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Abstract
The equivalence theorem is the most important theorem of experimental design. For
single response, the D-optimal equivalence theorem of the continuous design and equal
allocation design already exist. However, the equivalence theorem of D-optimal equal
allocation design for multiresponse mixture experiments has not been investigated. In this
paper, we study this problem and find that the maximize of the variance function of the
equivalence theorem equal to the number of response. D-optimal designs for multiresponse
are illustrated by two examples.
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1. Introduction
In experimental design, according to the research sequence, the single response model

was first studied by researchers. Multiresponse experiments have a wide range of appli-
cations in many fields, such as biology, medicine, economics, engineering, environmental
science, and clinical medicine. Therefore, when the study of single response is sufficient,
it is time to examine multiresponse. Multiresponse experiments involve two or more re-
sponses with one model, and there may be correlations between these responses. This
paper considers the multiresponse of mixture experiment models. There are q ingredients
in the mixture experiment. The explanatory variables are the q ingredients proportions
x1, x2, ..., xq. The key feature of these explanatory variables is that they sum to 1. We
can denote the experiment region as

Sq−1 =
{

(x1, x2, . . . , xq) :
q∑

i=1
xi = 1, xi ≥ 0, i = 1, 2, . . . , q

}
.

The design of an experiment is an essential part of the statistical methodology to im-
prove scientific experimentation and thus, increase the validity of the resulting conclusions
[27]. The experimental design of the multiresponse model was first studied by Draper and
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Hunter [7]. Wijesinha [34] investigated experimental designs with known and unknown
correlations between responses. Krafft and Schaefer [19] and Chang [4] studied some prop-
erties of multiresponse. Imhof [12] and Chang et al. [5] also studied some examples of
multiresponse. Liu and Yue [23] developed some multiresponse theorems. Liu and Yue
[24] and Liu et al. [25] studied multiresponse linear mixed models. Two textbooks have
focused on the design of multiresponse experiments [1, 14]. Wong et al. [35] studied op-
timal design for multiresponse nonlinear regression models. This paper mainly considers
multiresponse models for mixture experiments. Next, we introduce some references about
multiresponse in mixture experiments. Smith and Cornell [32] studied biplot displays for
visualizing multiple response data. Jin and Yue [13] studied the D- and A-optimal de-
signs for mixture experiments with multiresponse models. Mandal and Pal [26] used a
weight combination design and studied the A-optimal design of the multiresponse mixture
K-model. Pal and Mandal [28] studied the D- and A-optimal design of the two responses
of the mixture model. A textbook on the design of mixture experiments [6] mentioned
multiresponse.

Equivalence theorem is the fundamental theorem of D- and other optimal design cri-
teria. The D-optimal design is defined formally by Kiefer and Wolfowitz [18] and is the
most commonly used criterion. The D-optimal design criterion is proposed based on the
parameter estimation. For a given design, the equivalence theorem seeks to prove whether
the design is the optimal design. However, according to the equivalence theorem, there is
not a strict method to find the optimal design. Therefore, there are many papers about
the optimal design for specific models. For example, Laake [20] gave a classic solution
for optimal design. Atwood [2] investigated an easy method to verify the D-optimal de-
sign through geometric properties. The G-optimal design was defined formally by Kiefer
and Wolfowitz [18]. The G-optimal design criterion is proposed based on the response
estimation. The equivalence theorem posits that these two design criteria are identical
when the design is expressed as a measure of experiment region. Kiefer and Wolfowitz
[17] investigated the equivalence theorem of D-optimal design, Kiefer [15] explored a more
general equivalence theorem for optimal criteria, and Spruill and Studden [33] extended
the equivalence theorem to random processes. Ceranka and Graczyk [3], Hassanein and
Kilany [11] used the equivalence theorem for the optimal design of experiments. Li and
Zhang [21], Li and Zhang [22], and Zhu et al. [37] used the equivalence theorem for the
optimal design of mixture experiments.

Scheffé [30,31] proposed the mixture experimental design’s foundational work with the
canonical polynomial model of the mixture experiment. Its simple lattice design and sim-
plex centroid design are equal allocation designs and satisfy the D-optimal criterion for
common mixture models. The quadratic mixture canonical polynomials with spline [36]
research confirmed that D-optimal designs are equal allocation designs. More broadly
speaking, many studies have considered the theoretical research on continuous design, and
in practical application, they have to be changed into the exact design for implementation.
The equal allocation design can significantly reduce the number of tests and cost. The
number of tests at each design point is 1, which is incredibly convenient for implementing
the experiment. This paper investigates the equivalence theorem of D-optimal equal allo-
cation design for multiresponse mixture experiments. The theoretical system is improved,
and it can measure the excellence of medium allocation designs in practical applications.

