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Abstract
In this paper, the effect of the entrainment velocity, the Nusselt number, and the thickness
of the salinity gradient zone (NCZ) on the stability of the solar pond are studied. The
modelling equations of thermal energy and mass transfer in a salt gradient solar pond are
discretized by finite difference methods in the transient regime. A new border condition
applicable near the equilibrium of interface between the (NCZ) and the (LCZ) region is
proposed. We take account of the effects of both turbulent entrainment and diffusion on
the growth or erosion of the gradient zone (NCZ). The obtained numerical results show
an additional condition of solar pond’s stability which links between the salinity gradient
(∆C) and the temperature gradient (∆T ) in the (NCZ) region.
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1. Nomenclature
C : concentration of solution . . . (kgm−3)
∆C: concentration difference . . . ∆C = Cmax − Cmin

Cp: specific heat of solution . . . (kJkg−1◦C−1)
D: diffusion coefficient . . . (m2s−1)
g: acceleration due to gravity . . . (ms−2)
H: height of the solar pond . . . (m)
hc: convective heat transfer coefficient . . . (Wm−2◦C−1)
L: length of the non–convective zone . . . (m)
LCZ: lower convective zone
NCZ: non–convective zone
UCZ: upper convective zone
Le: Lewis number
Pr: Prandt number
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Sc: Schmidt number
q0: solar radiation that penetrates the free-surface after reflection
from pond’s surface . . . (Wm−2)
q(z): quantity of solar radiation at depth z . . . (Wm−2)
RaT : thermal Rayleigh number
RaI : internal Rayleigh number
RaS : solutal Rayleigh number
Nu: Nusselt number
t: time . . . (s)
∆T : temperature difference . . . ∆T = Tmax − Tmin

T : temperature . . . (◦C)
Ta: ambient temperature . . . (◦C)
Ue: dimensionless entrainment velocity . . . (ms−1)
u∗: convection velocity . . . ms−1

ue: entrainment velocity . . . ms−1

Ri: Richardson number
z: Cartesian coordinate . . . (m)
Z: dimensionless Cartesian coordinate

Greek symbols
α: thermal diffusivity . . . (m2s−1)
ρ: density (kgm−3)
βT : thermal expansion coefficient . . . (K−1)
βS : solutal expansion coefficient . . . (m3kg−1)
λw: water thermal conductivity . . . (Wm−1K−1)
ν: cinematic viscosity . . . (m2s−1)
µ: dynamic viscosity . . . (kgm−1s−1)
χ: dimensionless concentration
θ: dimensionless temperature
θr: angle of reflection at the pond’s surface . . . (◦)
τ : dimensionless time of heating
ε: absorption coefficient . . . (m−1)
Φj : dimensionless absorption coefficient . . . (Φj = εjH)
γ: fraction of radiation

2. Introduction
A solar pond is a pool of saltwater that collects and stores solar thermal energy. It is

constituted by three well-defined zones (see Figure 1); the upper (UCZ) and lower (LCZ)
convective zones, where temperature can be considered as uniform, the gradient flank zone
(GZ) or (NCZ) characterized by a concentration and a temperature gradient.

The layers of salt solutions increase in concentration (and therefore density) with depth.
Solar ponds provide the simplest technique for transforming the sun’s energy into a solar
energy which can be extracted for different purposes. The bottom of the pond is warmed
to extremely high temperatures, it can reach about 90◦C [7].

The stability of the solar pond is related to the gradient zone stabilization which is
affected by many different factors like the double-diffusive convection between the low
convective zone (LCZ) and the non-convective zone (NCZ). This leads to a difference in
the diffusion rate of salt and temperature which produces the loss of energy. The erosion
and the growth of the gradient zone depend on the strength of convective velocities in the
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mixed layers, the values of gradient temperature, and the gradient salinity in the (NCZ)
region. The stationary interface, for zero entrainment velocity, is known as the equilibrium
condition. Inside the field, it is difficult to notice the movement of the interface, about
1 centimetre (cm) per week. In the laboratory study of Xu [25], the interface movement
within this limit is considered as in equilibrium.

