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1 Introduction

In this work, we investigate the following p-Laplacian hyperbolic type equation with logarithmic nonlinearity
utt −∆u− div

(
|∇u|p−2∇u

)
−∆ut + |ut|k−2 ut = |u|p−2 u ln |u| , x ∈ Ω, t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1)

where p, k > 2 are real numbers. Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω. The functions u0, u1 are given initial data and
exponent p satisfies {

2 < p <∞, if n = 1, 2,

2 < p <
2(n−1)
n−2 if n ≥ 3.

(2)

In absence of p-Laplacian operator div
(
|∇u|p−2∇u

)
, (2) becomes a wave equation with logarithmic source term

utt−∆u+ h (ut) = |u|p−2 u ln |u| . (3)

Logarithmic nonlinearity term appears frequently in partial differential equations due to their wide application in physics and other applied
sciences. Problems like equation (3) is encountered naturally in quantum mechanics, inflation cosmolog, supersymmetric field theories, and a
lot of different areas of physics such as, optics, geophysics and nuclear physics [2]-[7]. Let us review somework with related to the problem
(3). There is a large body of works in the literature with logarithmic nonlinearity, see in this regard [1]-[4]-[6]-[8]-[9]. Although there have
been a lot of works using potential well method, much of them are that on p-Laplacian parabolic equations and there are only a few works on
p-Laplacian hyperbolic equations [3]-[5]-[11]-[12].

To best of our knowledge, the blow up and local existence of solution for p-Laplacian hyperbolic type with logaritmic nonlinearity has not
been well studied. So that, we will interest with blow up of solution for problem (1).

2 Preliminaries

In order to state our main results, we define the corresponding energy to problem (1) as follows

E(t) =
1

2
‖ut‖2 +

1

2
‖∇u‖2 +

1

p
‖∇u‖pp −

1

p

∫
Ω

ln |u|updx+
1

p2
‖u‖pp . (4)

Lemma 1. [10]. For any u ∈ H1
0 (Ω) , we get

‖u‖q ≤ Cq ‖∇u‖2 ,

for all 1 ≤ q ≤ 2n
n−2 if n ≥ 3; 1 ≤ q <∞ if n ≤ 2, where Cp is the best embedding constant.
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Lemma 2. E(t) is a nonincreasing function, for t ≥ 0

E′ (t) = −‖∇ut‖2 − ‖ut‖kk ≤ 0. (5)

Proof: Multiplying the equation (1) by ut and integrating on Ω, we have the (5).
For reader’s straightforwardness, we noticed the definition of weak solutions of problem (1). Following the proof lines in [11, 13] we can

state the Theorem 4 for local existence of weak solutions. �

Definition 3. A function u (t) is called a weak solution of problem (1) on Ω× [0, T ) , if

u ∈ C
(

(0, T ) ;W 1,p
0 (Ω)

)
∩ C1

(
(0, T ) ;L2 (Ω)

)
and

ut ∈ L∞
(

(0, T ) ;L2 (Ω)
)

which satisfies



∫
Ω

utt (x, t)w (x) dx+
∫
Ω

|∇u (x, t)|p−2∇u (x, t)∇w (x) dx+
∫
Ω

∇u (x, t)∇w (x) dx

+
∫
Ω

∇ut (x, t)∇w (x) dx +
∫
Ω

|ut|k−2 (x, t) |ut| (x, t)w (x) dx

=
∫
Ω

ln |u (x, t)|up−2 (x, t)w (x) dx, ∀w ∈ H1
0 (Ω)

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) .

Theorem 4. There exist T > 0, such that the problem (1) has a unique local solution weak solution on [0, T ] .

3 Blow up

In this part, we prove the blow up result of solution for the problem (1). We give some lemmas which be used in our proof. We establish a blow
up result for solution with negative initial energy. Firstly, we give some useful lemmas. For proof of Lemma 5, Lemma 6 and Lemma 7 we refer
the reader to Kafini [9].

Lemma 5. Suppose that (2) holds. There exists a positive constant depending on Ω only such that

∫
Ω

up ln |u| dx


s
p

≤ C

∫
Ω

up ln |u| dx+ ‖∇u‖22

 , (6)

for any u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p, provided that
∫
Ω

up ln |u| dx ≥ 0.

Lemma 6. Suppose that (2) holds. There exists a positive constant depending on Ω only such that

‖u‖pp ≤ C

∫
Ω

up ln |u| dx+ ‖∇u‖22

 , (7)

for any u ∈ Lp (Ω) , provided that
∫
Ω

up ln |u| dx ≥ 0.