In this paper, we mainly give the equivalent theorem of D- and G-optimal design and
variance function for the multiresponse mixture model under the equal allocation exper-
imental design. In Section 2, we present the necessary explanation and notations. We
investigate the equivalence theorem of equal allocation for multiresponse mixture design
in Section 3. In Section 4, we provide an example to illustrate the result. Finally, all
technical details are given in the Appendix.
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2. Model specification and preliminaries
In single response, let yi = fT(xi)β + εi (i = 1, . . . , N) be a general linear regression

model on Sq−1, where yi is the response observed value, f = (f1, . . . , fp)T represents the
vector of known regression functions, xi = (xi1, xi2, . . . , xiq) ∈ X ⊂ Sq−1, X is a compact
set region in Sq−1, and β is the unknown parameter vector, with E(εi) = 0. Because the
errors are independent, with constant variance, E(εiεl) = 0 (i ̸= l), E(ε2

i ) = σ2, and N is
the total experiment frequency.

The form of the multiresponse mixture model is
yiu = fT

u (xi)βu + εiu, i = 1, . . . , N ; u = i, . . . , r. (2.1)
The r responses for observation i are correlated, but the observations i and l are indepen-
dent i ̸= l, with E(εiu) = 0, E(εiuεiv) = σuv. Because the observations at different design
points are independent, we have E(εiuεlu) = E(εiuεlv) = 0, u, v = 1, . . . , r, where yiu is
the uth response value of the ith observation, fT

u is a set of known function vectors for the
uth response, βu is the column vector of unknown parameter for the uth response, and
εiu is the error of the uth response of the ith observation. Manifestly, in matrix form, the
model becomes

Y = F (x)β + ε,

where Y = (y1, y2, . . . , yr)T is r × 1 matrix, F (x) = diag(fT
1 (x), fT

2 (x), . . . , fT
r (x)), β =

(βT
1 , βT

2 , . . . , βT
r ), and ε = (εT

1 , εT
2 , . . . , εT

r )T.
In Section 4, there are some simple examples to make it easier to observe the description

of multiresponses. The variance-covariance matrix of the response (also known as error
covariance matrix) is Σ = {σuv}u,v=1,...,r. Estimation of the parameter vector β is by
generalized least squares with weights Σ−1. Error covariance matrix is an important
index of multiresponse. Different papers have different settings and are not the same.

Chang et al. [5] set Σ =
(

1 ρ
ρ 1

)
. The literature [26,28] specified the values of the error

covariance matrix as some commonly used values. However, it is generally similar to [13],

set to Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Based on the model (2.1), an continuous design can be expressed as a probability dis-
tribution

ξ =
(

x1 x2 . . . xn

ω1 ω2 . . . ωn

)
, (2.2)

where xi ∈ X are finite support points and their weight ξ(xi) = ωi satisfy ωi > 0 and
Σωi = 1, i = 1, 2, . . . , n. Let Ξ be the class of all competing designs, and the Φ-optimal
design is to find the ξ∗ ∈ Ξ that can achieve the optimal design in some sense. The
definition of the experiment plan is more in line with the actual experimental operation.
Denote the equal allocation design as ξe = (x1, x2, . . . , xn), where xi ∈ X, each xi is
different from one an other, and run once at xi. Let Ξ̃ be the class of all equal allocation
designs.

For all r responses, the worth of a design is measured by its Fisher information matrix,
which is given by Draper and Hunter [7]

M(ξ, Σ) =
∫
X

f(x)Σ−1fT(x)ξ(dx).

The variance function is
Tr(Σ−1D(x, ξ, Σ)) = Tr(Σ−1fT(x)M−1(ξ, Σ)f(x)).

The information matrix of single response is

M(ξ) =
∫
X

f(x)fT(x)ξ(dx).
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The variance function of single response is

d(x, ξ) = fTM−1(ξ)f(x).

Although the information matrix and variance function formula of single response and
multiresponse are different, some notations are still represented by the same notations,
except for the distinction between d(x, ξ) and D(x, ξ, Σ), because we can distinguish them
according to the context.