Many studies of solar ponds, including experimental, analytical, and numerical investi-
gations, have received much attention from numerous researchers. Among them, we can
cite the works of Ould Dah et al. [16], who studied experimentally and numerically the effi-
ciency and effectiveness of a mini solar pond. They developed a one-dimensional model to
study the thermal and solute behavior in the mini solar pond. In their research work, the
efficiency of the mini solar pond could be improved considerably by using a new method
of heat extraction from the (NCZ). Bansal et al. [2], solved the one-dimensional equation
of heat conduction with fluid internal heating due to the solar radiation absorption. Wang
et al. [24], studied numerically the nonlinear dynamic behavior of the non-convective zone
in a salt gradient solar pond. In their work, the nonlinear results indicate that the linear
stability analysis leans to a larger upper boundary in the oscillatory regions. Zangrando
and Fernando [26] studied the rate of entrainment and detrainment and the conditions for
equilibrium for diffusive boundaries of a double-diffusive fluid layer.

The system consists of a stably stratified layer overlying a mixed, turbulently convecting
layer, which is representative of solar pond situations and others. Most of them have
shown that the performance and the efficiency of solar ponds depend on the stability
of the gradient layer. In very recent works, the authors have studied the hydrodynamic,
heat, and mass transfer behaviors of a salinity gradient solar pond in transient regime. The
results have shown, in particular, that the internal Rayleigh number, the buoyancy ratio,
and the aspect ratio have an important effect, respectively, on the thermal performance
of the pond, on the stability, and on the distribution of temperature, and velocity fields
in the salinity gradient solar pond. In the present paper, we aim to study numerically the
temporal evolution of the temperature and concentration distributions in a one dimensional
insulated salinity gradient solar pond under the influence of the entrainment velocity
and the number of Nusselt. The resolution of energy, and mass transfer equations are
conducted using finite-difference discretization method in transient regime.

3. Mathematical model for the salt gradient solar pond
The solar pond is modeled with a two-dimensional rectangular enclosure, as shown in

Figure 1. Some assumptions have been made to simplify the analysis of the hydrodynamic,
thermal, and solute behavior of solar basins:

1- The amount of solar radiation absorbed at depth z is given by Rabl and Nielsen’s
model [17] and is assumed to be constant and has an average value in the transient
system.

2- The change of velocity, temperature, and concentration along the y-direction is
negligible.

3- Both the vertical and the bottom walls of the pond are well insulated and imper-
meable.
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Figure 1. Schematic view of the insulated salt gradient solar pond [10].

In this work, under the above assumptions, the transient heat, and mass transfer process
in the solar pond with internal heating of the fluid due to solar radiation absorption are
governed by thermal energy and mass transfer equations in (NCZ) region:

- Equations of thermal energy:
dT

dt
− α

d2T

dz2 = 1
ρcp

dq(z)
dz

(3.1)

with initial condition
T (t, z) = Ta if t = 0 ∀z ∈ [zN , zL ] , (3.2)

and boundary condition
dT

dt
+ ue

dT

dz
= hc

ρcp
(T − Ta) − 1

ρcp

dq(z)
dz

∀t and z = zL. (3.3)

- Equations of mass transfer:
dC

dt
− D

d2C

dz2 = 0 (3.4)

with initial condition

C (t, z) = ∆C

(
z − zN

zL − zN

)
+ Cmin if t = 0 ∀z ∈ [zN , zL] , (3.5)

and boundary condition
dC

dt
+ (ue + D

zN
)dC

dz
= 0 ∀t and z = zN (3.6)

dC

dt
+ (ue + D

H − zL
)dC

dz
= 0 ∀t and z = zL. (3.7)

The quantity, q(z), of solar radiation at different depths of salty water in the solar pond
can be expressed as [17]:

q(z) = kq0
∑

γj exp
[ −εj

cos θr
(z)

]
, (3.8)

where q0 represents the solar radiation that penetrates the free-surface of the solar pond,
which is given by

q0 = (1 − r) qi, (3.9)
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where qi is the incident solar radiation that reaches the free-surface of the solar pond.
Here r is the reflectance of solar radiation at the free-surface of the pond.

This coefficient is obtained from [17],

r = 0.5
[

tan2 (θi − θr)
tan2 (θi + θr)

+ sin2 (θi − θr)
sin2 (θi + θr)

]
, (3.10)

where θi is the angle of incidence, θr the angle of reflection, k a coefficient due to the effects
of salt concentration, propagation of radiation in the layers of salty water, and turbidity
of water on the reduction of solar radiation.

For the present study,
θi = 60◦, θr = 40.5◦, k = 0.85 and r = 0.06 [26].

The tow coefficients γj and εj are dependent on the absorption of the particular wave-
lengths range of the arriving solar radiations. These constants γj and εj are given in Table
1, [3].

Table 1. The constants γj and εj

wavelength 0.2-0.6 0.6-0.75 0.75-0.9 0.9-1.2
γ 0.237 0.193 0.167 0.179
ε 0.032 0.45 3 3.5

Finally, equation q(z) is expressed as follows:

q(z) = 0.85q0
∑

γj exp
[ −εj

0.76
(z)

]
. (3.11)

Then the rate of energy generation per volume unit in a fluid layer, which results from
the solar radiation absorption by salty water, is given by [23]

f(z) = 1
ρcp

dq(z)
dz

= 0.85 q0
ρcp

∑ γjεj

0.76
exp

[ −εj

0.76
(z)

]
. (3.12)

In order to simplify the study, the heat field and salt concentration of a salinity gradient
zone (GZ) can be described by a set of differential non-dimensional equations by using the
following dimensionless parameters.

Z = z/H, Ue = ue/(α/H), τ = t
(H2/α) , θ = (T −Ta)

∆T ,

χ = (C−Cmin)
∆C , RaT = gβT ∆T H3

(αν) , RaI = gβT H4q0
(λwαν) , Ras = gβC∆CH3

(αν) ,

Pr = ν/α, Le = α/D, Sc = ν/D, Nu = Lhc
λw

.
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- Energy equation with the initial and boundary conditions:

(NCZ) zone:

(PNCZ)



∂θ(τ,Z)
∂τ = ∂2θ(τ,Z)

∂Z2 + f(Z) (τ, Z) ∈ [0, τmax] × [ZN , ZL ]

θ(0, Z) = θab

θ(τ, ZN ) = θab
∂θ(τ,Z

L
)

∂τ + Ue
∂θ(τ,Z

L
)

∂Z = Nu θ(τ, ZL) − f(ZL) τ ∈ [0, τmax]

θ(0, ZL) = θab

(3.13)

Thus, the dimensionless equation of f(z) is given by

f(Z) = 0.85 RaI

RaT

∑ γjεj

0.76
exp

[−ϕj

0.76
(Z)

]
, (3.14)

where θab is dimensionless ambient temperature.

- Mass transfer equation with the initial and boundary conditions:

NCZ zone:

(PNCZ)



∂χ(t,Z)
∂τ = pr

sc

∂2χ(t,Z)
∂z2 Z ∈ ]ZN , ZL[

χ(0, Z) = (Z−Z
N )

(Z
L

−Z
N )

∂χ(τ,ZN )
∂τ = 1

ZN

pr

sc

∂χ(τ,ZN )
∂Z

∂ χ(τ,ZL)
∂τ + Ue

∂χ(τ,ZL)
∂Z = − 1

(1−Z
L)

pr

sc

∂ χ(τ,ZL)
∂Z

(3.15)

4. Numerical method
The equations which describe the phenomena of transfer of temperature and salt con-

centration in the solar pond are solved numerically by various methods as the homotopy
perturbation method [1,19–22], the finite volume method [11–13], and the finite difference
method. In our study we used the finite difference method.