Corollary 1. Let the assumptions of the Lemma 6 and k < p hold. Using the fact that ‖u‖kk ≤ C ‖u‖
k
p ≤ C

(
‖u‖pp

) k
p
. Then we obtain the

following

‖u‖kk ≤ C


∫

Ω

up ln |u| dx


k
p

+ ‖∇u‖
2k
p

 . (8)

Lemma 7. Suppose that (2) holds. There exists a positive constant depending on Ω only such that

‖u‖sp ≤ C
[
‖u‖pp + ‖∇u‖22

]
, (9)

for any u ∈ Lp (Ω) and 2 ≤ s ≤ p.
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Theorem 8. Assume that E (0) < 0. Let the conditions in Lemma 5 hold. Then the solution of (1) blows up in finite time

T ∗ ≤ 1− α
ξ α

1−αL
α

1−α (0)
(10)

where ξ and α positive constant.

Proof: For this purpose, we denote
H (t) = −E (t) . (11)

By using the definition of H (t) and E (t), (5), (11), we obtain

0 < H (0) ≤ H (t) ≤ 1

p

∫
Ω

up ln |u| dx. (12)

We set

L (t) = H1−α (t) + ε

∫
Ω

uutdx+ ε
1

2
‖∇u‖2 , (13)

for ε small to be chosen later and

2
(
p2 − 2k

)
(k − 1) p3

< α <
p− k

(k − 1)
, (14)

Now, differentiating L (t) with respect to t, we obtain

L′ (t) = (1− α)H−α (t)H ′ (t) + ε ‖ut‖2 − ε ‖∇u‖2 − ε ‖∇u‖pp

−ε
∫
Ω

|ut|k−2 utudx+ ε

∫
Ω

up ln |u| dx. (15)

Adding and subtracting εp (1− α)H (t) for some 0 < α < 1 in (15), we obtain

L′ (t) = (1− α)H−α (t)H ′ (t) + ε

(
p (1− α) + 2

2

)
‖ut‖2

−ε
(

2− p (1− α)

2

)
‖∇u‖2 − εα ‖∇u‖pp

+ε
(1− α)

p
‖u‖pp + εα

∫
Ω

up ln |u| dx

+εp (1− α)H (t)− ε
∫
Ω

|ut|k−2 utudx. (16)

Exploiting Young’s inequality the last term of the (16) for any δ > 0, we get

L′ (t) =

(
(1− α)H−α (t)− εk − 1

k
δ−

k
k−1

)
H ′ (t)− εδ

k

k
‖u‖kk

+ε

(
p (1− α) + 2

2

)
‖ut‖2 − ε

(
2− p (1− α)

2

)
‖∇u‖2 − εα ‖∇u‖pp

+ε
(1− α)

p
‖u‖pp + εα

∫
Ω

up ln |u| dx+ εp (1− α)H (t) . (17)

Of course (17) holds even if δ is time dependent since the integral is taken over the x-variable. Therefore by choosing δ so that δ−
k
k−1 =

M1H
−α(t), for M1 to be specified later, and substituing in (17), we have

L′ (t) ≥
(

1− α− εk − 1

k
M1

)
H−α (t)H ′ (t) + ε

(
p (1− α) + 2

2

)
‖ut‖2 − εα ‖∇u‖pp

−ε
(

2− p (1− α)

2

)
‖∇u‖2 + ε

(1− α)

p
‖u‖pp − ε

(M1)1−k

k
Hα(k−1)(t) ‖u‖kk

+εα

∫
Ω

up ln |u| dx+ εp (1− α)H (t) . (18)
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By using of the Corollary 1, embedding theorem and Young’s inequality, we obtain

Hα(k−1) ‖u‖kk ≤ C


∫

Ω

up ln |u| dx

α(k−1)+ k
p

+

∫
Ω

up ln |u| dx

α(k−1) p2

p2−2k

+ ‖∇u‖pp


Make use of the (14), we find

2 < α (k − 1) p+ k ≤ p and 2 <
α (k − 1) p3

p2 − 2k
≤ p.

Therefore, by Lemma 5 we have

Hα(k−1) ‖u‖kk ≤ C

∫
Ω

up ln |u| dx+ ‖∇u‖pp

 (19)

Inserting (19) into (18), we arrive at

L′ (t) ≥
(

1− α− εk − 1

k
M1

)
H−α (t)H ′ (t) + ε

(
p (1− α) + 2

2

)
‖ut‖2

−ε

[
α+

(M1)1−k

k
C

]
‖∇u‖pp − ε

(
2− p (1− α)

2

)
‖∇u‖2 + ε

(1− α)

p
‖u‖pp

+ε

[
α− (M1)1−k

k
C

] ∫
Ω

up ln |u| dx+ εp (1− α)H (t) . (20)

Since 0 < 2
p < 1, now using the following inequality

xv ≤ x+ 1 ≤
(

1 +
1

β

)
(x+ β) , ∀x ≥ 0, 0 < v < 1, β ≥ 0 (21)

espacially taking and (12), we have

‖∇u‖pp ≤
(

1 +
1

H (0)

)(
‖∇u‖pp +H (0)

)
≤ d

(
‖∇u‖pp +H (t)

)
(22)

where d = 1 + 1
H(0)

.

Inserting (19)-(22) into (20) we deduce

L′ (t) ≥
(

1− α− εk − 1

k
M1

)
H−α (t)H ′ (t) + ε

(
p (1− α) + 2

2

)
‖ut‖2 + ε

(1− α)

p
‖u‖pp

+ε

[
d

(
p (1− α)− 2

2

)
− α− (M1)1−k

k
C

]
‖∇u‖pp + ε

[
α− (M1)1−k

k
C

] ∫
Ω

up ln |u| dx

+ε

[
p (1− α) + d

(
p (1− α)− 2

2

)]
H (t) , (23)

where used Lp (Ω) ↪→ L2 (Ω) , 2 < p.
At this point, we choose α > 0 small that

d

(
p (1− α)− 2

2

)
> 0

and M1 sufficiently large that

d

(
p (1− α)− 2

2

)
− α− (M1)1−k

k
C > 0 and α− (M1)1−k

k
C > 0.

Once M1 and α are fixed, we pick 0 < ε < 1−α
M1

so that

L (0) = H1−α (0) + ε

∫
Ω

u0u1dx > 0. (24)

Therefore, (23) becomes form

L′ (t) ≥ λ

H (t) + ‖ut‖2 + ‖∇u‖pp + ‖u‖pp +

∫
Ω

up ln |u| dx

 , (25)

where λ > 0.
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Consequently we obtain
L (t) > L (0) , t ≥ 0.

On the other hand by (a+ b)p ≤ 2p−1 (ap + bp) , we have

L (t)
1

1−α ≤ C

H (t) +

∫
Ω

|uutdx|
1

1−α + ‖∇u‖
2

1−α

 . (26)

Again by using of the (21)for, v = 2
p(1−α)

< 1 since α < p−2
2p , d = 1 + 1

H(0)
, we get

(
‖∇u‖pp

) 2
p(1−α) ≤ d

(
‖∇u‖pp +H (t)

)
, (27)

where used Lp (Ω) ↪→ L2 (Ω) .
Hölder’s inequality give us ∣∣∣∣∣∣

∫
Ω

uutdx

∣∣∣∣∣∣ ≤ c
∫

Ω

|ut|2 dx


1
2
∫

Ω

|u|p dx


1
p

where c is the positive constant. This inequality implies that there exists a positive constant C > 0 such that∣∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣∣
1/(1−α)

≤

∫
Ω

|ut|2 dx


1

2(1−α)
∫

Ω

|u|p dx


1

p(1−α)

. (28)

Applying Young’s inequality to the right-hand side of the (26), we get∣∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣∣
1/(1−α)

≤ C


∫

Ω

|ut|2 dx


κ

2(1−α)

+

∫
Ω

|u|p dx


µ

p(1−α)

 for
1

µ
+

1

κ
= 1. (29)

To be able to use Lemma 11, we take κ = 2/ (1− α) , which gives µ = 2 (1− α) / (1− 2α) ,(29) has the form∣∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣∣
1/(1−α)

≤ C

∫
Ω

|ut|2 dx+

∫
Ω

|u|p dx


2

p(1−2α)

 .
By using of Poincare’s inequality we get∣∣∣∣∣∣

∫
Ω

uutdx

∣∣∣∣∣∣
1/(1−α)

≤ C

∫
Ω

|ut|2 dx+

∫
Ω

|∇u|p dx


2

p(1−2α)


With the re-use of the inequality (21) where d = 1 + 1

H(0)
, v = 2

p(1−2α)
< 1,since α < p−2

2p , we obtain

∫
Ω

|∇u|p dx


2

p(1−2α)

≤ d
[
‖∇u‖pp +H (t)

]
Thus, (28) becomes ∣∣∣∣∣∣

∫
Ω

uutdx

∣∣∣∣∣∣
1/(1−α)

≤ C
(
H (t) + ‖ut‖2 + ‖∇u‖pp

)
. (30)

Inserting (27) and (30) into (26), it follows that

L (t)
1

1−α ≤

H (t) + ‖ut‖2 + ‖∇u‖pp + ‖u‖pp +

∫
Ω

up ln |u| dx

 . (31)

By associatining (31) and (25) we arrive at

L′ (t) ≥ ξL
1

1−α (t) (32)

where ξ is a positive constant. �

Integration of (32) over (0, t) we reach

L
α

1−α (t) ≥ 1

L−
α

1−α (0)− ξαt
1−α

Therefore the solutions blows up within a time given by the estimate (10) above.
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