Next, we introduce the D- and G-optimal criteria in the following equivalence theorem.
For single response, Kiefer and Wolfowitz [17] showed that the following assertions are
equivalent:

(S1): A design ξ∗ is D-optimal, ie., det(M(ξ∗) = max
ξ

det(M(ξ));

(S2): A design ξ∗ is G-optimal, ie., max
ξ

d(x, ξ∗) = min
ξ

max
x

d(x, ξ);

(S3): max
x

d(x, ξ∗) = k, where k is number of parameter;
(S4): max

x
d(x, ξ∗

e ) = 1.

Note that the information matrix in calculating the variance function is different in
these assertions. The design ξ∗ is the continuous optimal design, whereas the design ξ∗

e is
the equal allocation optimal design.

Suppose Σ and continuous measure ξ as defined in equation (2.2). Federov [8] showed
that the following assertions are equivalent:

(M1): A design ξ∗ is D-optimal, ie., det(M(ξ∗, Σ)) = sup
ξ

det(M(ξ, Σ));

(M2): sup
x

Tr(Σ−1D(x, ξ∗, Σ)) = inf
ξ

{sup
x

Tr(Σ−1D(x, ξ∗, Σ))}, where ‘Tr’ represents
trace;

(M3): sup
x

Tr(Σ−1D(x, ξ∗, Σ)) = k, where k is number of parameters.

The equivalence theorem plays an important role in proving that D-optimal design and
G-optimal design are equivalent. It skillfully gave the upper limit of the variance function
in assertion 3 of [17]. After the study of the equivalence theorem, we give the general
design and the stochastic process. Research on multiresponse mixture has developed
recently. When we study multiresponse mixture, we find an interesting theorem. It is
shown in Section 3.

3. Equivalence theorem of D-optimal designs
In the single response, the equivalent theorem of D-optimal continuous design exists

[15, 17], and the equivalent theorem of D-optimal equal allocation design also exists [15,
29]. In multiple responses, the equivalent theorem of D-optimal continuous design exists
[8, 29]. This section’s theorem makes up for the equivalent theorem of multiresponse D-
optimal design under equal allocation design. The theorem in this article will complete
the conclusion of the equivalence theorem in various situations. It provides a basis for the
verification of D-optimal using equal allocation design under the multiresponse mixture
model.

The simplex lattice design is the D-optimal design for the most commonly used second-
order canonical polynomial model. The simplex lattice design assigns equal weight to
C1

q + C2
q support points, which are the C1

q vertices of Sq−1: (1, 0, . . . , 0), . . . , (0, . . . , 0, 1),
the binary mixtures in Sq−1: (1/2, 1/2, 0, . . . , 0), . . . , (0, . . . , 0, 1/2, 1/2). In the single
response, assertion 4 of [17] shows that when the number of experiment runs for each
support point is 1, the calculation is more convenient. According to this, we infer that
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it has a similar theorem in multiresponse. There are two lemmas in this theorem, which
involve the variance function and matrix determinant.

The following equivalence theorem for D-optimal design of the multiresponse mixture
model is based on the equal allocation measure, which is simple and easy to implement.
The equal allocation measure is an useful tool in the simplex lattice design with second- and
third-order canonical polynomial mixture model; in the third-order canonical polynomial
mixture model, Kiefer [16] gave 10 design points, but the design points differed from
the third-order simplex lattice design with three components. The 10 design points are
(1, 0, 0), (0, 1, 0), (0, 0, 1), (b, 1−b, 0), (b, 0, 1−b), (0, b, 1−b), (1−, b, 0), (0, 1−b, b), (1−b, 0, b),
and (1/3, 1/3, 1/3), where b = (1 − 5−1/2)/2. Therefore, the design of the equal allocation
measure can be widely used in multiresponse.

We can see that it assigns equal measure for each design point. It looks like it’s just a
design point. In other words, the abbreviation is as follows: ξe = (x1, x2, . . . , xn). This
still doesn’t address the contradiction between Σωi = 1 constraint and s constraint in
Section 2.

The following two lemmas provide the necessary tools for the main results regarding
the equivalence theorem of designs in multiresponse mixture models.

Lemma 3.1. Suppose ξe ∈ Ξ̃, also det(M(ξe)) ̸= 0, then∫
X

Tr(Σ−1D(x, ξe, Σ))dξe = r (3.1)

and
max
x∈X

Tr(Σ−1D(x, ξe, Σ)) ≥ r, (3.2)

where r is number of responses.

