)ds. (19)

Use: ∫ t
0
(f(∇ū(s− τ)), φ)ds =

∫ t
0
(f(∇ū(s− τ))− f(∇ū(s)), φ)ds+

∫ t
0
(f(∇ū(s))− f(∇u(s)), φ)ds+

∫ t
0
(f(∇u(s− τ)), φ)ds.

Making n→ +∞ in (19) and differentiating with respect to t implies that u is a weak solution to (1). �

Following the same arguments as in [12] to check the behaviour of un(t) on the boundary. We may have:

lim
τ→0

max
t∈[0,T ]

‖un(t)−Ku(t)‖ = 0.

Having this, we see that the u satisfies the boundary condition.

3 Full-discretization

This section is devoted to the space discretization of problem (2), which completes the full-discretization of the nonlocal problem (1). For
this purpose, we adopt Legendre pseudo-spectral method. Based on the weak formulation (2) we define the conventional Legendre-Galerkin
semi-discrete approximation reads as:
Find uNi ∈ PN (Λ) such that, for any ∀φ ∈ P0

N (Λ)

(δuNi , φ) + (∂xδu
N
i , ∂xφ) + (∂xu

N
i , ∂xφ) = (f(uNi−1), φ),

uNi (−1) =

∫1

−1
uNi−1(x)K1(x)dx,

uNi (1) =

∫1

−1
uNi−1(x)K2(x)dx,

uN0 = ICNu0.

(20)

Where ICN stands for the interpolation operator at the Chebyshev-Gauss-Lobatto points ξi = cos ( iπN ) . Let us denote Lk(x) the k-th degree
Legendre polynomial. The set of Legendre polynomials {Lk}∞k=0 forms an orthogonal basis for the space L2(Λ). Let N be a positive integer,
we define

φk(x) = Lk(x)− Lk+2(x), 0 ≤ k ≤ N − 2,

φN−1(x) =
1

2
(L0(x) + L1(x)) ,

φN (x) =
1

2
(L0(x)− L1(x).)

(21)

Obviously, the set {φk}Nk=0 consists of N + 1 linearly independent elements, therefore form a basis function for PN (Λ). We set

uNi (x) =

N∑
k=0

ũikφk(x). (22)

Inserting (22) into the variational equation in (2) and taking v = φj , j = 0, · · · , N − 2 yields

N∑
k=1

(mjk + pjk + τpjk)ûik =

N∑
k=1

(mjk + pjk)ûi−1
k + F i−1

j , i ≥ 1, (23)

where

mjk =

∫1

−1
ϕj(x)ϕk(x)dx , pjk =

∫1

−1
ϕ′j(x)ϕ′k(x)dx , F ij =

∫1

−1
f(uNi−1(x))ϕj(x)dx.

The boundary conditions give us two supplementary algebraic equations

N∑
k=1

ûikϕk(−1) =

∫1

−1
uNi−1(x)K1(x)dx,

N∑
k=1

ûikϕk(1) =

∫1

−1
uNi−1(x)K2(x)dx.

, i ≥ 1 (24)

The coefficients mjk and pjk can be determined by using the orthogonal properties of Legendre polynomials as in [6, 13], and the term F ij can
be calculated approximately. The resulting system (23)-(24) can be easily solved using a direct or either iterative method to solve it.
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Fig. 1: Profiles of exact solution, numerical solution and absolute error of problem test of Example (4.1) for the parameters N = 8 and
∆t = 10−3

4 Numerical tests

In this section, the method presented in previous sections is applied to solve two problems of the form (1).

Example 4.1. Let us first consider problem

∂u

∂t
− ∂3u

∂t∂x2
− ∂2u

∂x2
= −(x2 − x+ 5)e−t,

u(−1, t) =

∫1

−1
sin (πx)u(x, t)dx,

u(1, t) =

∫1

−1
cos (πx)u(x, t)dx,

with the exact solution
u(x, t) =

(
x2 − x+ 5

)
e−t.

Without loss of generality, we consider that T = 2 in our numerical experiments. The comparisons between the exact and the numerical solution
are illustrated in Figure (1). From the computational results illustrated in Figure (1), one can observe that the numerical and exact solutions
are in good agreement, that confirms the accuracy and effectiveness of the proposed method.

Moreover, according to results listed in Table (1) the rate of the temporal convergence is almost O(τ), which seems reasonable since the
employed method of discretization in time is of first-order. From the computational results illustrated in Figure 1, one can observe that the

Table 1 Temporal convergence rates at t = 1 and t = T for Example 4.1
t = 1 t = T

∆t L2-error order L2-error order
10−2 2.6148e-002 - 1.0325e-002 -
10−3 2.6046e-003 1.0000 1.0287e-003 1.0016
10−4 2.6036e-004 1.0002 1.0284e-004 1.0001
10−5 2.6035e-005 1.0017 1.0283e-005 1.0000

numerical and exact solutions are in good agreement. Moreover, according to results listed in Table 1 the rate of the temporal convergence is
almost O(τ), which seems reasonable since the employed method of discretization in time is of first-order.

Example 4.2. Now, let us consider

∂u

∂t
− ∂3u

∂t∂x2
− ∂2u

∂x2
= f

(
∂u

∂x

)
+ q(x, t),

u(−1, t) =

∫1

−1
sin (πx)u(x, t)dx,

u(1, t) =

∫1

−1
cos (πx)u(x, t)dx,
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where: f(v) = v(v − 1) and q(x, t) = e2x(1 + cos (2πt)). The exact solution is given by,

u∗(x, t) = ex cos (πt).

As in the previous example, the proposed method is applied for the problem above and the numerical results are showed in Figure (2) for
N = 16 and τ = 10−4. Tables (2) and (3) represent some comparisons between the exact and numerical solutions. As a conclusion, the
computational results demonstrate that the numerical solution accurately approaches the exact solution.

Fig. 2: Profiles of exact solution, numerical solution and absolute error of problem test of Example (4.2) for the parameters N = 16 and
∆t = 10−4

Table 2 Companions between exact and numerical solutions at t = 1 with: N = 16 and τ = 10−4 for Example 4.2
u∗(x, t) uN (x, t) |u∗(x, t)− uN (x, t)|

x = 0.0 -1.00004 -1.00000 4.72958e-005
x = 0.4 -1.49187 -1.49182 4.75656e-005
x = 0.8 -2.22556 -2.22554 2.51051e-005
x = 1.0 -2.71828 -2.71827 3.71056e-006

Table 3 Companions between exact and numerical solutions at t = 1 with: N = 16 and τ = 10−4 for Example 4.2
u∗(x, t) uN (x, t) |u∗(x, t)− uN (x, t)|

x = 0.1 1.10521 1.10517 3.50484e-005
x = 0.3 1.34989 1.34985 3.52534e-005
x = 0.7 2.01377 2.01375 2.41711e-005
x = 0.9 2.45961 2.45960 1.00561e-005

5 Conclusion

Within this paper, we studied the well-posedness of a class of nonlocal boundary value problems of pseudo-parabolic equations with Dirichlet-
type integral condition. We showed the uniqueness and the existence of a solution in appropriate function spaces. Besides this, we also designed
a numerical scheme based on backward Euler difference schema for the temporal discretization and Legendre pseudo-spectral method for the
space discretization. The contribution of this contribution lies in extend and improvement of some existing results concerning the solvability of
similar nonlocal boundary value problems.
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