4.1. The finite difference method
Let h > 0 be the mesh size of discretization in height. We take the grid points Zi =

Zi−1 − h, i ∈ {1, 2, ...} with Z0 = ZU , Zm = ZL.
Let ∆τ > 0 be the mesh size of discretization in time. We take the grid points τn =

τn−1 + ∆τ , n ∈ {1, 2, ..., P} with τ0 = 0.
We define the approximations (τn, Zi) in temperature by θn

i = θ(τn, Zi).
For solving the first numerical problem we use the implicit scheme which is uncondi-

tionally stable and consistent with the truncation error O
(
(h)2 + (∆τ)1)

[15]:
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

θn
i = ∆τ

h2 θn+1
i−1 +

(
1 − 2∆τ

h2

)
θn+1

i +
(

∆τ
h2

)
θn+1

i+1 − ∆τfi for
{

1 ≤ i ≤ m − 1
1 ≤ n ≤ P

θ(0, Zi) = θab for 1 ≤ i ≤ m

θn
ZU

= θab for 1 ≤ n ≤ P
θn

m =
(
1 + ∆τUe

h + ∆τNu

)
θn+1

m − ∆τUe
h θn+1

m−1 − ∆τfm for 1 ≤ n ≤ P

θ(0, Zm) = θab

(4.1)
The problem can be written in the matrix form as:

−→
θn = [A]

−−→
θn+1 +

−−→
bn+1 =⇒


−−→
θn+1 = [A]−1 −→

θn − [A]−1−−→
bn+1

−→
θ0 =

−→
θab

for 0 ≤ n ≤ P

where [A] is an m × m matrix and
−→
bn,

−→
θn are two vectors of dimension m given by the

following expressions:

[A] =



α β 0 ... ... ... 0

γ α β 0 . . . . . . 0

0 . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . 0
... . . . . . . . . . γ α β
0 ... ... ... 0 λ ϖ


where



α =
(
1 − 2∆τ

h2

)
β = ∆τ

h2

γ = ∆τ
h2

ϖ =
(
1 +

(
∆τ
h Ue

)
+ Nu∆τ

)
λ = −

(
∆τ
h Ue

)
and

−→
θn =



θn
1

θn
2

...

θn
m−1

θn
m


,

−→
bn =



−∆τf1 + γθn
0

−∆τf2

...

−∆τfm−1

−∆τfm


, and

−→
θ0 = θab



1

1

...

1

1


.

We define the approximations (τn, Zi) in concentration by χn
i = χ(τn, Zi). For solving

the second numerical problem, we use the implicit scheme:
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

(
1 +

(
∆τ
Z0

pr
hsc

))
χn+1

0 −
[(

∆τ
Z0

pr
hsc

)]
χn+1

1 = χn
0 i = 0

−
(

∆τpr
h2sc

)
χn+1

i−1 +
(
1 + 2∆τpr

h2sc

)
χn+1

i − ∆τpr
h2sc

χn+1
i+1 = χn

i 1 ≤ i ≤ m − 1

−
(

∆τ
h Ue + ∆τ

1−Zm

pr
hsc

)
χn+1

m−1 +
(
1 + ∆τ

h Ue + ∆τ
(1−Zm)

pr
hsc

)
χn+1

m = χn
m i = m

χ0
i = (Zm−Zi)

(Zm−Z0) 0 ≤ i ≤ m initial condition vector

(4.2)

The problem can be written in the matrix form as:

−→
χn = [A]

−−−→
χn+1 =⇒


−−−→
χn+1 = [A]−1 −→

χn

−→
χ0 = 1

(Zm−Z0)

(
Zm

−→
I − −→

Z
) for 0 ≤ n ≤ P,

where [A] is an (m + 1) × (m + 1) matrix and
−→
I (Identity), −→

χn are two vectors of di-
mension (m + 1) given by the following expressions:

[A] =



α β 0 ... ... ... 0

γ η κ 0 . . . . . . 0

0 . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . 0
... . . . . . . . . . γ η κ
0 ... ... ... 0 λ ϖ


where



α = (1 + (c1 ∗ c2))

β = − ((c1 ∗ c2))

γ = −
( c1

h

)
η =

(
1 + 2 c1

h

)
κ = − c1

h
ϖ = (1 + c1 ∗ c4 + cN3)

λ = − (cN3 + c1 ∗ c4)

with

w = ∆τ
h , v = Pr

Sc
, c1 = w ∗ v, c2 = 1

Z0
, cN3 = wUe, c4 = 1

(1−Zm) ,

and

−−−→
χn+1 =



χn+1
1

χn+1
2

...

χn+1
m−1

χn+1
m


,

−→
χ0 =



0

−1
(Zm−Z0) (Z0 − Z1)

...

−1
(Zm−Z0) (Z0 − Zm−1)

1


.
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5. Graphics results
Here, we present graphics results of transient regimes to understand the thermal and

solute characteristics induced in a salt gradient solar pool better with controlling the
parameters that define fluid flow, heat, and mass transfer in the (NCZ) region. The
discussion of the graphs is given in Section 5.

Figure 2. Effect of dimensionless entrainment velocity Ue on the dimensionless
temperature in (NCZ) region τ = 0.5 and for RaT = 107, RaI = 2 × 108, Nu =
0.01.

Figure 3. Variation of dimensionless temperature with dimensionless entrain-
ment velocity in (NCZ) region for ZL = 0.8.
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Figure 4. Effect of Nusselt number on the dimensionless temperature in (NCZ)
for Ue = 0.01.

Figure 5. Variation of dimensionless temperature with Nusselt number in NCZ
region for ZL = 0.8
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Figure 6. Evolution of the dimensionless temperature with the thickness of
(NCZ) region at τ = 0.5 and for RaT = 107, RaI = 2 × 108, Ue = 0.01, Nu = 0.1,
ZU = 0.2.
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Figure 7. Effect of dimensionless entrainment velocity Ue on the dimensionless
concentration in (NCZ) region τ = 0.5 and for Pr = 6, Sc = 103, Nu = 0.01.

Figure 8. The variation of gradient salinity with gradient temperature in (NCZ)
region for τ = 0.5 and for RaT = 107, RaI = 2×108, Pr = 6, Sc = 103, Nu = 0.01.

6. Discussion
In this section, we discuss the graphs given in the previous section. Here numerical

results are performed with the following constant parameters: RaT = 107, RaI = 2 ×
108, Sc = 1000 and Pr = 6.

6.1. Effect of dimensionless entrainment velocity (Ue) on the stability of
solar pond

The Figures 2 and 3 show that for small values of entrainment velocity (Ue), the di-
mensionless temperature reaches its highest point. In this case, the (NCZ) region remains
stable due to the equilibrium of the interface between both (NCZ) and (LCZ) regions.
These last results are confirmed by many several experimental works [4,6,18] under typi-
cal conditions on solar ponds (see Tables 2 and 3):



930 S. Gheraibia, A. Guesmia

Table 2. Typical conditions on solar ponds

ue = cu∗Ri−n Ri = g∆ρzL

ρu2
∗

c = 0.2, n = 1
ue = 0.11 × 10−6ms−1 Ri = 452 u∗ = 2.5 × 10−4ms−1

Table 3. Numerical data

Ue = ue/(α/H) α ≃ 10−5m2s−1

ue = 0.01 H = 1m

Undoubtedly, the Reynolds number is so small that we consider the saltwater just as
the Stokes fluid [9]. Generally, we can write,

Re = uezL

νH
≃ Ue

pr
≃ 0.01

6
≪ 1. (6.1)

On the other hand, for a considerable entrainment velocity (Ue), the value of the di-
mensionless temperature has shown a steady decline, owing to the dynamics erosion of
lower interfaces.