Proof. Because Tr(Σ−1D(x, ξe, Σ)) = Tr(Σ−1F T(x)M−1(ξe, Σ)F (x)), integrate the prob-
ability distribution on both sides of ξe, and we have∫

X
Tr(Σ−1D(x, ξe, Σ))dξe =

∫
X

Tr(Σ−1F T(x)M−1(ξe, Σ)F (x))dξe

=
∫
X

Tr(M−1(ξe, Σ)F (x)Σ−1F T(x))dξe

= Tr[M−1(ξe, Σ)
∫
X

F (x)Σ−1F T(x)dξe]

= Tr[M−1(ξe, Σ)M(ξe, Σ)dξe]
= Tr(Ir) = r.

Using the integral mean value theorem, the existence number D∗ satisfies:∫
X

Tr(Σ−1D(x, ξe, Σ))dξe =
∫
X

D∗dξe = D∗

and
min
x∈X

Tr(Σ−1D(x, ξe, Σ)) ≤ D∗ ≤ max
x∈X

Tr(Σ−1D(x, ξe, Σ)).

Equation(3.1) shows D∗ = r. From the above, formula (3.2) is proved. �

Lemma 3.1 is used in the proof of Theorem 3.3, and Lemma 3.2 is used in the proof of
Theorem 3.5.

Lemma 3.2. Let ln(det(M(ξe))) be a function on M(Ξ̃), so this is a concave function. If
M(ξe1) ̸= M(ξe2), we have

ln(det(M(ξe1) + M(ξe2))) > ln(det(M(ξe1))) + ln(det(M(ξe2))). (3.3)
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Proof. Because M(ξe1) and M(ξe2) is a positive definite matrix, let 0 < α < 1. Then,
their determinants have the properties below

det(αM(ξe1) + (1 − α)M(ξe2)) ≥ [det(M(ξe1))]α[det(M(ξe2))](1−α),

where the condition that the equal sign is established is M(ξe1) = M(ξe2), so,
det(M(ξe1) + M(ξe2)) > [det(M(ξe1))][det(M(ξe2))],

thus, (3.3) is proved. �
The following two theorems are the main conclusions of this paper. Theorem 3.3 is

about the equivalence of the D- and G-optimal design and the theorem of judging the
optimal design according to the variance function. Theorem 3.5 is about the equality
of the information matrix class and the design class that satisfy the three conditions in
Theorem 3.3.

Theorem 3.3. Suppose the number of experiment runs at each design point is 1. In
multiresponse mixture models, the following three conclusions are equivalent:

(i): A design ξ∗
e is D-optimal, ie., det(M(ξ∗

e , Σ)) = sup
ξe

det(M(ξe, Σ));

(ii): A design ξ∗
e is G-optimal, ie., Tr(Σ−1D(x, ξ∗

e , Σ)) = inf
ξe

{sup
x

Tr(Σ−1D(x, ξe, Σ))};

(iii): sup
x

Tr(Σ−1D(x, ξ∗
e , Σ)) = r, where r is number of response.

The proof of Theorem 3.3 is given in the Appendix. Using Theorem 3.3, we obtained
the following corollaries, which are generally called decision formulas.

Corollary 3.4. If the designs are all experiments with one test number, in the multire-
sponse mixture model, D-optimal design satisfies the following formula

ϕ(x) = sup
x

Tr(Σ−1D(x, ξ∗
e , Σ)) − r ≤ 0.

Moreover, the supremum is achieved at all support points of ξ∗
e .

The information matrix is the whole representation of the experimental design and test
plan. Therefore, we give some important theorems about the information matrix class and
design class.

Theorem 3.5. Let three classes of information matrixes satisfy (i), (ii), (iii) in Theo-
rem 3.3; then they are the same as each other. The linear combination of designs satisfying
(i), (ii), (iii) of Theorem 3.3 also satisfies the condition (i), (ii), (iii) of theorem.

The proof of Theorem 3.5 is given in the Appendix. Next, we present two examples to
illustrate Theorem 3.3 and Theorem 3.5.

