82

Conference Proceeding Science and Technology, 3(1), 2020, 82-86

Conference Proceeding of 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020).

Finitely g-Supplemented Modules

Celil Nebiyev¹ Hasan Hüseyin Ökten^{2,*}

¹ Department of Mathematics, Ondokuz Mayıs University, 55270, Kurupelit, Atakum, Samsun, Turkey, ORCID:0000-0002-7992-7225

² Technical Sciences Vocational School, Amasya University, Amasya, Turkey, ORCID:0000-0002-7886-0815

* Corresponding Author E-mail: hokten@gmail.com

Abstract: Let M be an R-module. If every finitely generated submodule of M has a g-supplement in M, then M is called a finitely g-supplemented (or briefly fg-supplemented) module. In this work, some properties of these modules are investigated.

Keywords: Essential Submodules, g-Small Submodules, Supplemented Modules, g-Supplemented Modules.

1 Introduction

Throughout this paper all rings are associative with identity and all modules are unital left modules.

Let R be a ring and M be an R-module. We denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If L = Mfor every submodule L of M such that M = N + L, then N is called a *small* (or *superfluous*) submodule of M and denoted by $N \ll M$. A module M is said to be *hollow* if every proper submodule of M is small in M. M is said to be *local* if M has a proper submodule which contains all proper submodules. A submodule N of an R-module M is called an *essential* submodule, denoted by $N \trianglelefteq M$, in case $K \cap N \neq 0$ for every submodule $K \neq 0$, or equivalently, $N \cap L = 0$ for $L \leq M$ implies that L = 0. Let M be an R-module and K be a submodule of M. K is called a generalized small (briefly, g-small) submodule of M if for every essential submodule T of M with the property M = K + T implies that T = M, we denote this by $K \ll_g M$ (in [6] it is called an *e-small submodule* of M and denoted by $K \ll_e M$). A module M is said to be generalized hollow (briefly, g-hollow) if every proper submodule of M is g-small in M. Let M be an R-module and $U, V \leq M$. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement of U in M. M is said to be supplemented if every submodule of M has a supplement in M. M is said to be finitely supplemented (briefly, f-supplemented) if every finitely generated submodule of M has a supplement in M. Let M be an R-module and $U, V \leq M$. If M = U + V and M = U + T with $T \trianglelefteq V$ implies that T = V, or equivalently, M = U + V and $U \cap V \ll_g V$, then V is called a g-supplement of U in M. M is said to be g-supplemented if every submodule of M has a g-supplement in M. The intersection of maximal submodules of an R-module M is called the *radical* of M and denoted by RadM. If M have no maximal submodules, then we denote RadM = M. The intersection of essential maximal submodules of an R-module M is called a generalized radical (briefly, g-radical of M and denoted by Rad_qM (in [6], it is denoted by Rad_eM). If M have no essential maximal submodules, then we denote $Rad_qM = M$. An R-module M is said to be *noetherian* if every submodule of M is finitely generated.

More details about supplemented modules are in [1]-[5]. More informations about g-small submodules and g-supplemented modules are in [2]-[3].

Lemma 1. Let M be an R-module.

- (1) If $K \leq L \leq M$, then $K \leq M$ if and only if $K \leq L \leq M$.
- (2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. If $K \leq N$, then $f^{-1}(K) \leq M$.
- (3) For $N \leq K \leq M$, if $K/N \leq M/N$, then $K \leq M$.
- (4) If $K_1 \leq L_1 \leq M$ and $K_2 \leq L_2 \leq M$, then $K_1 \cap K_2 \leq L_1 \cap L_2$.
- (5) If $K_1 \leq M$ and $K_2 \leq M$, then $K_1 \cap K_2 \leq M$.

Proof: See [5, 17.2].

Lemma 2. Let M be an R-module. The following assertions are hold.

(1) If $K \leq L \leq M$, then $L \ll M$ if and only if $K \ll M$ and $L/K \ll M/K$.

(2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. If $K \ll M$, then $f(K) \ll N$. The converse is true if f (2) Let K be an R -model and $g \in M$. (3) If $K \ll M$, then $\frac{K+L}{L} \ll \frac{M}{L}$ for every $L \le M$. (4) If $L \le M$ and $K \ll L$, then $K \ll M$.

- (5) If $K_1, K_2, ..., K_n \ll M$, then $K_1 + K_2 + ... + K_n \ll M$.

(6) Let $K_1, K_2, ..., K_n, L_1, L_2, ..., L_n \leq \overline{M}$. If $K_i \ll L_i$ for every i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll L_1 + L_2 + ... + L_n$.

Proof: See [1, 2.2] and [5, 19.3].

ISSN: 2651-544X http://dergipark.gov.tr/cpost

© CPOST 2020

- Lemma 3. Let M be an R-module. The following assertions are hold. (1) Every small submodule in M is g-small in M. (2) If $K \leq L \leq M$ and $L \ll_g M$, then $K \ll_g M$ and $L/K \ll_g M/K$. (3) Let N be an R-module and $f: M \to N$ be an R-module homomorphism. If $K \ll_g M$, then $f(K) \ll_g N$. (4) If $K \ll_g M$, then $\frac{K+L}{L} \ll_g \frac{M}{L}$ for every $L \leq M$. (5) If $L \leq M$ and $K \ll_g L$, then $K \ll_g M$. (6) If $K_1, K_2, ..., K_n \ll_g M$, then $K_1 + K_2 + ... + K_n \ll_g M$.
 - (7) Let $K_1, K_2, ..., K_n, L_1, L_2, ..., L_n \leq M$. If $K_i \ll_g L_i$ for every i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll_g L_1 + L_2 + ... + L_n$.

Proof: See [2]-[3]-[4].

Lemma 4. Let M be an R-module. The following assertions are hold.

- (1) $RadM \leq Rad_g M$.
- (2) $Rad_g M = \sum_{L \ll_g M} L.$
- (3) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. Then $f(Rad_gM) \le Rad_gN$. (4) For $K, L \le M, \frac{Rad_gK+L}{L} \le Rad_g\frac{K+L}{L}$. (5) If $N \le M$, then $Rad_gN \le Rad_gM$.

- (6) For $K, L \leq M$, $Rad_g K + Rad_g L \leq Rad_g (K + L)$.
- (7) $Rx \ll_g M$ for every $x \in Rad_g M$.

Proof: [2]-[3]-[4].

2 **Finitely g-Supplemented Modules**

Lemma 5. Let V be a supplement of U in M. Then

- (1) If W + V = M for some $W \leq U$, then V is a supplement of W in M.
- (2) If M is finitely generated, then V is also finitely generated.
- (3) If U is a maximal submodule of M, then V is cyclic and $U \cap V = RadV$ is the unique maximal submodule of V.
- (4) If $K \ll M$, then V is a supplement of U + K in M.
- (5) For $K \ll M$, $K \cap V \ll V$ and hence $RadV = V \cap RadM$. (6) Let $K \leq V$. Then $K \ll V$ if and only if $K \ll M$. (7) For $L \leq U$, $\frac{V+L}{L}$ is a supplement of U/L in M/L.

Proof: See [5, 41.1].

Lemma 6. Let V be a g-supplement of U in M. Then

- (1) If W + V = M for some $W \leq U$, then V is a g-supplement of W in M.
- (2) If every nonzero submodule of M is essential in M, then V is a supplement of U in M.
- (3) If U is an essential maximal submodule of M, then $U \cap V = RadV$ is the unique essential maximal submodule of V.
- (4) If $K \ll_g M$ and $U \trianglelefteq M$, then V is a g-supplement of U + K in M.
- (5) Let $U \leq M$ and $K \ll_g M$. Then $K \cap V \ll_g V$ and hence $Rad_g V = V \cap Rad_g M$. (6) Let $U \leq M$ and $K \leq V$. Then $K \ll_g V$ if and only if $K \ll_g M$.
- (7) For $L \leq U$, $\frac{V+L}{L}$ is a g-supplement of U/L in M/L.

Proof: See [2]-[3]-[4].

Lemma 7. Let M be an R-module.

- (1) If $M = U \oplus V$ then V is a supplement of U in M. Also U is a supplement of V in M.
- (2) For $M_1, U \leq M$, if $M_1 + U$ has a supplement in M and M_1 is supplemented, then U also has a supplement in M.
- (3) Let $M = M_1 + M_2$. If M_1 and M_2 are supplemented, then M is also supplemented. (4) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also supplemented.
- (5) If M is supplemented, then M/L is supplemented for every $L \leq M$.
- (6) If M is supplemented, then every homomorphic image of M is also supplemented.
- (7) If M is supplemented, then M/RadM is semisimple.
- (8) Hollow and local modules are supplemented.
- (9) If M is supplemented, then every finitely M-generated module is supplemented.
- (10) $_{R}R$ is supplemented if and only if every finitely generated R-module is supplemented.

Proof: See [5, 41.2].

Lemma 8. Let M be an R-module.

- (1) If V is a supplement of U in M, then V is a g-suppement of U in M.
- (2) If $M = U \oplus V$ then V is a g-supplement of U in M. Also U is a g-supplement of V in M.
- (3) For $M_1, U \leq M$, if $M_1 + U$ has a g-supplement in M and M_1 is g-supplemented, then U also has a g-supplement in M.
- (4) Let $M = M_1 + M_2$. If M_1 and M_2 are g-supplemented, then M is also g-supplemented.
- (5) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is g-supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also g-supplemented. (6) If M is g-supplemented, then M/L is g-supplemented for every $L \leq M$.
- (7) If M is g-supplemented, then every homomorphic image of M is also g-supplemented.

Proposition 9. Every hollow module is fg-supplemented.

Proof: By Lemma 8, every hollow module is g-supplemented. Then by Proposition 8, every hollow module is fg-supplemented.

(8) If M is g-supplemented, then M/Rad_gM is semisimple.

(9) Hollow, local and g-hollow modules are g-supplemented.

(10) If M is g-supplemented, then every finitely M-generated module is g-supplemented.

(11) $_{R}R$ is g-supplemented if and only if every finitely generated R-module is g-supplemented.

Proof: See [2]-[3].

Definition 1. Let M be an R-module. If every finitely generated submodule of M has a g-supplement in M, then M is called a finitely g-supplemented (or briefly fg-supplemented) module.

Clearly we can see that every f-supplemented module is fg-supplemented.

Lemma 9. Let M be an R-module.

- (1) If M is supplemented, then M is f-supplemented.
- (2) If M is f-supplemented and L is a finitely generated submodule of M, then M/L is also f-supplemented.
- (3) If M is f-supplemented and L is a cyclic submodule of M, then M/L is also f-supplemented.
- (4) If M is f-supplemented and $L \ll M$, then M/L is also f-supplemented.
- (5) Let $f: M \longrightarrow N$ be an R-module epimorphism with K eff initely generated. If M is f-supplemented, then N is also f-supplemented.
- (6) Let $f: M \longrightarrow N$ be an R-module epimorphism with Kef cyclic. If M is f-supplemented, then N is also f-supplemented.
- (7) Let $f: M \longrightarrow N$ be an R-module epimorphism with $Kef \ll M$. If M is f-supplemented, then N is also f-supplemented.
- (8) If $RadM \ll M$, then every finitely generated submodule of M/RadM is a direct summand of M/RadM.
- (9) If RadM is finitely generated, then every finitely generated submodule of M/RadM is a direct summand of M/RadM.
- (10) If M is noetherian and f-supplemented, then M is supplemented.

Proof: See [5, 41.3].

Proposition 1. Let M be an f-supplemented module. Then M is fg-supplemented.

Proof: Let U be a finitely generated submodule of M. Since M is f-supplemented, then U has a supplement V in M. Since V is a supplement of U in M, by Lemma 8, V is a g-supplement of U in M. Hence M is fg-supplemented, as desired.

Proposition 2. Let M be an f-supplemented module and L be a finitely generated submodule of M. Then M/L is fg-supplemented.

Proof: Since M is an f-supplemented module and L is a finitely generated submodule of M, by Lemma 9, M/L is f-supplemented. Then by Proposition 1, M/L is fg-supplemented.

Proposition 3. Let M be an f-supplemented module and L be a cyclic submodule of M. Then M/L is fg-supplemented.

Proof: Since M is an f-supplemented module and L is a cyclic submodule of M, by Lemma 9, M/L is f-supplemented. Then by Proposition 1, M/L is fg-supplemented.

Proposition 4. Let M be an f-supplemented module and $L \ll M$. Then M/L is fg-supplemented.

Proof: Since M is an f-supplemented module and $L \ll M$, by Lemma 9, M/L is f-supplemented. Then by Proposition 1, M/L is fgsupplemented.

Proposition 5. Let $f: M \longrightarrow N$ be an *R*-module epimorphism and Kef be finitely generated. If M is f-supplemented, then N is fgsupplemented.

Proof: Since M is f-supplemented and Kef is finitely generated, by Lemma 9, N is f-supplemented. Then by Proposition 9, N is fg-supplemented.

Proposition 6. Let $f: M \longrightarrow N$ be an *R*-module epimorphism and Kef be cyclic. If M is f-supplemented, then N is fg-supplemented.

Proof: Since M is f-supplemented and Kef is cyclic, by Lemma 9, N is f-supplemented. Then by Proposition 9, N is fg-supplemented.

Proposition 7. Let $f: M \longrightarrow N$ be an R-module epimorphism and $Kef \ll M$. If M is f-supplemented, then N is fg-supplemented.

Proof: Since M is f-supplemented and $Kef \ll M$, by Lemma 9, N is f-supplemented. Then by Proposition 9, N is fg-supplemented.

Proposition 8. Every g-supplemented module is fg-supplemented.

Proof: Clear from definitions.

Proof: By Lemma 8, every local module is g-supplemented. Then by Proposition 8, every local module is fg-supplemented.	
Proposition 11. Every g-hollow module is fg-supplemented.	
Proof: By Lemma 8, every g-hollow module is g-supplemented. Then by Proposition 8, every g-hollow module is fg-supplemented.	
Proposition 12. Let $M = M_1 + M_2$. If M_1 and M_2 are g-supplemented, then M is fg-supplemented.	
<i>Proof:</i> Since M_1 and M_2 are g-supplemented, by Lemma 8, M is g-supplemented. Then by Proposition 8, M is fg-supplemented.	
Proposition 13. Let $M = M_1 + M_2 + + M_n$. If M_i is g-supplemented for every $i = 1, 2,, n$, then M is fg-supplemented.	
<i>Proof:</i> Since M_i is g-supplemented for every $i = 1, 2,, n$, by Lemma 8, M is g-supplemented. Then by Proposition 8, M is fg-supplemented.	ented.
Proposition 14. Let M be an R -module and $L \leq M$. If M is g-supplemented, then M/L is fg-supplemented.	
<i>Proof:</i> Since M is g-supplemented, by Lemma 8, M/L is g-supplemented. Then by Proposition 8, M/L is fg-supplemented.	

Proposition 15. Let M be a g-supplemented module. Then every homomorphic image of M is fg-supplemented.

Proof: Since M is g-supplemented, by Lemma 8, every homomorphic image of M is g-supplemented. Then by Proposition 8, every homomorphic image of M is fg-supplemented.

Proposition 16. Let M be a g-supplemented module. Then every finitely M-generated module is fg-supplemented.

Proof: Since M is g-supplemented, by Lemma 8, every finitely M-generated module is g-supplemented. Then by Proposition 8, every finitely M-generated module is fg-supplemented.

Proposition 17. Let $_{R}R$ be g-supplemented. Then every finitely generated R-module is fg-supplemented.

Proof: Since $_RR$ is g-supplemented, by Lemma 8, every finitely generated R-module is g-supplemented. Then by Proposition 8, every finitely generated R-module is fg-supplemented.

Proposition 18. Every supplemented module is fg-supplemented.

Proof: By Lemma 8, every supplemented module is g-supplemented. Then by Proposition 8, every supplemented module is fg-supplemented.

Proposition 19. Let $M = M_1 + M_2$. If M_1 and M_2 are supplemented, then M is fg-supplemented.

Proof: Since M_1 and M_2 are supplemented, by Lemma 7, M is supplemented. Then by Proposition 18, M is fg-supplemented.

Proposition 20. Let $M = M_1 + M_2 + ... + M_n$. If M_i is supplemented for every i = 1, 2, ..., n, then M is fg-supplemented.

Proof: Since M_i is supplemented for every i = 1, 2, ..., n, by Lemma 7, M is supplemented. Then by Proposition 18, M is fg-supplemented.

Proposition 21. Let M be an R-module and $L \leq M$. If M is supplemented, then M/L is fg-supplemented.

Proof: Since M is supplemented, by Lemma 7, M/L is supplemented. Then by Proposition 18, M/L is fg-supplemented.

Proposition 22. Let M be a supplemented module. Then every homomorphic image of M is fg-supplemented.

Proof: Since M is supplemented, by Lemma 7, every homomorphic image of M is supplemented. Then by Proposition 18, every homomorphic image of M is fg-supplemented.

Proposition 23. Let M be a supplemented module. Then every finitely M-generated module is fg-supplemented.

Proof: Since M is supplemented, by Lemma 7, every finitely M-generated module is supplemented. Then by Proposition 18, every finitely M-generated module is fg-supplemented.

Proposition 24. Let $_{R}R$ be supplemented. Then every finitely generated R-module is fg-supplemented.

 \square

Proof: Since $_RR$ is supplemented, by Lemma 7, every finitely generated R-module is supplemented. Then by Proposition 18, every finitely generated R-module is fg-supplemented.

Proposition 25. Let M be an fg-supplemented R-module. If M is noetherian, then M is g-supplemented.

Proof: Let $U \leq M$. Since M is noetherian, U is finitely generated and since M is fg-supplemented, U has a g-supplement in M. Hence M is g-supplemented.

Lemma 10. Let M be an fg-supplemented R-module and N be a finitely generated submodule of M. Then M/N is fg-supplemented.

Proof: Let U/N be a finitely generated submodule of M/N. Since U/N finitely generated, there exists a finitely generated submodule K of M such that U = K + N. Since K and N are finitely generated, U = K + N is also finitely generated. By hypothesis, U has a g-supplement V in M. Then by [2, Lemma 4], (V + N)/N is a g-supplement of U/N in M/N. Hence M/N is fg-supplemented.

Corollary 1. Let M be an fg-supplemented R-module and N be a cyclic submodule of M. Then M/N is fg-supplemented.

Proof: Clear from Lemma 10.

Corollary 2. Let $f: M \longrightarrow N$ be an R-module epimomorphism and Kef be finitely generated. If M is fg-supplemented, then N is also fg-supplemented.

Proof: Since M is fg-supplemented and Kef is finitely generated, by Lemma 10, M/Kef is fg-supplemented. Then by $M/Kef \cong N, N$ is also fg-supplemented.

Corollary 3. Let $f: M \longrightarrow N$ be an R-module epimomorphism with cyclic kernel. If M is fg-supplemented, then N is also fg-supplemented.

Proof: Clear from Corollary 2.

Lemma 11. Let M be an fg-supplemented R-module and $N \ll M$. Then M/N is fg-supplemented.

Proof: Let U/N be a finitely generated submodule of M/N. Then there exists a finitely generated submodule K of M such that U = K + N. Since M is fg-supplemented, K has a g-supplement V in M. Here M = K + V and $K \cap V \ll_g V$. Since $K \leq U$, M = K + V = U + V. Let M = U + T with $T \trianglelefteq V$. Then M = U + T = K + N + T and since $N \ll M$, K + T = M. Since V is a g-supplement of K in Mand $T \trianglelefteq V$, by definition, T = V. Hence V is a g-supplement of U in M. By [2, Lemma 4], (V + N)/N is a g-supplement of U/N in M/N. Hence M/N is fg-supplemented.

Corollary 4. Let $f: M \longrightarrow N$ be an R-module epimomorphism with small kernel. If M is fg-supplemented, then N is also fg-supplemented.

Proof: Since M is fg-supplemented and $Kef \ll M$, by Lemma 11, M/Kef is fg-supplemented. Then by $M/Kef \cong N$, N is also fg-supplemented.

3 References

- 1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
- B. Koşar, C. Nebiyev, N. Sökmez, g-Supplemented Modules, Ukrainian Math. J., 67(6) (2015), 861-864.
- 3 B. Koşar, C. Nebiyev, A. Pekin, A Generalization of g-Supplemented Modules, Miskolc Math. Notes, 20(1) (2019), 345-352.
- 4 C. Nebiyev, On a Generalization of Supplement Submodules, Int. J. of Pure and Appl. Math. 113 (2) (2017), 283-289.
- 5 R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
- 6 D. X. Zhou, X. R. Zhang, Small-Essential Submodules and Morita Duality, Southeast Asian Bull. of Math., 35 (2011), 1051-1062.