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Abstract: For the natural number n > 1, Euler function gives the amount of natural numbers which are smaller than n and co-prime
to n. However, no work has been done to find the values of these numbers. In this study, the solution method of this problem which
is the Euler function cannot respond, has been found. Groups, Cyclic Groups, Group Homomorphism and Group Isomorphism
are used in this method. Additionally, Modular Arithmetic and the Chinese Remainder Theorem are used. At least two levels of
encryption algorithm have been developed thanks to the method found. In this algorithm, it is aimed to prevent related companies
from backing up, especially in social media and various communication applications such as WhatsApp.
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1 Introduction

For the natural number n >1,
n = ax.by.cz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . is number n’s prime factorization;
The formula "φ(n) = (ax − ax−1).(by − by−1).(cz − cz−1). . . " gives the value of the Euler function.

• When n is prime number; φ(n) = n− 1.
• When n is the odd natural number; φ(2n) = φ(n).
• When n is an even natural number; φ(2n) = 2. φ(n).
• When n = 2k, k ∈ Z+; φ(n) = n

2 .

Euler function gives the amount of natural numbers which are smaller than n and co-prime to n. However, no work has been done to find the
values of these numbers. This study focuses on this problem that the Euler function cannot respond. In order to find these numbers; firstly, the
generators of two isomorphic groups were acted on. Then, the study attempted to develop an encryption algorithm based on generators for three
or more groups that are isomorphic to each other [1].

2 Method

2.1 Group and Group Types

In the (G, ∆) binary operation, the transaction that satisfies the following conditions specifies a group.

• For ∀a, b ∈ G; a∆b ∈ G expression, that is, the closure property must be provided.
• For ∀a ∈ G, it must be e ∈ G, which provides a∆e = e∆a = a, and this element is called a neutral element.
• The element a−1 ∈ G that provides “a∆a−1 = a−1∆a = e” for ∀a ∈ G is the inverse element.
• For ∀a, b, c ∈ G; (a∆b)∆c = a∆(b∆c) associative property must be provided. Binary operations that provide these features are called
Abelian groups [2].

2.1.1 Zn Total Groups: The (Z,+) total group is a group which is under addition process defined in integers.
The (Z,+) Total group is a group under addition process defined in integers.
(Zn,+) Total group is the group that accepts the remainder class of the number n.
The set Z7 = {0, 1, 2, 3, 4, 5, 6} is the group formed under the addition process.

2.1.2 Cartesian Product Groups: (ZnXZm,+) group is the additive group that accepts the Cartesian product of
Zn = {0, 1, 2, . . . . . . . . . . . . , n− 1} and Zm = {0, 1, 2, . . . . . . . . . . . . ,m− 1} sets. Similarly, the Cartesian Product group can be written
eternally as ZnXZmXZp , ZnXZmXZpXZt. . . .
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2.1.3 Cyclic Groups: In group (G, ∗), it is called the group that satisfies the condition of< ā >= G including ∃a ∈ G. The elements "a"
in this group are called generators. If a group is cyclic, it must be an Abelian group.

2.2 Group Homomorphism

Let (G,∆) and (H, ∗) be two groups.
f : G→ H , f function,
∀a, b ∈ G; If f(a∆b) = f(a) ∗ f(b) satisfies the condition, it is called group homomorphism.

• If the f function is the Overlying Function; it is called epimorphism.
• If the domain and image set are the same, the f function is called atomorphism.
• If f function is injective and onto function; it is called isomorphism.

2.2.1 Group Isomorphism: For the isomorphism defined as f : G→ H , the following can be said;

• The G and H groups either both of the groups are cyclic groups or none are.
• Both groups must be either Abelian groups or non-Abelian groups.
• The order of the two groups must be the same.
• Both groups must be either countable groups or uncountable groups.

2.3 Properties of Two Isomorphic and Cyclic Groups

Let (G,∆) and (H, ∗) be two cyclic groups. If these two groups are isomorphic, the number of generators of both groups is the same. In
addition, the generators in both groups match exactly.

2.4 Zn and ZmXZp Cyclic-Isomorph Groups

Numbers that are smaller than n and co-prime to n, are actually generators of the Zn group. If an isomorphic ZmXZp group to the Zn group
is found, the relationship between generators of that group can be analyzed.

• Example 1: Z6 and Z2XZ3 groups are isomorphic to each other. Let’s create the group table of both groups.

Fig. 1: Table-1

When two group tables are examined,

• In the top row, the generators are in the same place and match one each.
• The positions of the generators in the group tables are the same and match exactly.

2.5 Finding Zn Generator From Cartesian Product Group Generator

Let there be two isomorphic groups. We can find the generator in the Zn group of a generator taken from the Cartesian product group.

• Example 2: Let’s find a number co-prime to 60 and smaller than 60.

Solution 2: Z60 group and Z4XZ15 group are isomorphic to each other. Let’s get a generator from the group Z4XZ15. Generator (3, 7) is
actually the generator that is formed in the group table Z4XZ15 by summing the number (1, 1), for n times.

n.(1, 1) ≡ (3, 7)(mod(4, 15))

(n, n) ≡ (3, 7)(mod(4, 15))⇒ n ≡ 3(mod4)
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Fig. 2: Table-2

n ≡ 7(mod15)

n ≡ 3(mod4)⇒ n = 4k + 3, k ∈ Z (1)

n ≡ 7(mod15)⇒ n = 4k + 3 ≡ 7(mod15)
⇒ 4k ≡ 4(mod15)
⇒ k ≡ 1(mod15)

⇒ k = 15m+ 1, m ∈ Z (2)

If (1) in (2) is written in place;
It is n = 4k + 3 = 4(15m+ 1) + 3 = 60m+ 7. The number n corresponds to the "7" generator in Z60. It is co-prime to 60.

• Example3: Let’s find a number co-prime to 120 and smaller than 120.

Solution3: The group that is isomorphic to the Z120 group is Z3XZ5XZ8.
Let’s take a generator from the Cartesian product group. Let this be generator (2, 3, 7).
n. (1, 1, 1) ≡ (2, 3, 7)(mod(3, 5, 8))
n ≡ 2 (mod3)
n ≡ 3 (mod5)
It is n ≡ 7 (mod8).

n ≡ 2 (mod3)⇒ n = 3k + 2, k ∈ Z (3)

3k + 2 ≡ 3 (mod5)⇒ 3k ≡ 1 (mod5)
⇒ k ≡ 2 (mod5)

⇒ k = 5t+ 2, t ∈ Z (4)

If (3) in (4) is written in place;
n = 3 (5t+ 2) + 2 = 15t+ 8
n = 15t+ 8 ≡ 7 (mod8)⇒ 15t ≡ −1 (mod8)
⇒ −t ≡ −1 (mod8)
⇒ t ≡ 1 (mod8)

⇒ t = 8m+ 1, m ∈ Z (5)

It is n = 15(8t+ 1) + 8 = 120t+ 23. In Z120; 23 was found as generator. 23 and 120 are co-prime numbers.

3 Results

3.1 Finding Co-prime Numbers

Numbers which are smaller than "n > 1" natural number and co-prime to n; if Zn group and ZmXZpXZt Cartesian product group is
isomorphic to each other, it can be found easily with the help of generators. It can also be written as a function.

• Example 4: Let Zn group and ZmXZpXZt group be isomorphic groups. Taken from the Cartesian product group (y, z, r); for all
generators,

f(x) =


x ≡ y(mod m)

x ≡ z(mod p)
x ≡ r(mod t)

The function f (x) is the function that gives the co-prime to n and smaller than n.
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3.2 Reaching Zn Group From Cartesian Product Groups

n = p.q.r.m.t.x.y;
Let ZpXZqXZrXZmXZtXZxXZy Cartesian product be an isomorph to the Zn group. For the generator " (a, b, c, d, e, f , g)" taken from
the Cartesian product group,

The generator can find in the group Zp.qXZrXZmXZtXZxXZy .

The generator can find in the group Zp.q.rXZmXZtXZxXZy.

The generator can find in the group Zp.q.r.mXZtXZxXZy .

The generator can find in the group Zp.q.r.m.tXZxXZy.

The generator can find in the group Zp.q.r.m.t.xXZy.

The generator can find in the group Zp.q.r.m.t.x.y = Zn.

This number gives the numbers co-prime to n and smaller than n.

3.3 Creating an Algorithm

This algorithm is primarily prepared at the simplest level. If necessary, any number n with coprime 256 elements can be determined and
algorithms can be defined in different groups.

As can be seen in (Table-3), while the number 816 is chosen, it is aimed to have 256 co-prime numbers. Because the number of ASCII
characters is 256.

3.3.1 First Encryption with Z3XZ16XZ17 Group: In this encryption, firstly, character codes in (Table-3) created according to the
generators of the Z816 group that is isomorphic to Z3XZ16XZ17 group, will be used.

• Example 5: Let’s encrypt the word "Ahmet" in the given group. First of all, the character codes of the letters are as follows;
"A = 205", "h = 365", "m = 347", "e = 319", "t = 371". Since these numbers are generators of the Z816 number, the matching generators in
Z3XZ16XZ17 will be passwords.
• When 205.(1, 1, 1) ≡ (x, y, z)(mod(3, 16, 17)) is found, the generator becomes (1, 13, 1).
• When 365.(1, 1, 1) ≡ (x, y, z)(mod(3, 16, 17)) is found, the generator becomes (2, 13, 8).

When the operations are continued; It is encrypted in Table-4.

3.3.2 Decrypting the {Z3XZ16XZ17} Group: Each password in (Table-4), the generator, has the generator in Z816. The value of this
generator makes it possible to find out which character corresponds to from the character code table.

• Example 6: Let’s find out which character the password (2, 13, 8) in (Table-4) belongs to.

x ≡ 2 (mod3)
x ≡ 13 (mod16)
x ≡ 8 (mod17) .

x ≡ 2 (mod3)⇒ x = 3k + 2, k ∈ Z (6)

x ≡ 13 (mod16)⇒ 3k + 2 ≡ 13 (mod16)
⇒ 3k ≡ 11 (mod16)
⇒ 3k ≡ 27 (mod16)
⇒ k ≡ 9 (mod16)

⇒ k = 16m+ 9,m ∈ Z (7)

If (7) in (6) is written in place;
x = 3.(16m+ 9) + 2

x = 48m+ 29 (8)

x = 48m+ 29 ≡ 8 (mod17)
⇒ 14m ≡ −21 (mod17)
⇒ −3m ≡ −21 (mod17)
⇒ m ≡ 7 (mod17)

⇒ m = 17p+ 7, p ∈ Z (9)

If (9) in (8) is written in place;
x = 48. (17p+ 7) + 29
x = 816p+ 365.
The number 365 becomes the generator in Z816 and is the code of the letter "h" in (Table-3).

3.3.3 Second (Level) Encryption in Z48XZ17 group: Character codes received according to the Z816 group are encrypted according to
the Z3XZ16XZ17 group. The encrypted text is encrypted again according to the Z48XZ17 group.

© CPOST 2020 187



Fig. 3: Table-3

Fig. 4: Table-4

• Example 7: Let’s find the equivalent of the generator (2, 11, 7), which is the encrypted version of the letter "m" in (Table-4), to the generator
in Z48XZ17.

x ≡ 2 (mod3)
x ≡ 11 (mod16)
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x ≡ 2 (mod3)⇒ x = 3k + 2, k ∈ Z (10)

3k + 2 ≡ 11 (mod16) 3k ≡ 9 (mod16)

k ≡ 3 (mod16)⇒ k = 16t+ 3, t ∈ Z (11)

If (11) in (10) is written in place;
x = 3 (16t+ 3) + 2 = 48t+ 11.
The number 11 is found as a generator in Z48.
Accordingly, the second encryption is made in the case of (2, 11, 7)→ (11, 7).

Fig. 5: Table-5

3.3.4 Decryption in Z48XZ17 Group: When the text encrypted for the second time in Z48XZ17 group is decoded according to Z816, it
is decrypted.

• Example 8: In (Table-5), let’s decrypt the encrypted character (31, 13).

x ≡ 31 (mod48)
x ≡ 13 (mod17)

x ≡ 31 (mod48)⇒ x = 48t+ 31, t ∈ Z (12)

48t+ 13 ≡ 13 (mod17)
−3t ≡ −28 (mod17)
−3t ≡ −11 (mod17)
t ≡ 11

3 (mod17)

t ≡ 15(mod17)⇒ t = 17m+ 15, m ∈ Z (13)

If (13) in (12) is written in place;
x = 48(17m+ 15) + 31 = 816m+ 319.
The number 319, which is the generator in the Z816 group, is the code of the letter "e" in the character code table.

4 Conclusion and Discussion

The following results were reached in this study;

• First of all, the value of co-prime to n and smaller than n can be found the number n, which is the Euler function cannot respond to. The
important thing here is that there is an isomorphic Cartesian product to the Zn group for the number n.
• When an isomorphic, Cartesian product group is found to Zn group, the function giving the co-prime numbers can be created from the
generators of the Cartesian product group.

For example; Let Zn be an isomorph to ZmXZpXZq group. The function that gives co-prime numbers;

f(x) =

 x ≡ a (modm), (a,m) = 1
x ≡ b (modp), (b, p) = 1
x ≡ c (modq), (c, q) = 1

The same function can be created with quart or more Cartesian product groups.

• The reasons for taking Z816 group while creating the algorithm can be explained as follows;

1. φ(816) = 256, ASCII characters are 256.
2. The Z816 group is isomorphic to the Z3XZ16XZ17 group, and isomorphic to the Z48XZ17 group. Two levels encryption can be done.
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• For the whole character of a text in the created algorithm, the generators of the Z3XZ16XZ17 group are written and the first encryption is
made, then the encrypted text is encrypted again in Z48XZ17 and sent to the third person.
• Thanks to this encryption, the second person, who is called the intermediary, encrypts it differently without deciphering password and sends
it to the receiver. Especially when the software is made, the company, which is an intermediary in applications such as WhatsApp, cannot make
backups.
• It is not necessary to take the Zn group as Z816 in this encryption algorithm. A very large number n is chosen such that the Cartesian
product group can contain more than three Cartesian products. Here, 256 numbers of n and co-prime numbers can be selected and given to
ASCII Characters as codes. In this way, more than two encryptions can be made.

Fig. 6: Template-1

In this encryption, there are four intermediaries, companies or institutions, and they send it again by encrypting it again without understanding
the content of the text.
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