4. Examples for illustration
To compare the efficiency of designs, define the D-efficiency of the design. EffD =(
det(M(ξ))

det(M(ξD))

)1/p
, where ξD is D-optimal design and p is number of parameters. The maxi-

mum value of the variance function of D-optimal design is a certain constant. In addition,
in the iterative algorithm of D-optimal design, a precision delta is added to the maximum
value of variance function to stop iteration after sufficient demand, Li and Zhang [21]
also applied this method. For this feature, we can consider the effect of an approximate
optimal design, compare the design, and select this way.

Consider the following two examples, both of which are two-response models. Let the
two responses be Y1 and Y2 with means η1(x) and η2(x). Obviously, yi = ηi(x) + εi, (i =

1, 2),
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
is an error covariance matrix.
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Example 4.1. Suppose η1(x) is quadratic in x whereas η2(x) is linear in x, and are given
as

η1(x) =
q∑

i=1
βixi +

q∑
1≤i<j

βijxixj ,

η2(x) =
q∑

i=1
αixi.

So, we can write

E

(
Y1
Y2

)
=
[

fT
1 (x) 0q fT

2 (x)
0q fT

1 (x) 0C2
q

]
θ,

where f1(x) = (x1, x2, . . . , xq)T, f2(x) = (x1x2, x1x3, . . . , x1xq, . . . , xq−1xq)T, 0p is a 1 × p
vector with all elements zero, and θ = (β1, . . . , βq, α1, . . . , αq, β12, β13, . . . , β1q, .., βq−1,q)T.

Jin and Yue [13] calculated the optimal continuous allocation on the second-order sim-
plex lattice points. The advantage of this result is that it is independent of Σ. The weight
of the support point x ↔ (1, 0, · · · , 0) is 1

q − (q−1)(4+3q−
√

32+q2)
2q(q2+3q−2) , and the weight of the sup-

port point x ↔ (1/2, 1/2, 0, · · · , 0) is 4+3q−
√

32+q2

q(q2+3q−2) , where x ↔ (1/2, 1/2, 0, · · · , 0). This
means that two elements in 1 × q-dimensional vector are 1/2 and the rest are 0. Mandal
and Pal [26] also studied this model; Theorem 2.3 shows that the barycenters of the fac-
tor space are the possible support point of the D-optimal design; Example 2.1 shows the
D-optimal design with q = 3: the weight of the support point x ↔ (1, 0, 0) is 0.1903, and
the weight of the support point x ↔ (1/2, 1/2, 0) is 0.14307.

We can use the method similar to [9] to set a large number of grid points on the
definition domain when q = 2, 3 to verify. The verification result is that this design
is D-optimal design and satisfies the equivalence theorem, and q = 4, 5 is the optimal
continuous allocation.

Using the above conclusions, consider the performance of the simplex lattice design; at
this time, any support point has equal weight. The following Table 1 compares the effi-
ciency of the simplex lattice design with the optimal design. We consider simplex lattice
design and D-optimal design when q = 2, 3, 4, 5, where i is a degree of a vertex, Ni = Ci

q,
The weights ωi and the determinant of the information matrix M of the two types designs
are calculated. Then the efficiency EffD is obtained according to the determinant of the
information matrix. Figure 1 describes the determinant and D-efficiency comparison re-
sults of the information matrix of the two designs. For simplicity of calculation, suppose

Σ−1 =
(

a c
c b

)
.

Table 1. D-efficiency of simplex lattice design (Example 4.1)
Design Simplex lattice D-optimal Efficiencies

Ingredients i Ni ωi det(M(ξ)) ωi det(M(ξ∗)) EffD

q=2 1 2 1/3 3.85802 × 10−4(ab − c2)2b
0.375 4.11987 × 10−4(ab − c2)2b 0.986952 1 1/3 0.25

q=3 1 3 1/6 7.57057 × 10−11(ab − c2)3b3 0.1903 8.42033 × 10−11(ab − c2)3b3 0.988252 3 1/6 0.14307

q=4 1 4 1/10 5.02914 × 10−21(ab − c2)4b6 0.11916 5.70673 × 10−21(ab − c2)4b6 0.991012 6 1/10 0.08723

q=5 1 5 1/15 7.69571 × 10−35(ab − c2)5b10 0.07947 8.80092 × 10−35(ab − c2)5b10 0.993312 10 1/15 0.06026
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Figure 1. det (M) and D-efficiency of simplex lattice design (Example 4.1)

The D-efficiency of isometric simplex lattice design with 2, 3, 4, 5 components is more
than 98%. The results show that the simplex lattice design with equal weights without
calculating the optimal continuous allocation still has a good effect. Therefore, it is an
excellent option to choose an equal allocation design. The following Example 4.2 is to
verify Theorem 3.3 through the equal allocation design.