The graph from the Figure 7 illustrates the effect of the dimensionless entrainment
velocity (Ue) on the dimensionless concentration in the (NCZ) region. Overall, the con-
centration decreases when the entrainment velocity (Ue) rises and takes a considerable
value. This clearly due to the spread of the salt in water from the bottom of the pond to
the top [8]. In general, this graph highlights the evidence that the (NCZ) zone is inefficient
under these conditions.

6.2. Effect of the Nusselt number on the stability of solar pond
The graphs given in the Figures 4 and 5 present data on the effect of Nusslet number on

the distribution of temperature in a solar pond at τ = 0.5 and Ue = 0.01. We notice that
when 0 ≤ Nu ≤ 1, the dimensionless temperature reaches its highest value. Therefore, this
provides evidence that the convective heat transfer coefficient (hc) rises compared with
the water thermal conductivity coefficient, which means falling in heat loss by convection
phenomena.

According to the experimental relation between Nusslet number and Reynolds number
[5],

Nu = 0.037 × R
4
5
e × p

1
3
r . (6.2)

By using (4.3), we obtain the following result:

Nu = 0.037 × U
4
5

e × p
−2
3

r ⇒ Nu ≪ 1.

6.3. Effect of thickness of the salinity gradient zone (NCZ) on the stability
of solar pond

The graph given in Figure 6 shows that the growth of the thickness of the (NCZ) region
leads to an increase of the dimensionless temperature. One reason for this could be that
the decrease of radiation solar energy with the depth of the fluid layer, conversely, at the
same time, there is a marked reduction of incoming heat losses.
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6.4. The condition of stability
The experimental expression for the equilibrium condition in the gradient zone is given

in [14],
dC

dz
= 28(dT

dz
)0.63. (6.3)

It seems that the relation between gradient salinity and gradient temperature is only a
linear connection.

The graph given in Figure 8 shows that for small entrainment velocity, the salinity
gradient varies linearly with the temperature gradient. This linear relation depends on
the power value (N) of the gradient temperature (dT

dz )N . We notice that in the case of
1 ≼ N ≼ 1.5, the relation keeps linear. However, it fluctuates markedly when N /∈ [1, 1.5] .

In the general case, we can write the stability relation of the solar pond as

dC

dz
= α(dT

dz
)N . (6.4)

Here α is a constant and it depends on the property of salty water.

On the other hand the dimensionless equation is given as
∆C

H

dχ

dZ
= α(∆T

H

dθ

dZ
)N ⇔ dχ

dZ
= α H1−N (∆T )N

∆C
( dθ

dZ
)N

⇔ dχ

dZ
= αξ( dθ

dZ
)N , (6.5)

with
ξ = H1−N (∆T )N

∆C
= γ/α, (6.6)

where γ is the slope of the curve determined by dχ
dZ = f (( dθ

dZ )N ), and for

H = 1 ⇒ (∆T )N

∆C
= γ/α.

Finally, we deduce a new equilibrium condition in the gradient zone between ∆T and
∆C given as

(∆T )N = (γ/α)∆C

⇒ ∆C = (α/γ)(∆T )N .

For Ue = 0.01, N = 1.25, and γ = 1.38, we get ∆C = (α/1.38)(∆T )1.25.

7. Conclusion
In this work, we have studied the problem of the heat, mass transfer, and the condition

of the stability in salt gradient solar pond under new boundary conditions. Moreover, this
study has shown the importance of both Nusslet number and (NCZ) thickness in preventing
the loss of the heat in the solar pond ((NCZ) region) by the convection phenomena. As
has been noted, the small values of the entrainment velocity has also effect on the stability
of the solar pond. Furthermore, the conditions of stability are linked to the linear relation
between the salinity and the temperature gradient. In the end, what makes our work
different and more interesting is that we have found an interval of exponential values of
gradient temperature which makes the solar pond more stable.
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