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Abstract: Streamflow prediction is often a challenging issue for snow dominated basins where proper 

in-situ snow data might be limited and the snow physics is highly complex. The main aim of this study is 

to propose an alternative modeling solution by considering both accessibility of the inputs and simplicity 

of the model structure. We propose Wavelet Neural Network (WNN) model approach which takes 

probabilistic snow cover area in order to produce probabilistic streamflow in the mountainous basins. For 

the sake of the accessibility of the input data, snow probability maps are produced from cloud-free images 

of MODIS. The WNN model is trained and tested with observed hydro-meteorological data. Also, Multi-

Layer Perceptron Model (MLP) is used as a benchmark model. The approach is tested in a snow-dominated 

headwater (in altitude from 1559 to 3508 m) of Murat River which has a great importance as being one of 

the main tributaries of Euphrates River. According to the results, the approach is capable of detecting snow 

distribution in the area of interest and WNN is promising to generate probabilistic streamflow predictions. 

 

Keywords: Snowmelt modeling, Wavelet Neural Network, Euphrates River Basin, Streamflow prediction, 

Satellite snow data 
 

Dağlık Havzalarda Uydu Kar Verisi ve Dalgacık Sinir Ağı Tabanlı Olasılıklı Akım Modelleme 

Yaklaşımı 

 

Öz: Kar baskın havzalardaki akarsu akım tahminleri, uygun arazi kar verilerinin sınırlı oluşu ve kar 

fiziğinin oldukça karmaşık olması nedeniyle genellikle zorlayıcı bir konudur. Bu çalışmanın temel amacı 

hem girdilerin erişilebilirliğini hem de model yapısının basitliğini göz önünde bulundurarak alternatif bir 

modelleme çözümü önermektir. Önerilen Dalgacık Sinir Ağı (DSA) modeli yaklaşımı, nehir akımları 

üretmek için olasılıklı karla kaplı alanları girdi alarak dağlık havzalarda olasılıklı akım tahminleri 

üretebilmektedir. Girdi verilerinin erişilebilirliği adına, MODIS'in bulutsuz görüntülerinden kar olasılığı 

haritaları üretilmektedir. DSA modeli, gözlenmiş hidro-meteorolojik verilerle eğitilmiş ve test edilmiştir. 

Ayrıca, Çok-Katmanlı Perseptron Modeli (ÇKPM) de kıyaslama modeli olarak kullanılmıştır. Yaklaşım, 

Fırat Nehri'nin ana kolu olarak büyük önem taşıyan Murat Nehri'nin kar baskın üst havzasında (1559 ila 

3508 m yükseklikte) test edilmiştir. Sonuçlara göre, DSA yaklaşımı ilgi alanındaki kar dağılımını tespit 

ederek olasılıklı akım tahminleri üretme imkânı sağlamaktadır. 
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1. INTRODUCTION 

Predicting snowmelt runoff necessitates estimating snow components in mountainous 

catchments. Observation network is rather limited in many mountainous catchments, although 

dense station network is advised for proper measurement (WMO, 2008). This situation 

accelerated the use of remote sensing techniques and satellite data in snow hydrology studies. The 

satellite-based monitoring and processing of snow cover are well-known techniques.  Snow can 

be detected by optical satellites and processed in different algorithms. There are variety of 

satellites among which MODIS (Moderate Resolution Imaging Spectroradiometer) with 

visible/near infrared sensors on Terra and Aqua platforms provides processed Snow Cover Area 

(SCA) products since early 2000s with different spatial resolutions (Hall, et al. 2006). There are 

number of studies on the validation and use/application of these products in the world and in 

Turkey (Tekeli et al., 2005; Hall & Riggs, 2007; Parajka & Blöschl, 2008; Şorman et al., 2009; 

Şensoy & Uysal, 2012; Krajčí et al., 2014; Finger et al., 2015; Uysal et al., 2016). On the other 

hand, snow cover data does not represent the actual amount of water stored in a snowpack, 

therefore snow cover data is usually used together with hydrological tools to get snowmelt 

and/runoff depending on the purpose of applications. 