Using the two-response mixture model, which is composed of the seconder-order canon-
ical polynomial with arbitrary finite-dimensional variables, Hao and Zhang [10] found
that the D-optimal design of this model has an equal measure to each design point and
independent of Σ.

Example 4.2. Suppose η1(x) and η2(x) is quadratic in x, and are given as

η1(x) =
q∑

i=1
βixi +

q∑
1≤i<j

βijxixj ,

η2(x) =
q∑

i=1
αixi +

q∑
1≤i<j

αijxixj .

So, we can write

E

(
Y1
Y2

)
=
[

fT
1 (x) 0q+C2

q

0q+C2
q

fT
2 (x)

]
θ,

where f1(x) = f2(x) = (x1x2, x1x3, . . . , x1xq, . . . , xq−1xq)T, and 0p is a 1 × p vector
with all elements zero, and θ = (β1, β2, . . . , βq, β12, β13, . . . , β1q, . . . , βq−1,q, α1, α2, . . . , αq,
α12, α13, . . . , α1q, . . . , αq−1,q)T.

Using the Lagrange multiplier method, we can find that D-optimal design has an equal
measure for each design point as follows ξe = (x ↔ (1, 0, . . . , 0), x ↔ (1/2, 1/2, 0, . . . , 0)).

To verify conclusion (iii) of Theorem 3.3 when q = 3, we have the following information
matrix

M(ξ∗, Σ) = 1
4

(
a c
c b

)⊗(
M1

1
2M2

1
2M2

1
4I

)
,
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where M1 =

 6 1 1
1 6 1
1 1 6

, M2 =

 1 1 0
1 0 1
0 1 1

, I is identity matrix and
⊗

is Kronecker

product of matrix. The correlation matrix is

M−1(ξ∗, Σ) = 1
ab − c2

(
b c
c a

)⊗(
I −2M2

−2M2 4M1

)
.

The variance function is

Tr
(
M−1(ξ∗, Σ)F (x)Σ−1F T(x)

)
= 2

 3∑
i=1

y2
i + 24

∑
i<j

y2
i y2

j + 8y1y2y3 − 4
3∑

i=1
y2

i (1 − yi)

 .

According to [2], it can be verified that the variance function value at the vertex and
the binary mixture is 2, and at the center point is 34/27 < 2, thus verifying conclusion
(iii) in Theorem 3.3. Similarly, we can prove that the variance function is less than or
equal to r in r responses.

5. Further research
Multiresponse is becoming suitable for social needs. For example, regional economic

development requires fast development and high-quality and sustainable growth. Drug
developemnt considers the ability to treat and the duration of the effect and drug re-
sistance. Therefore, this paper’s multiresponse mixture model is adaptable, the equal
allocation design is easy to implement, and the D-optimal equivalence theorem is evalua-
tive. Even for already implemented equal allocation designs, optimality can be compared
and tested through the variance function.

In the future, we can study the following problems. Many multiresponse model exper-
imental design papers have studied a lot of models; some are related to Σ, and some are
not related to Σ. Another paper [24] introduced that multiresponse is sometimes unre-
lated to Σ and sometimes related, and when related, the change of measurement with Σ
is small. The problem worthy of study is the relationship between the optimal design of
multiresponse models and Σ. What is known now is that when each response model is
the same, it has nothing to do with Σ, and when the response model is different, it is
uncertain.

Many papers about multiresponse have considered the optimal design with all responses
of each design point. But in reality, it is not necessary to observe all responses or the cost
of some responses. Therefore, researchers can try to increase the number of trials or se-
lect some responses. In the optimal design of mixture experiments, we find an interesting
problem: The single-saturation medium-saturation design holds that the number of design
points is equal to the number of parameters, whereas the number of design points in a
multiresponse design may be less than the number of parameters. Therefore, in the future,
when studying multipresponse, scholars should can try to estimate more parameters with
a few design points.
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Appendix
We provide justifications for Theorems 3.3 and 3.5 using the same notation from the main
text. In the following proof, for convenience, denote ξ as the equal allocation design.

Proof of Theorem 3.3. (iii) deduces (ii), suppose the design ξ∗ satisfies:
sup

x
Tr(Σ−1D(x, ξ∗, Σ)) = r.

