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Abstract: In this paper we introduce the concepts of Wijsman ρ−statistical convergence, Wijsman strongly ρ−statistical conver-
gence and Wijsman ρ−strongly p− summability. Also, the relationship between these concepts are given.
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1 Introduction

The concept of statistical convergence was introduced by Steinhaus [24] and Fast [16]. Schoenberg [23] established some basic properties of
statistical convergence and studied the concept as a summability method. Later on it was further investigated from the sequence space point of
view and linked with summability theory by Altınok et al. [1], Bhardwaj and Dhawan [2], Caserta et al. [3], Çınar et al. [9], Connor [4], Çakallı
et al. ([5]-[6]-[7]), Çolak ([10]-[11]), Et et al. ([12]-[13]-[14]-[15]), Fridy [17], Gadjiev and Orhan [18], Işık and Akbaş [19], Salat [21], Savaş
and Et [22], Şengül [25] and many others. A real or complex number sequence x = (xk) is said to be statistically convergent to ` if for every
ε > 0

lim
n→∞

1

n
|{k ≤ n : |xk − `| ≥ ε}| = 0.

Let (X,σ) be a metric space. The distance d(x,A) from a point x to a non-empty subset A of (X,σ) is defined to be

d(x,A) = inf
y∈A

σ(x, y).

If supk d(x,Ak) <∞(for each x ∈ X), then we say that the sequence {Ak} is bounded. The set of all bounded sequences of sets denoted
L∞. The concepts of Wijsman statistical convergence and boundedness for the sequence {Ak} were given by Nuray and Rhoades [20] as
follows.

Let (X,σ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X(k ∈ N) we say that the sequence {Ak} is Wijsman statistical
convergent to A if the sequence (d(x,Ak)) is statistically convergent to d(x,A), i.e., for ε > 0 and for each x ∈ X

lim
n→∞

1

n
|{k 6 n : |d (x,Ak)− d (x,A)| ≥ ε}| = 0.

Ulusu and Nuray ([26],[27]) defined Wijsman lacunary statistical convergence of sequence of sets, and considered its relation with Wijsman
statistical convergence.

The concept of ρ− statistical convergence was defined by Çakallı [8]. A sequence (xk) of points in R, the set of real numbers, is called
ρ−statistically convergent to ` if

lim
n→∞

1

ρn
|{k ≤ n : |xk − `| ≥ ε}| = 0

for each ε > 0 where ρ = (ρn) is a non-decreasing sequence of positive real numbers tending to∞ such that lim supn
ρn
n <∞, ∆ρn = O(1)

and ∆ρn = ρn+1 − ρn for each positive integer n. In this case we write Sρ − limxk = ` or xk → ` (Sρ).

If α is a sequence such that αk satisfies property P for all k except a set of natural density zero, then we say that αk satisfies P for "almost
all k ", and we abbreviate this by "a.a.k."

2 Main Results

Definition 1. Let (X,σ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is Wijsman ρ−
summable to A if for each x ∈ X
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lim
n→∞

1

ρn

n∑
k=1

d (x,Ak) = d (x,A)

where ρ = (ρn) is a non-decreasing sequence of positive real numbers tending to∞ such that lim supn
ρn
n <∞, ∆ρn = O(1) and ∆ρn =

ρn+1 − ρn for each positive integer n.

In this case, we write Ak −→ A(WNρ).

Definition 2. Let (X,σ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is Wijsman ρ−
statistical convergent to A ( or WSρ− convergent to A ) if for each ε > 0 and x ∈ X,

lim
n→∞

1

ρn
|{k 6 n : |d (x,Ak)− d (x,A)| ≥ ε}| = 0

where ρ = (ρn) is a non-decreasing sequence of positive real numbers tending to∞ such that lim supn
ρn
n <∞, ∆ρn = O(1) and ∆ρn =

ρn+1 − ρn for each positive integer n.

In this case, we write Ak −→ A(WSρ).

If ρ = (ρn) = n, for all n ∈ N, Wijsman ρ- statistical convergent is coincide Wijsman statistical convergence defined by Nuray and Rhoades
[20].

Definition 3. Let (X,σ) be a metric space. For any non-empty closed subset Ak ⊂ X, we say that the sequence {Ak} is Wijsman ρ−
statistically Cauchy if for each ε > 0, there exists a number N(= Nε) such that for each x ∈ X,

lim
n→∞

1

ρn
|{k 6 n : |d (x,Ak)− d (x,AN )| ≥ ε}| = 0.

Definition 4. Let (X,σ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is said to be
Wijsman ρ− strongly p− summable to A for each positive real number p and for each x ∈ X,

lim
n→∞

1

ρn

n∑
k=1

|d (x,Ak)− d (x,A)|p = 0.

If p = 1, Wijsman ρ− strongly p− summable reduces to Wijsman ρ− strongly summable and we write Ak −→ A ((WS, [ρ])).

Theorem 1. (X,σ) be a metric space and A,Ak (for all k ∈ N) be non-empty closed subsets of X, then
i) {Ak} → A(WS, [ρ])⇒ Ak → A(WSρ) and (WS, [ρ]) is a proper subset of WSρ,
ii){Ak} ∈ L∞ and Ak → A(WSρ)⇒ Ak → A ((WS, [ρ])),
iii) WSρ ∩ L∞ = (WS, [ρ]) ∩ L∞.

Proof: i) The inclusion part of proof is easy. In order to show that the inclusion (WS, [ρ]) ⊆WSρ is proper, we define a sequence {Ak} as
follows

Ak =

{
{
√
k}, if k = n2

{0}, if otherwise.

Let (R, d) be a metric space such that for x, y ∈ X, d (x, y) = |x− y| and ρ = (ρn) = n. We have for every ε > 0, x > 0

1

ρn
|{k 6 n : |d (x,Ak)− d (x, {0})| ≥ ε}| ≤

√
n

n
→ 0,

as n→∞, we get

lim
n→∞

1

ρn
|{k 6 n : |d (x,Ak)− d (x, {0})| ≥ ε}| = 0

i.e. Ak → {0} (WSρ) .

On the other hand, for x > 0,

1

ρn

∑
k6n

|d (x,Ak)− d (x, {0})| =
√
n (
√
n+ 1)

n
→ 1.

So Ak 9 {0} ((WS, [ρ])).

ii) ){Ak} ∈ L∞ and Ak → A(WSρ). Then, we have |d (x,Ak)− d (x,A)| 6M
for each x ∈ X and all k 6 n. Given ε > 0, we get
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1

ρn

∑
k6n

|d (x,Ak)− d (x,A)| = 1

ρn

n∑
k=1

|d(x,Ak)−d(x,A)|>ε

|d (x,Ak)− d (x,A)|

+
1

ρn

n∑
k=1

|d(x,Ak)−d(x,A)|<ε

|d (x,Ak)− d (x,A)|

6
M

ρn
|{k 6 n : |d (x,Ak)− d (x,A)| ≥ ε}|+ ε.

Therefore we have the result.
iii) Follows from i) and ii).

�

Corollary 1. If lim inf ρnn > 1, then W − limAk = A⇒ Ak −→ A(WSρ).

Remark 1. The converse of Corollary 1 is not true, in general. For this, let X = R consider a sequence {Ak} as

Ak :=

{
{x ∈ R : 2 6 x 6 k}, if k > 2 and k is a square integer,
{1}, if otherwise.

This sequence is not Wijsman convergent. But if we consider (ρn) = (n),

1

ρn
|{k ≤ n : |d (x,Ak)− d (x, {1}) | ≥ ε}| 6

√
n

n
→ 0 (n→∞).

This sequence is Wijsman ρ− statistically convergent to set A = {1}.

Theorem 2. Let ρ = (ρn) be a non-decreasing sequence of positive real numbers tending to∞ such that lim supn
ρn
n <∞,∆ρn = O(1)

and ∆ρn = ρn+1 − ρn for each positive integer n and ρn
n ≥ 1 for all n ∈ N. If the sequence {Ak} is Wijsman strongly ρ− summable to A,

then {Ak} is Wijsman ρ− statistically convergent to A.

Proof:
Let st− limW Ak = A. Given ε > 0, we get

1

n

∑
k6n

|d (x,Ak)− d (x,A)| = ρn
n

1

ρn

∑
k6n

|d (x,Ak)− d (x,A)|

>
1

ρn
|{k 6 n : |d (x,Ak)− d (x,A)| ≥ ε}| .

This proves the proof.
�

Theorem 3. Let (X,σ) be a metric space. The following statements are equivalent;
i) {Ak} is a Wijsman ρ− statistically convergent,
ii) {Ak} is a Wijsman ρ− statistically Cauchy sequence,
iii) {Ak} is a sequence for which there is a Wijsman convergent sequence {Bk} such that {Ak} = {Bk} a.a.k.

Proof: Omitted. �

Definition 5. Let (X,σ) be a metric space. For any non-empty closed subsetsA,Ak ⊂ X, we say that the sequence {Ak} is Wijsman ρ-almost
convergent to A if for each x ∈ X

lim
n→∞

1

ρn

n∑
k=1

d (x,Ak+i) = d (x,A)

uniformly in i and we write Ak −→ A ([WNρ]).

Definition 6. Let (X,σ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is said to be
Wijsman ρ-strongly p− almost convergent to A if p positive real number and for each x ∈ X,

lim
n→∞

1

ρn

n∑
k=1

|d (x,Ak+i)− d (x,A)|p = 0

uniformly in i.
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If p = 1, Wijsman ρ− strongly p− almost convergent is said to be Wijsman strongly ρ− almost convergent and we write Ak −→
A ([WS, [ρ]]).

Definition 7. Let (X,σ) be a metric space. For any non-empty closed subset Ak ⊂ X, we say that the sequence {Ak} is Wijsman almost ρ−
statistically convergent to A if for each ε > 0 and for each x ∈ X,

lim
n→∞

1

ρn
|{k 6 n : |d (x,Ak+i)− d (x,A)| ≥ ε}| = 0

uniformly in i.

Theorem 4. Let (X,σ) be a metric space and p be a positive real number. Then, for any non-empty closed subsets A,Ak ⊂ X,
i) {Ak} is Wijsman almost ρ-statistical convergent to A if it is Wijsman ρ− strongly p− almost convergent to A,
ii) If {Ak} is bounded and Wijsman almost ρ− statistical convergent to A, then it is Wijsman ρ− strongly p− almost convergent to A.

Proof: The proof is similar to the Theorem 1. �

It is easy to see that C ⊂ [WNρ] ⊂ [WS, [ρ]] ⊂ L∞ where C, [WNρ], [WS, [ρ]] and L∞ denote the sets of the all Wijsman convergent,
Wijsman ρ− almost convergent, Wijsman strongly ρ− almost convergent and bounded sequences of sets.
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