The use of SCA in different hydrological applications requires a systematic and continuous 

mapping of snow however in general there are discontinuities in satellite data set due to various 

realities as the presence of cloud cover in optical microwave satellites, cost and time constraints 

of acquiring and processing satellite data depending on the scale of the basin. Moreover, 

characterization of snow dynamics may require a general overview of snow conditions in the 

basin. In such circumstances probabilistic analysis of satellite snow cover data based on long term 

time series of available satellite observations would be a beneficial data source.      

Alternative to conceptual modeling approach, Artificial Neural Networks (ANN) as one of 

the machine learning models are sometimes preferable for solving large scale problems such as 

pattern recognition, nonlinear modeling, classification, association etc. Contrary to conceptual 

models, data-driven models require little knowledge of the physical processes modelled and rely 

on the data describing input and output characteristics, based on which they are able to generalize 

the process (Daliakopoulos & Tsanis, 2016). ANN as a multi-parameter nonlinear function that 

can be calibrated to simulate the behavior of a known dataset (Solomatine, 2002) can overcome 

practical limitations as lack of adequate historical data in ungaged or poorly gaged basins in regard 

to a mathematical point of view instead of physical reasoning. Different types of ANN models 

were applied to increase the performance of the rainfall-runoff modeling and streamflow 

prediction in the recent literature including snow hydrology (Daliakopoulos & Tsanis, 2016; 

Uysal et al., 2016; Fahimi et al., 2017). Moreover, ANNs can provide superior results when used 

with different memory structures and decomposition techniques. The wavelet transform is one of 

the powerful mathematical tools that provides both time and frequency representation of an 

analyzed nonlinear signal in the time domain (Daubechies, 1992). A signal can be decomposed 

to dilations and translations parameters, and then information in the signal is presented by these 

parameters in the form of frequencies (Al-geelani et al., 2012). There are several applications in 

literature which use WNN models to improve the modeling results such as structural system 

identification (Adeli et al., 2006), traffic flow modeling (Jiang et al., 2005), time-series prediction 

(Chen et al., 2006), groundwater level forecasting (Adamowski and Chan, 2011), river water 

temperature forecasting (Graf et al., 2019). 

Over the last few years, probabilistic runoff forecasts have become more popular in hydrology 

primarily in studies that have focused on flood forecasting (Pappenberger et al., 2005; Verbunt et 

al., 2007; Fundel & Zappa, 2011; Ramos et al., 2013; Dale et al., 2014; Jörg-Hess et al., 2015; 

Şorman et al., 2019) since they have an advantage of representing the uncertainty of 

meteorological inputs. Moreover, snow is an essential component of hydrological cycle in 

mountainous regions and several studies have found that including remotely sensed snow data 

successfully improves probabilistic runoff predictions.  
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In this study we introduce probabilistic runoff modeling using the benefit of snow extent 

fostering on the prior data set of satellite snow cover of MODIS and data driven modeling 

approach with wavelet decomposition (WNN) in a relatively less studied and data sparse 

mountainous headwaters of Euphrates Basin. The results are also compared with a benchmark 

Multi-Layer Perceptron (MLP) model which represents ANN-only approach. 

 

2. MATERIALS AND METHOD 

The proposed probabilistic runoff modelling approach is comprised of two major steps:  

(i) Extraction of snow maps based on probability analysis of archived satellite snow 

extent data, 

(ii) Development of a data driven model based on neural network and wavelet 

decomposition making use of snow maps produced from the previous step as one of 

the main forcing inputs. 

The approach is shown by a flow chart in Figure 1 and the details of the materials and method 

are described in this section. 

 

 

 
Figure 1:  

Probabilistic runoff modeling schematic 

 

2.1. Study Area 

Modeling the amount and timing of runoff at the headwaters of Euphrates River has great 

importance for the operation of downstream reservoirs in the Eastern Anatolia, Turkey. The Upper 

Murat Basin (hereinafter, Murat Basin) located in the upper part of Murat River Basin having the 

drainage area of 40,000 km2. The study basin lies within the longitudes 42o 00’ E to 43o 50’ E and 

latitudes 39o 10’ N to 40o 00’ N. It has a drainage area of 5,910 km2 and its elevation ranges in 

altitude from 1559 to 3508 m. The main land cover types are pasture (32.6%), agriculture (36.1%), 

bareland (30.8%) and the others (urban, forest, lakes etc., 0.6%). The location and elevation 

ranges of Murat Basin along with the observation network are provided in Figure 2. Murat Basin 

is controlled by stream gauging station of E21A022 at Tutak location. Table 1 describes a 

summary of basin topographic properties. 

Since the topography is rough, the catchment has a scarce observation network. There is only 

one meteorological station (Agri at 1632 m) to record daily precipitation (P) and temperature (T) 
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in the catchment as shown in Figure 2. In this study, a year period is defined as a water-year 

concept that starts at 1st of October of the previous year and ends on 30th September of the current 

year. Average annual precipitation and temperature values are 522 mm and 6.2 0C, respectively, 

for the long-term records. The variation of annual average P and T values along with the years 

are shown in Figure 3 for the period of probabilistic snow extent analysis. Discharge data is 

available for the water-years of 2001-2013 and 2015 (2014-water year streamflow data is 

missing). 

 
Figure 2:  

Location, digital elevation model and the observation network of The Upper Murat Basin 

 

Table 1. Topographic properties of the basin 

Zone Elevation Range 

(m) 

Area  

(km2) 

Area 

(%) 

Hypsometric 

mean elevation 

(m) 

A - - - - 

B 1559-1900 1762 29.8 1725 

C 1900-2300 2205 37.3 2100 

D 2300-2900 1779 30.1 2475 

E 2900-3508 166 2.8 3080 

Whole 

catchment 

1559-3508 5912 100.0 2125 
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Figure 3:  

Average annual precipitation and temperature records of Agri station 

 

2.2. Satellite snow cover data 

MOD10A1 (Terra) and MYD10A1 (Aqua) products are being produced and distributed by 

the NASA Distributed Active Archive Center (DAAC) located at the National Snow and Ice Data 

Center (NSIDC). MODIS Reprojection Tools is used to tile the images. The tiled images were 

then reprojected to World Geodetic System 1984 (WGS84), Universal Transverse Mercator 

(UTM) Zone 37 with a cell size of 500 m. 

The MODIS snow-mapping algorithm is fully automated and is based on the Normalized 

Difference Snow Index (NDSI) with a set of thresholds (Hall et al., 2002). Based on NDSI and 

threshold values, snow cover pixels are separated from non-snowy areas using Eq. (1).  

 

𝑁𝐷𝑆𝐼 =  
𝑀𝑂𝐷𝐼𝑆𝐵4 − 𝑀𝑂𝐷𝐼𝑆𝐵6

𝑀𝑂𝐷𝐼𝑆𝐵4 + 𝑀𝑂𝐷𝐼𝑆𝐵6
 (1) 

 

Depletion of snow is revealed in terms of percentage of the snow cover area along with a 

time horizon for each time period (mainly day, or sometimes 7-days). 

 

2.3. Snow probability maps 

Probability of snow occurrence is calculated using daily SCA images and pixels are 

classified as snow, no snow and cloud (including undetermined pixels). Then, each SCA image 

is reclassified such that snow or cloud observations are equal to one, and all other attributes are 

equal to zero to derive a probability map. Probability of snow for a pixel is calculated as: 

 

𝑃(𝑡) =
∑ 𝑆(𝑡,𝑖)

𝑛
𝑖=1

𝑛 − ∑ 𝐶(𝑡,𝑖)
𝑛
𝑖=1

 (2) 

 

where t stands for day, S and C stands for observations of snow and cloud, respectively, n 

stands for the total observation period in years. 

Optical satellites suffer from cloud coverage and therefore images are pre-processed before 

to be used in the probability analysis. Filtering process (such as temporal, spatial, elevation) is 

used to remove cloud cover from the images (Şorman & Yamankurt, 2011). Since the method is 

capable of eliminating cloud cover and can provide binary snow/no snow areas, Equation 2 is 

updated with no cloud component in the denominator. 
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2.4. Wavelet neural network (WNN) model 

Artificial Neural Network (ANN) has been developed based on the inspiration of biological 

neural network of the human brain. Basically, it is characterized by its architecture that represents 

the pattern of connection between nodes, method of determining the connection weights, and the 

activation function (Haykins, 2009). Multi-Layer Perceptron (MLP) is a form of feedforward 

network that has interconnected neurons arranged into three layers: input layer, a hidden layer 

and an output layer and uses backpropagation algorithm in the training stage. Moreover, MLP-

ANN models are the most applied ANN types in hydrology field (Maier & Dandy, 2000; Zhao et 

al., 2005; Maier et al., 2010). A node is a processor, which is connected to the others by weights, 

whereas the nodes are generally arranged in layers. The output of an individual neuron (weighted 

sum of all its inputs), is obtained by the following equation: 

 

𝑁𝑦𝑗 = 𝑓 (∑(𝑤𝑖𝑗𝑥𝑖 − 𝑏𝑖𝑗)

𝑛

𝑖=0

) (3) 

 

where, 𝑥𝑖 = (𝑥1, … , 𝑥𝑖, … , 𝑥𝑛)  and  𝑤𝑖𝑗 = (𝑤1𝑗, … , 𝑤𝑖𝑗, … , 𝑤𝑛𝑗),  𝑥𝑖 is the information from 

previous nodes,  𝑤𝑖𝑗  represents the connection weight from the 𝑖𝑡ℎ node in the preceding layer 

to this node, where 𝑏𝑖𝑗 is the bias, 𝑓 is the activation function. 

Activation function may be linear, threshold, logistic sigmoid, Gaussian or hyperbolic 

tangent functions depending on type of the network and training algorithm used in the application. 

Mainly sigmoid functions are used in rainfall-runoff processes due to having bounded, monotonic, 

nondecreasing function that provides a graded, nonlinear response (ASCE, 2000). In this study, 

sigmoid function is used for the hidden layer and linear transfer function is used for the output 

layer. It is recommended to employ data preprocess (inputs and outputs) to have better 

performance before training. Normalization eliminates sensitivity of the network for different 

range of inputs. Considering that, firstly all inputs and outputs are normalized between [0.1 – 0.9] 

using Equation 4: 

 

𝑋 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (4) 

 

where, 𝑋 stands for standardized data vector, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are minimum and maximum 

values of the data set. 

In this study, different than conventional MLP, two filters (i.e., low-pass filter and high-pass 

filter) are used to decompose the original data series (here, some selected input vectors) into the 

approximation and detailed subseries. 1-D wavelet decomposition is employed to perform a 

single-level wavelet decomposition of input signals using wavelet family of ‘db1’. The names of 

the Daubechies family wavelets are written dbN, where N is the order, and db the "surname" of 

the wavelet. Db1 also known as the Haar wavelet is the only orthogonal wavelet with linear phase. 

The original time series is passed through high-pass and low-pass filters, and detailed coefficients 

(cD1) and approximation coefficients (cA1) are obtained in Discrete Wavelet Transform (DWT). 

Wavelet Neural Network (WNN), which is employed in this study, refers to rainfall-runoff 

relationship by combining MLP and DWT (Figure 4). Besides, a MLP model that represents 

ANN-only approach is used as a benchmark model. The models are coded using MATLAB 

(R2019b, License number: 991708). 
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Figure 4:  

Schematization of the WNN Model (X1…Xn stands for 1 to n number of input variables, A1 and 

D1 stand for the approximation member and the detailed member of input variable X1, 

respectively and Y stands for the output variable) 

 

MLP feedforward networks use gradient based training algorithms. In general, second-order 

nonlinear optimization techniques are usually faster and more reliable. Thus, model is trained 

using a well-known Levenberg-Marquart technique (Hagan & Menhaj, 1994) as it is more 

powerful than the conventional gradient techniques. The training is accomplished according to 

the weight update equation which takes the following general form as (Parisi et al., 1996): 

 

𝑤𝑛+1 = 𝑤𝑛 − [𝐻 + 𝜆]−1∇𝑤𝑛Ε (5) 

 

where, 𝑤𝑛+1 and 𝑤𝑛 are weights at (𝑛 + 1)𝑡ℎ  and 𝑛𝑡ℎ  pass (epoch), 𝐻 = 𝐽𝑇𝐽, where 𝐽 is 

Jacobian matrix, 𝜆 is momentum, ∇𝑤𝑛Ε  is equal to the negative of the gradient error, Ε is learning 

rate (avoids the training being trapped in a local minima instead of global minima). 

Care must be taken to the generalization of the network for a given problem. Therefore, it is 

very vital to prevent the network that of over familiarized with the calibration data set. In this 

study, the training is stopped according to cross-validation using an independent test set. To that 

end, 15% data are randomly selected from training set and training is stopped according to cross-

validation error. Since a generic method to estimate the model structure is not available, most of 

them rely on trial and error approach. The network architectures (models) are derived similarly 

by changing the network and analyzing the results in terms of error. It is also not desired to have 

complex networks if one with less neuron and inputs give similar results. In this study, hydro-

meteorological data records are provided from an automated weather and flow measurement 

station. Six hidden neurons are used in one single hidden layer. The network formulation is 

defined below: 

 

𝑄(𝑛) = 𝑚(𝐷𝑃(𝑛), 𝐴𝑃(𝑛), 𝑇(𝑛), 𝑆𝐶𝐴(𝑛)) (6) 

 

where,  𝑄, 𝑚 , 𝐷𝑃 , 𝐴𝑃 , 𝑇 , 𝑆𝐶𝐴 and  𝑛 stands for streamflow [m3/s], neural network model, 

detailed member for total precipitation [mm], approximation member for total precipitation [mm], 

air temperature [oC], snow cover area [%] and time index, respectively. 

For the accuracy assessment, the model is tested with 4 goodness of fit criteria defined as the 

coefficient of determination (R2), Nash-Sutcliffe Model Efficiency (NSE), Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE) as denoted in equation 7-10: 
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𝑅2 =

[
 
 
 ∑ (𝑄𝑚

𝑡 − 𝑄𝑚)(𝑄𝑜
𝑡 − 𝑄𝑜)

𝑛
𝑡=1

√∑ (𝑄𝑚
𝑡 − 𝑄𝑚)2𝑛

𝑡=1 √∑ (𝑄𝑜
𝑡 − 𝑄𝑜)

2𝑛
𝑡=1 ]

 
 
 
2

 

(7) 

  

𝑁𝑆𝐸 = 1 − 
∑ (𝑄𝑜

𝑡 − 𝑄𝑚
𝑡 )2𝑛

𝑡=1

∑ (𝑄𝑜
𝑡 − 𝑄𝑜)

2𝑛
𝑡=1

 
(8) 

  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑄𝑚

𝑡 − 𝑄𝑜
𝑡)2𝑛

𝑡=1

𝑛
 

(9) 

  

𝑀𝐴𝐸 = 
∑ |𝑄𝑜

𝑡 − 𝑄𝑚
𝑡 |𝑛

𝑡=1

𝑛
 

(10) 

  

where, 𝑄𝑚
𝑡   is modelled flows, 𝑄𝑜

𝑡   is observed flows, �̅�𝑚 is average modelled flows, �̅�𝑜 is 

average observed flows, 𝑛  is the number of data sets. 

 

2.5. Derivation of probabilistic snow depletion curves and employment in rainfall-

runoff models 

The rainfall-runoff models are trained and tested using 12 years of observed daily MODIS 

snow cover area percentage time-series (also known as snow depletion curves) together with 

meteorological data sets. Snow Probability Map (SPM) for each day is derived using that of 

achieved 12 years data as explained in Section 2.3. These maps show the probability of snow 

occurrence in each pixel having 500 m cell resolution within the study area. Later, daily maps are 

classified into six different classes (0, 0-0.25, 0.26-0.50, 0.51-0.75, 0.76-0.99 and 1). Reclassified 

probability SCA percentages (P-SCA) are calculated for each day in between 15 January – 30 June 

(mainly from full snow cover to no-snow period). Probabilistic time series data (also called as 

probabilistic depletion curves, P-SDC) sets are generated using P-SCA values for each class. 

Finally, P-SDCs are directly used in streamflow prediction part (2013-2015) which is not included 

in the derivation of probability maps. 

 

3. RESULTS AND DISCUSSIONS 

3.1. Snow probability maps and extensive analyses 

SPMs of Murat Basin are presented for 15-day time interval in Figure 5. Snow cover 

considerably dominates the catchment until mid-March with high probability. Topographic 

variation of snow cover that indicates the changes with respect to elevation, aspect, and slope is 

a well-known analysis. Instead of the conventional snow cover maps, probabilistic snow cover is 

evaluated to understand the characteristics of topographic variation in this area. The spatial pattern 

of probabilistic snow cover is represented by elevation zones. The P-SCAs are derived for the 

selected probabilities during the snowmelt season in Figure 6. Snow disappears in the lowest zone 

first and highest zone last as expected. Results prove that elevation is an important factor that 

should be considered during snow cover analysis in any probability class. The elevation Zone-C 
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has similar values with that of basin average since it represents the hypsometric elevation of the 

basin. 

Snow depletion analysis (P-SDCs) is carried out with probabilistic snow cover values 

(Figure 7). The lowest probability of snow on average basin scale indicates limited number of 

days with full snow coverage before melting besides an early and relatively sharp melting starting 

with the Mid-Feb; the highest probability of snow, however, shows extended accumulation period 

with full coverage till mid-April and then relatively slow melting pattern lasting almost to the end 

of June. 

 
Figure 5:  

Snow probability maps of Murat Basin for various dates (in between analysis period of 15 

January – 30 June, PSO: probability of snow occurrence) 
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Figure 6: 

Variation of P-SCA with respect to different elevation zone 

 

 
Figure 7: 

Probabilistic snow depletion curves (P-SDCs) of Murat Basin with respect to different 

probability classes and observed snow depletion curves (SDCs) 

 

 

3.2. WNN model results of the training and testing periods 

The WNN model is trained and tested in 2002-2008 and 2009-2012 water years, respectively, 

with relatively high model performance against MLP model in such a mountainous basin as 

shown in Figure 8 and Table 2. The calculated performances ensure an acceptable model by 
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having NSE above 0.65 (Ritter & Muñoz-Carpena, 2013). MAE values are similar whereas 

RMSE increases in training part due to one outlier peak observed at 2004. This peak presents a 

real case according to the other downstream gauge. 

 
Figure 8:  

Runoff predictions for training and testing periods (WNN model) 

 

Table 2. Hydrological modeling performance 

Performance 

criteria 

Model R2 NSE RMSE 

(m3/s) 

MAE (m3/s) 

 

Training period 

MLP 0.68 0.68 46.5 24.0 

WNN 0.75 0.75 41.0 18.7 

 

Testing period 

MLP 0.68 0.67 40.3 21.9 

WNN 0.74 0.72 37.0 18.5 

 

 

3.3. Probabilistic runoff model results model results of the training and testing 

periods 

The developed and tested MLP and WNN models are regarded as prediction tool in this part. 

2013 – 2015 which are not used in any part of training and testing is selected as the prediction 

period for streamflow. These years are also excluded from P-SDC analyses as well. It is important 

to note that 2014-water year streamflow data is missing due to technical data loss. The daily 

streamflow values are predicted using P-SDC data sets together with perfect prediction data. 

However, for the sake of a continuous model 2014 runoff values are still predicted but the 

performances with respect to observed discharge are given for two years (2013 and 2015). The 

WNN model results (P-SDC based streamflow predictions) are compared with observed 

discharge Figure 9. The models are also employed with observed SCA (from MODIS) for the 

same period and its results are denoted as “MODIS-SDC”. The statistical metrics for both models 

(WNN and MLP) for different scenarios are given in Table 3 and Table 4. For this experiment 
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only P>0.25, P>0.50 and P>0.75 classes are taken into account because of P>0 (overestimates by 

capturing all snow-covered pixels) and P=1.0 (underestimates by capturing very few snow 

covered pixels) represents very unusual conditions. This experiment indicates the capability of 

the model with purely observed satellite data in contrast to P-SDCs. According to performances, 

it can be stated that QP50 and QP75 (stands for P-SDC≥0.50 and P-SDC≥0.75) present a notable 

performance metric in comparison with MODIS-SDC modelling result. 

 

 
Figure 9: 

Probabilistic runoff estimation for the water years of 2013, 2014, 2015 (WNN model) 

 

Table 3. MLP modeling performances for the water years of 2013 and 2015 

Scenario R2 NSE RMSE 

(m3/s) 

MAE (m3/s) 

MODIS-SDC 0.62 0.38 36.9 25.7 

QP25 0.60 0.52 38.4 26.5 

QP50 0.59 0.50 39.0 27.1 

QP75 0.54 0.42 44.0 29.3 

 

Table 4. WNN modeling performances for the water years of 2013 and 2015 

Scenario R2 NSE RMSE 

(m3/s) 

MAE (m3/s) 

MODIS-SDC 0.73 0.58 30.4 16.1 

QP25 0.70 0.66 38.0 19.4 

QP50 0.68 0.66 34.1 18.1 

QP75 0.67 0.65 30.1 16.3 
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4. CONCLUSION 

This study attempts to find alternative and practical approaches to predict runoff in a 

probabilistic sense for a data scarce poorly gauged mountainous catchment. Remote sensing data 

sets gathered from satellite are useful but not always available for several reasons. Making use of 

relatively long data records of satellite snow extent, snow cover dynamics are evaluated as daily 

probabilistic snow cover maps. Then these snow cover maps are converted to probabilistic snow 

depletion curves to indicate snow covered area percentages as time-series for several probability 

classes. A data driven method enhanced with wavelet analysis is preferred to be coupled with 

satellite data. Also, a benchmark model (multi-layer perceptron) which stands for a conventional 

neural network model is employed and the results are compared with the proposed WNN model. 

Several metrics such as coefficient of determination, Nash-Sutcliffe model efficiency, root mean 

square error and mean absolute error are used to quantify the performances. The method is trained 

and tested with relatively high model performances and then probabilistic runoff predictions are 

obtained and compared with observed data. According to prediction scenarios, the suggested 

approach provides probabilistic runoff predictions in a range consisted with observed values of 

runoff. The study shows that the probabilistic snow cover maps derived from satellite data can be 

used as a valuable data source with spatial and temporal coverage for such a data scarce region. 

Moreover, they can directly be utilized in a data driven modeling for short or medium range 

ensemble runoff forecasts in a probabilistic sense when coupled with numerical weather 

prediction data. 
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