From Lemma 3.1, for any design we have
sup

x
Tr(Σ−1D(x, ξ, Σ)) ≥ r,

therefore
sup

x
Tr(Σ−1D(x, ξ∗, Σ)) = inf

ξ
{sup

x
Tr(Σ−1D(x, ξ, Σ))}.

(i) deduces (iii), suppose the design ξ∗ satisfies:
det(M(ξ∗, Σ)) = sup

ξ
det(M(ξ, Σ)).

Assume that the design ξ∗ does not satisfy (iii), so
sup

x
Tr(Σ−1D(x, ξ∗, Σ)) > r,

so there is x0 ∈ X, st.
Tr(Σ−1D(x0, ξ∗, Σ)) > r. (A.1)

Let ξ̃ = ξ∗ + ξx0 , where ξx0 represents a single point with only one spectral point. So,

M(ξ̃) = M(ξ∗) + M(ξx0).
The convergence theorem of determinants of information matrix of iterative algorithm
process according D-optimal design is as follows:

lim
s→∞

det(M(ξs)) = det(M(ξ∗))
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and from (A.1), we have det(M(ξ̃)) > det(M(ξ∗)). This is against design ξ∗, satisfying (i).

(iii) deduces (i), suppose the design ξ∗ satisfies (iii):

sup
x

Tr(Σ−1D(x, ξ∗, Σ)) = r.

If the design ξ∗ does not satisfy (i), then there is design ξ satisfying:
det(M(ξ∗)) < det(M(ξ)).

Consider the design ξ̃ = ξ∗ + ξ, so,

M(ξ̃) = M(ξ∗) + M(ξ),
therefore

det(M(ξ̃)) > det(M(ξ)) det(M(ξ∗)) > det(M(ξ∗)).
Given

det(M(ξ̃)) − det(M(ξ∗)) > 0,

then
det(M(ξ̃)) − det(M(ξ∗))

= Tr(M−1(ξ∗)(M(ξ) − M(ξ∗)))
= Tr(M−1(ξ∗)M(ξ)) − r

> 0,

this is
(M−1(ξ∗)M(ξ)) > r.

Let
ξ = (x1, x2, . . . , xn),

so
Tr(M−1(ξ∗)M(ξ)) = Tr[M−1(ξ∗)

∑
f(xi)fT(xi)]

=
∑

Tr[M−1(ξ∗)f(xi)fT(xi)]

= rfT(xi)M−1(ξ∗)f(xi)
= rD(x, ξ∗, Σ),

because D(x, ξ∗, Σ) > 1,
sup

x
Tr(Σ−1D(x, ξ∗, Σ)),

this is against design ξ∗, satisfying (iii).

(ii) deduces (iii), suppose design ξ∗ satisfies (ii):

Tr(Σ−1D(x, ξ∗, Σ)) = inf
ξ

sup
x

Tr(Σ−1D(x, ξ), Σ).

If design ξ∗ is not satisfied (iii) then

sup
x

Tr(Σ−1D(x, ξ∗, Σ)) > r. (A.2)

It has been proven that (i) is equivalent to (iii), so it does not satisfy (i), and with the
definition of D-optimal design, D-optimal design must exist, that is

sup
x

Tr(Σ−1D(x, ξ̃, Σ)) = r, (A.3)
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and because the design ξ∗ satisfies (ii), it is obtained by (A.3)
sup

x
Tr(Σ−1D(x, ξ∗, Σ)) ≤ r,

which conflicts (A.2). �
Proof of Theorem 3.5. Let the information matrix of D-optimal design ξ1 and ξ2 be
M(ξ1) and M(ξ2), respectively, and M(ξ1) ̸= M(ξ2).

Order ξ = ξ1 + ξ2, then M(ξ) = M(ξ1) + M(ξ2). From Lemma 3.2:
ln(det(M(ξ))) > ln(det(M(ξ1))) + ln(det(M(ξ2))). (A.4)

According to the definition of D-optimal design, we have
det(M(ξ1)) = det(M(ξ2)) ≥ det(M(ξ)). (A.5)

To make formula (A.4) and formula (A.5) not contradict each other, they must have
det(M(ξ1)) = det(M(ξ2)) = det(M(ξ)). (A.6)

From the conclusions (i), (ii), (iii) and the formula (A.6) of Theorem 3.3, Theorem 3.5 is
proved. �


