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Abstract: The influence of turbulent natural convection and thermal radiation in a differentially heated square 

enclosure is numerically investigated. The enclosure is heated from the right wall and cooled from the left wall. The 

other walls are assumed to be adiabatic. The Reynolds Averaged Navier Stokes (RANS) formulation was employed 

for analyzing turbulent flows together with a Realizable k– model. In addition, the discrete ordinates method (DOM) 

was used to solve the radiative transfer equation (RTE). Influence of Rayleigh number (Ra), optical thickness (), 

Planck number (Pl), scattering albedo () and wall emissivity ( w ) parameters were studied numerically on square 

enclosure for the flow and temperature distribution. It is interesting to note that a detailed parametric study focusing 

on characterizing parameters in turbulent natural convection and radiation was rarely dealt with in details. Solutions 

were obtained for a range of Rayleigh numbers varying from 109 to 1012. It was found that the radiation heat transfer 

alters the characteristics of flow fields in the enclosure. Increasing the optical thickness results in a decrease in 

combined heat transfer for a fixed Rayleigh number and the maximum of heat transfer occurred for low optical 

thickness with radiation presence. tNu =87.796 and 82.351 is obtained for =0.2 and 5, respectively (Ra=1010, 

Pl=0.02 and =0). The heat transfer increases with decreasing Planck number, and decreases with the increasing 

scattering albedo. tNu =445.837 and 68.100 is obtained for Pl=0.001 and 10, respectively (Ra=1010, =1 and =0). 

When the active walls are black and the insulated walls are reflected, tNu  =85.507 is obtained for Ra=1010, Pl=0.02, 

=1 and =0. 
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İZOTROPİK SAÇILMA ORTAMLI KARE GEOMETRİ İÇİNDE TÜRBÜLANSLI 

DOĞAL TAŞINIM VE IŞINIM ISI TRANSFERİ 
 

ÖÖzzeett::  Farklı ısıtılmış kapalı kare bir geometri içindeki türbülanslı doğal taşınım ve ısıl ışınımın etkisi sayısal olarak 

incelenmiştir. Kapalı kutu sağ duvardan ısıtılır ve sol duvardan soğutulur. Diğer duvarların adyabatik olduğu 

varsayılmaktadır. Reynolds Averaged Navier Stokes (RANS) formülasyonu, Realizable k–modeli ile birlikte 

türbülanslı akışları analiz etmek için kullanılmıştır. Ayrıca, ışınım transfer denklemini (RTE) çözmek için kesikli 

ordinatlar metodu (DOM) kullanılmıştır. Rayleigh sayısı (Ra), optik kalınlık (), Planck sayısı (Pl), saçılma albedosu 

() ve duvar yayma oranı ( w ) parametrelerinin etkisi, akış ve sıcaklık dağılımı kapalı kare geometri içinde sayısal 

olarak çalışılmıştır. Türbülanslı doğal taşınım ve ışınımda parametrelerin karakterize edilmesine odaklanan detaylı bir 

parametrik çalışmanın nadiren ayrıntılı olarak ele alındığını belirtmek ilginçtir. Çözümler 109 ila 1012 arasında 

değişen Rayleigh sayısı için elde edilmiştir. Işınım ısı transferinin geometri içinde akış alanlarının özelliklerini 

değiştirdiği bulunmuştur. Optik kalınlığın arttırılması, sabit bir Rayleigh sayısı için birleşik ısı transferinde bir 

azalmaya neden olurken ve ışınımla birlikte düşük optik kalınlıkta maksimum ısı transferi elde edilmiştir. =0.2 ve 5 

için sırasıyla tNu =87.796 ve 82.351 elde edilmiştir (Ra=1010, Pl=0.02 ve =0). Isı transferi azalan Planck sayısı ile 

artar ve artan saçılma albedo ile azalır. Pl=0.001 ve 10 için sırasıyla tNu =445.837 ve 68.100 bulunmuştur (Ra=1010, 

=1 ve =0). Aktif duvarlar siyah, yalıtılmış duvarlar yansıtıcı olduğunda, Ra=1010, Pl=0.02, =1 ve =0 için tNu  

=85.507 elde edilmiştir. 

Anahtar Kelimeler: Türbülanslı doğal taşınım, RANS, Isıl ışınım, İzotropik saçılmalı ortam, Kare geometri 

 

NOMENCLATURE 

 

a absorption coefficient, [m-1] 

cp specific heat capacity, [J/kg K] 

C constant in the k– models 

g acceleration due to gravity, [m/s2] 

I radiation intensity, [W/m2] 

k turbulent kinetic energy, [m2/s2] 
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L enclosure height and weight, [m] 

n refractive index 

Nu Nusselt number,  

P pressure, [Pa] 

Pl Planck number, 3

0[ ( / ) / (4 )]L T   

Pr Prandtl number, [ / ]    

q heat flux, [W/m2] 

r position vector 

Ra Rayleigh number, 
3[ ( ) / ( )]h cg T T L     

s   direction vector 

s'   scattering direction vector 

S modulus of the mean rate-of-strain tensor 

Sij mean rate of strain tensor 

t time, [s] 

T temperature, [K] 

Tc temperature of cold wall, [K] 

Th temperature of hot wall, [K] 

T0 reference temperature, [ ( ) / 2h cT T   , K] 

u, v horizontal and vertical velocity components, 

[m/s] 

U dimensionless horizontal velocity 

components, 
1/2[ / ( / )]u Ra L   

V dimensionless vertical velocity components, 
1/2[ / ( / )]v Ra L  

x, y cartesian coordinates, [m] 

X,Y dimensional coordinates, [X=x/L, Y=y/L] 

Greek letters 
   thermal diffusivity, [m/s2] 
   coefficient of thermal expansion, [1/K] 

  thermal conductivity, [W/mK] 

ij   Kronecker delta 

T   temperature difference, [ ( )h cT T  ,  K] 

w  wall emissivity 

  dissipation rate of k, 2 3[ / ]m s   

   dimensionless temperature, 

[ ( ) / ( )]o h cT T T T     

0  reference temperature ratio, 

[ / ( )]o h cT T T   

   kinematic viscosity, [m2/s] 

 scattering albedo, [ / ( )]s sa    

   dynamic viscosity, [kg/m s] 

t  turbulent eddy viscosity, [kg/m s] 

   density, [kg/m3] 
   Stefan Boltzmann constant, [W/m2K4] 

s  scattering coefficient, [m-1] 

T  turbulent Prandtl number 

 optical thickness, [ ( ) ]sa L    

   phase function 

'   solid angle 

Subscripts 

c convection, cold 

h hot 

i,j elemental directions (i, j = 1 and 2 

corresponding to the x and y directions) 

r radiation 

t total 

w wall 

w1,w2 

w3,w4 

right wall, left wall, bottom wall, top wall 

Abbreviations 

DOM Discrete Ordinates Method 

DNS Direct Numerical Simulation 

LES Large Eddy Simulation 

LBM Lattice Boltzmann Method 

P1 Spherical Harmonics Method 

PRESTO Pressure Staggering Option 

RANS Reynolds Averaged Navier Stokes 

RNG Renormalization Group 

RTE Radiative Transfer Equation 

 

INTRODUCTION 

 

Analysis of natural convection and radiation in 

participating media is an important process in various 

engineering systems such as the design of furnaces, heat 

exchangers, cooling of electronic devices and nuclear 

reactors, spacecraft, thermal insulation, heat buildings, 

the metallurgy and solar capture, and so on. In these and 

similar engineering applications, radiation can strongly 

interact with convection. The variation of flow and 

temperature distribution is directly influenced by the 

radiation effects. In fact, the effects on the flow and heat 

transfer of parameters as Rayleigh number, Planck 

number, wall emissivity and the scattering albedo are 

present in several engineering applications in industry. 

 

Studies on the interaction of radiation and laminar 

natural convection heat transfer began in the 80's. 

Lauriat (1982) studied a two-dimensional vertical 

cavities of different optical thickness, whereas P1 

(Spherical Harmonics Method) gray gas method was 

used for various formulation and analyzed non-gray gas 

radiation characterized by the radiation band structure. 

Also Desrayaud and Lauriat (1985) extended the study 

of a fluid layer of the vertical wall. Webb and Viskanta 

(1987) examined the rate of internal radiative heating on 

the natural convective motion in a vertical rectangular 

enclosure irradiated from the side wall. Fusegi and 

Farouk (1989) studied numerically the interactions of 

laminar and turbulent natural convection and gray gas 

radiation in a differentially heated square enclosure and 

used P1 approximation method for solving the radiative 

transfer equation (RTE).  The numerical investigation of 

interactions of natural convection and radiation in a 

square enclosure was performed by Yucel et al. (1989). 

They used Discrete Ordinates Method (DOM) to solve 

the RTE. Also these same authors analyzed the changes 

in the buoyant flow patterns and temperature 

distributions due to the presence of radiation in inclined 

or heat generating enclosures (Yucel et al., 1994). In the 

same trend Draoui et al. (1991) used the P1 method to 

analyze the effects of radiation and natural convection 

on the heat transfer process in a square enclosure. Tan 

and Howell (1991) studied the combined radiation and 

laminar natural convection in a two-dimensional 
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participating square medium numerically. They found 

that the radiation destroyed the symmetry of the flow 

structure and temperature field.  

 

These mentioned studies have been dealt with different 

solution methods in the last decade. Mezrhab et al. 

(2008) performed the numerical study of double-

diffusion convection coupled to radiation in a square 

cavity filled with absorbing, emitting and non-scattering 

gray gas. They modeled the RTE by the DOM method. 

Mondal and Mishra (2009) analyzed the simulation of 

natural convection in the presence of thermal radiation 

using the lattice Boltzmann method (LBM). In this 

study, they investigated the effects of the extinction 

coefficient and the scattering, albedo on flow field and 

temperature distribution. Moufekkir et al. (2012) studied 

numerically the laminar natural convection and thermal 

radiation in an isotropic scattering medium within a 

heated square cavity using a hybrid thermal lattice 

Boltzmann method. They later investigated the effect of 

the inclination angle of enclosure on heat transfer in the 

similar problem (Moufekkir et al, 2012).  

 

Coupled turbulence natural convection and radiation in 

differentially heated cavity was investigated by many 

researches. In general, turbulent flows have been 

investigated using three numerical approximation 

techniques: Direct Numerical Simulation (DNS), Large 

Eddy Simulation (LES) and RANS. Using the DNS 

turbulence method, combined turbulence natural 

convection and radiation in a 2D and 3D enclosures are 

considered in the literature (Salat et al., 2004; Xin et al., 

2004; Sergent et al., 2013; Soucasse et al., 2014; 

Czarnota and Wagner, 2016). Commonly, there are 

many studies considering the interaction of turbulence 

models and thermal radiation at low Rayleigh number in 

LES method (Capdevila et al., 2011; Capdevila et al., 

2012; Ibrahim et al., 2013).  

 

Among RANS models, the standard k– model has been 

adopted by many authors. Mesyngier and Farouk (1996) 

examined the combined turbulent natural convection 

and radiation in a 2D differentially heated square cavity 

filled with a single participating gas or a homogeneous 

mixture of two participating gases along with a non-

participating gas. The interaction of surface radiation 

with turbulent natural convection of a transparent 

medium in 2D square and tall enclosures was analyzed 

by Velusamy et al. (2001). In this study, the enclosure 

isolated from the horizontal walls heated from the 

vertical walls was changed to Ra 109–1012 and aspect 

ratio 1-200. Sharma et al. (2007) investigated the 

interaction of surface radiation with turbulent natural 

convection of a transparent medium in a rectangular 

enclosure heated from below and cooled from the other 

three walls with the Rayleigh number varying from 108 

to 1012 and the aspect ratio changing from 0.5 to 2.0. 

The same authors analyzed the same geometry with the 

inclination angle varying between 0°-90° and Rayleigh 

numbers from 108 to 1012 (Sharma et al., 2008). Shati et 

al. (2012) presented the effect of turbulence natural 

convection with and without the interaction of surface 

radiation in 2D square and rectangular enclosures, using 

the renormalization group (RNG) k– model. Xaman et 

al. (2008) studied numerically the combined heat 

transfer (laminar and turbulent natural convection, 

surface thermal radiation and conduction) in a square 

cavity with a glass wall. Wu and Lie (2015) numerically 

investigated turbulent natural convection with and 

without radiation transfer in 2D and 3D air-filled 

differentially heated cavities using various RANS 

models. They compared two equation eddy-viscosity 

models which are the standard k– model, RNG k– 

model, the realizable k– model, the standard k– 

model and the shear-stress transport (SST) k– model. 

The numerical analysis of conjugate turbulent natural 

convection combined with the surface thermal radiation 

in an enclosure has been carried out by Miroshnichenko 

et al. (2015), Sheremet and Miroshnichenko (2015).  

 

The scattering albedo, the Planck number and the 

surface emissivity effects for participating and 

isotropically scattering media were rarely studied in 

detail for high Rayleigh number. Since these parameter 

effects find their use in several industrial processes for 

various ranges, the objective of the present study is to 

simulate turbulence natural convection in a two 

dimensional square enclosure in the presence of thermal 

radiation. Also, the performance of the realizable k– 

turbulence model and DOM method are investigated in 

natural convection with radiation in an enclosure for the 

effect of various influencing parameters such as the 

Rayleigh number, the Planck number, the scattering 

albedo and the surface emissivity.  

 

GOVERNING EQUATIONS 

 

The geometry of a two-dimensional square enclosure is 

shown in Fig. 1. The physical model consists of a gray, 

absorbing, emitting, and isotropically scattering fluid in 

a square enclosure surrounded by the walls. Two 

horizontal walls are insulated, and two vertical 

isothermal walls are kept at temperatures, Th=1000K 

and Tc=500K, respectively. The cavity is filled with a 

Newtonian fluid of Pr=0.71. All physical properties in 

the system are assumed to be constant for T0 reference 

temperature, expect for the density. The radiating fluid 

is assumed to be incompressible; viscous dissipation is 

neglected. 

The continuity and unsteady Reynolds-averaged Navier 

Stokes and energy equations (in tensor notation) for the 

buoyancy-excited turbulent air flow within the 

enclosure can be written as follows with Boussinesq 

assumption:  

 

0i

i

u

x





   (1) 
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0( )

i i
j

j

ji
i j i

i j j i

u u
u

t x

uuP
u u g T T

x x x x

 

  

 
 

 

   
        

       

  (2) 

( )j
p p i r

j j j

u TT T
c c u T

t x x x
   

   
     

     

q (3) 

where xi and xj are the Cartesian coordinates in the i and 

j directions, t is the time, P is the pressure, T is the time 

averaged temperature, T0 is the reference temperature, ui 

and uj are the time averaged velocity components in the 

i and j directions, iu   and ju  are the corresponding 

unstable velocity components in the i and j directions, 

is the fluid density,  is the thermal conductivity, cp is 

the specific heat capacity, and  is the dynamic 

viscosity. 

 

 
Figure 1. Schematic geometry of the problem. 

 

The Reynolds stresses ( i ju u   ) and the turbulence heat 

fluxes ( iu T  ) need to be modeled in order to solve Eq 

(1) and (3). The Reynolds stresses are modeled through 

the Boussinesq approximation as: 

2

3

ji
i j t ij

j i

uu
u u k

x x
   

 
     

   

  (4) 

where t is the turbulent eddy viscosity, k is the 

turbulent kinetic energy, ij is the Kronecker delta 

( 0ij   if i j  and 1ij  if i j ). The turbulent eddy 

viscosity is obtained by 
2

t

c k



      (5) 

In this study, two equations the realizable k- model is 

considered. The difference between the realizable k-

model and the standard and RNG k-models is that Cμ 

is no longer constant: 

 *

1

4.04 6 cos /
C

kU


 



        (6) 

where 

 1

* ,      2 ,

2

1
cos 6 ,   ,   ,  

3

1

2

ij ij ij ij ij ij ijk k

ijij ijk k

ij jk ki
ij ij

j i
ij

i j

U S S

S S S
W W S S S

S

u u
S

x x

 

 

 

      

   

  

  
  

   

 (7) 

ij is the mean rate of rotation tensor viewed in a 

rotating reference frame with the angular velocity k . 

Also ijk is discretized by using Eq. (13).  

t
i

T i

T
u T

x






   


    (8) 

where T is the turbulent Prandtl number. 

The turbulent kinetic energy (k), is as follows assuming 

incompressible flow and no source terms: 

   j

j

t
k b

j k j

kuk

t x

k
G G

x x




 




 

 

   
         

  (9) 

where Gk represents the production of turbulent kinetic 

energy, which is common to all k-ε turbulence models 

and is given by 

j

k i j

i

u
G u u

x


  


                 (10) 

The term Gb represents the generation of turbulent 

kinetic energy because of buoyant forces when the 

system is under a gravitational field, and it is calculated 

as follows: 

Pr

t

b i

t i

T
G g

x








                 (11) 

where Prt= 0.85 is the Prandtl number for energy and β 

is the thermal expansion coefficient, which is calculated 

as follows: 

1

PT






 
   

 
                 (12) 

Turbulent dissipation rate (, is as follows assuming 

incompressible flow and no source terms:   

   

2

1 2 1 3

j t

j j j

b

u

t x x x

C S C C C G
kk



 

  




 
  



     
          

  


              (13) 

where, 
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1

3

max 0.43, ,     ,      
5

2 ,        tanh
j

ij ij
i

k
C S

u
S S S C

u





 

 
  

 

 

              (14) 

and k and   are the turbulent Prandtl numbers for k 

and , respectively.  The constants used in the realizable 

k-model are as follows: 

1 21,     1.2,     1.44,     1.9k C C                    (15) 

The local divergence of radiative flux r q  in the 

energy equation is related to the local intensities by: 

4

4 ( ) ( , )r bq a I I d




 
     
 
 

r r             (16) 

To obtain the radiation intensity field and r q , it is 

necessary to solve the RTE.  

 

The DOM model solves the radiative transfer equation 

over a finite number of solid angles, each associated 

with a vector direction s in the global Cartesian system 

(x, y). The DOM model does not perform ray tracing. 

Instead, the RTE is transformed into as many transport 

equations as there are solid angles with direction s. The 

solution method is the same as that used for the 

momentum and energy equations. The RTE in the 

direction s can be written as follows: 

44

2 0

0

( ( , ) ) ( ) ( , )

( , ) ( )
4

s

s

I a I

T
an I d





 

 

   

    

r s s r s

r s s s
               (17) 

where, r is position vector, s is direction vector, s  is 

scattering direction vector, s is path length, a is 

absorbing coefficient, n is refractive index, s is 

scattering coefficient,   is Stefan-Boltzmann constant, 

I is radiation intensity, Φ is phase function and   is 

solid angle. 

 

The boundary conditions are as follows: 

0,     at all walls

,    0   and 0

,     0   and 

0,  at the adiabatic wall (top and bottom)

i

c

h

c r

u

T T y L x

T T y L x L

q q



   

   

 

  (18) 

 

The radiative heat flux on boundary surfaces (qr) can be 

expressed as; 

 
0

( ) ( , )r w b w wq I r I r d 
 

    n s
s n s               (19) 

and the radiative boundary condition for diffusely 

reflecting surfaces in Eq. (19) is 

0

1
( , ) ( ) ( , )w

w w b w wI r I r I r d



  


    n s

s s n s      (20) 

where n is the outward normal at the boundary. 

 

The total wall heat flux is calculated as 

t c rq q q 
                     

(21) 

where cq and rq  are the convective and radiative heat 

flux at wall, calculated as 

4

    and    ( ) d  c r w

T
q q I

n





    
  n s

               

(22) 

 

The total Nusselt number at the walls are calculated 

from the convective and radiative Nusselt number as 

( ) ( )

c r

t c r

h c h c

q L q L
Nu Nu Nu

T T T T 
   

 
              (23) 

 

The mean Nusselt number Nu at the wall is the line 

averaged value of Nu.  

 

NUMERICAL SOLUTION 

 

In this study, Fluent (2011) was used to numerically 

simulate the existing problem. The unsteady continuity, 

RANS and energy equations are discretized by 

employing finite volume and the resulting equations are 

iteratively solved. The computational domain is divided 

non uniform finite volumes using structured cells. A 

second order time implicit scheme is adopted to apply 

solution. The PRESTO (Pressure Staggering Option) 

scheme is employed for pressure term while The second 

order upwind scheme is adopted for the others. Further, 

the pressure velocity coupling is implemented based on 

SIMPLE algorithm. For the radiation transfer, the DOM 

is used. The angular resolution is 4x6. The two-layer 

model (Enhanced Wall Treatment model) is used to 

achieve near wall modeling approach. Additionally, the 

thermal effects and the full buoyancy effect options in 

the related turbulence models were activated. The 

convergence criteria imposed to all of the equation was 

10-5. The time-dependent approach is used to obtain the 

steady-state solution. To determine the time step size, 

the criteria, / (4 )t L g TL   as, recommended by 

Fluent (2011). 

 

For the validation of the problem, the turbulence natural 

convection of CO2 radiation interaction in square 

enclosure has been solved Rayleigh values of 108, 

109 and 1010. This problem was studied numerically by 

Fusegi and Farouk (1989), Mesyngier and Farouk 

(1996). In all cases, the enclosure was considered to be 

filled with CO2 at atmospheric pressure. The reference 

temperature T0 is 555 K, and the wall temperatures 

are Tc = 277.5 K and Th = 832.5 K. The corresponding 

Pl for these cases is 0.0046, 0.0021 and 0.001, 

while  varies from 0.1443 to 0.191. Figure 2 shows 

mean total Nusselt numbers as a function of Ra for the 

above conditions. The numerical solution depicts very 

good agreement those of published results. 
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Figure 2. Comparison of P1, DOM (S4) and present work for 

mean Nusselt number as a function of Ra. 

 

A second validation problem is the turbulence natural 

convection of air surface radiation interaction in a 

square enclosure at Rayleigh number of 1.5×109. The 

comparisons of numerically obtained mean Nusselt 

numbers relative to experimental measurement and 

numerical are given in Table 1. According to the 

experimental result, the maximum relative error is 

6.31%. 

 
Table 1. Comparison of mean convective Nusselt number for 

Ra=1.5×109 and =0. 

Models 
cNu  Error relative to 

Experimental 

Data 

Experiment  

(Salat et al., 2004) 
54  

SST k–  

(Wu and Lei, 2015) 
56.18 4.04 

Present Work 

(Realizable k-) 
57.41 6.31 

 
Table 2. Comparison of mean total, radiative and convection 

Nusselt number on hot wall various grid sizes for Ra=109, 

Pl=0.02, =0 and w1=w2=w3=w4=1. 

 
tNu  rNu  cNu  Grid 

=0.2 

56.588 26.801 29.787 100×100 

56.454 26.786 29.668 200×200 

56.448 26.786 29.662 400×400 

 

Table 2 presents the mean convection, radiation and 

total Nusselt numbers for different grid values for 

Ra=109, Pl=0.02 and =0. Variation in the number of 

grid points from 200×200 with stretching ratio 1.05 to 

400×400 with stretching ratio 1.05 affects the mean 

total, radiative and convection Nusselt number by less 

than 0.01%, 0.0% and 0.02%, respectively. Numerical 

accuracy was further checked by refining the grid so 

that wall
 1y  

in computations. Turbulence solution 

of the mesh is given in Fig.3. The grid size of 400×400 

cells is therefore chosen for all cases studies (Fig. 3). 

 

 
 

Figure 3. Unstructured grid system for enclosure. 

 

RESULTS AND DISCUSSION 

 

The differentially heated square enclosure and filled 

with an isotropic scattering medium as illustrated in Fig. 

1. In this study, the Prandtl number was fixed at 

Pr=0.71, the other parameters such as Rayleigh number, 

Planck number, the scattering albedo and wall emisivity 

were varied in order to quantify their effects on the heat 

transfer and the fluid flow in the enclosure. The Planck 

number expresses the relationship between heat transfer 

by conduction and radiation. The reference temperature 

ratio 0 is considered equal to 1.5 and the ratio Tc/Th is 

fixed at 0.5, under the Boussinesq approximation. This 

approximation is accurate as long as changes in actual 

density are small; specifically, the Boussinesq 

approximation is valid when
 

  10 TT  (Fluent, 

2011). 

 

Optical Thickness and Rayleigh Number Effects 
 

In Figure 4, the isotherms (left) and the streamlines 

(right) are depicted at Ra=1010, Pl=0.02 and =0 for 

various the optical thicknesses (=0.2, 1 and 5). In case 

of (surface radiation), the isotherms and the 

streamlines exhibit nearly centro symmetric structure 

that are characterized by the formation of extremely thin 

boundary layers along the isothermal walls and a 

thermally stratified. As the optical thickness increases 

with the presence of radiation, the centrosymmetric of 

the streamline deteriorates, but there is no change in the 

thermally stratified in the isotherms. Indeed, the optical 

thickness increase slightly changes the temperatures 

distribution. 
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 

  

 

  

 

  

 

  
Figure 4. Isotherms (left) and streamlines (right) at Ra=1010, Pl=0.02, =0, for w1=w2=w3=w4=1. 

 

Figure 5 shows the temperature profiles along the 

respective horizontal and vertical mid-planes. Thermal 

radiation causes the temperature to rise slightly. While 

the optical thickness increases, the temperature profiles 

become similar. Large temperature gradients are 

observed near the hot and cold walls. In addition, an 

increase in temperature indicates that the medium 

participates more and the radiation effect is stronger and 

the convection effect is weakened. In the case no 

radiation, the vertical and horizontal gradients of 

temperature are much lower than those of the other. In 

the presence of both transparent and participating 

medium, the fluid heats up very quickly when it 

approaches the hot wall, and cools down very quickly 

when it approaches the cold wall. 

 

Figure 6 displays the vertical and horizontal velocity 

profile along the respective horizontal and vertical mid-

planes. The horizontal velocity gradients vary 

considerably in the region near the insulated horizontal 

plates by the radiation. Similarly, the vertical velocity 

gradients show a sharp change in the region near the 

thermally active walls. At the same time the flow in the 

enclosure is almost stagnant, forming a distinct core 

region and boundary layer structures is located in 

regions adjacent to the hot and cold walls. 
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Figure 5. Temperature distribution at X=0.5 mid-plane (left) and Y=0.5 mid-plane (right) for Ra=1010, Pl=0.02, =0, 

w1=w2=w3=w4=1. 

 

  
Figure 6. Horizontal velocity at X=0.5 mid-plane (left) and vertical velocity Y=0.5 mid-plane (right) for Ra=1010, Pl=0.02, 

=0,w1=w2=w3=w4=1. 

 

Figure 7 depicts the variation of the mean total Nusselt 

number ( tNu ) for various optical thicknesses and for 

different the Rayleigh numbers. In both surface 

radiation (=0) and thermal radiation (=0.2,1,5),  the 

tNu  increases with increasing Rayleigh number  and 

decreases with increasing optical thickness. With 

increasing Rayleigh number, the buoyancy forces will 

increasingly play a major role in heat transfer across the 

enclosure. With increasing optical thickness, the 

radiative flux exchanged between the enclosure walls 

decreases slightly. Therefore, the maximum of heat 

transfer is achieved at low optical thickness. 

 

The variations of the mean total and radiative Nusselt 

numbers as functions of Rayleigh number, the scattering 

albedo and the optical thickness are shown in Table 3. 

When the optical thickness and scattering albedo are 

constant, the mean total and radiative Nusselt numbers 

increase with the Rayleigh number. Besides, when the 

scattering albedo and the Rayleigh number remain 

constant, tNu  and rNu  decrease as the optical 

thickness increases. 

 
Figure 7. Mean total Nusselt number versus Rayleigh number 

for various optical thicknesses with Pl=0.02,=0 and 

w1=w2=w3=w4=1. 



 

215 

 

Table 3. Variation of the mean total, radiative and convection Nusselt number according to scattering albedo for different values 

of Rayleigh number and optical thicknesses (w1=w2=w3=w4=1). 

   109 1010 1011 1012 

=0.2 

=0 
tNu  56.448 87.796 150.797 280.376 

rNu  26.786 27.472 28.040 28.423 

=0.5 
tNu  56.439 87.508 150.706 280.266 

rNu  26.231 26.883 27.435 19.994 

=1.0 
tNu  56.441 87.711 150.611 280.116 

rNu  25.550 26.186 26.733 27.120 

=1.0 

=0 
tNu  52.141 83.807 147.062 277.042 

rNu  24.894 25.303 26.073 26.591 

=0.5 
tNu  51.540 83.230 146.595 276.372 

rNu  22.615 23.480 24.160 24.603 

=1.0 
tNu  50.854 82.390 145.581 275.267 

rNu  19.628 20.318 20.920 21.346 

=5.0 

=0 
tNu  50.429 82.351 146.137 276.525 

rNu  22.238 23.811 24.913 25.629 

=0.5 
tNu  48.303 80.415 144.259 274.402 

rNu  19.573 20.799 21.652 22.207 

=1.0 
tNu  42.510 74.442 137.979 267.923 

rNu  10.010 10.570 11.053 11.441 

 

 

Planck Number Effects 

 

The effect of the Planck number in presence of radiation 

is applied for Ra=1010, =0 and =1.  The radiation will 

dominate when the Planck number is low. Figure 8 

illustrates the effect of Planck number on isothermal 

contours (top) and the streamlines (bottom). For 

Pl=0.001, the radiation is dominant heat transfer mode 

and significantly changes the temperature profile 

throughout the enclosure, the isotherms patterns are 

concentrated on the hot and cold wall. The streamlines 

have a circular shape and presents a single vortex. For 

Pl=0.1 and 100, the isothermal contours are similar and 

the streamlines display nearly centro-symmetric 

structure. 

 

Figure 9 shows the Planck number affects the 

temperature distribution in horizontal and vertical mid-

planes. At Pl = 0.001, the radiative transfer is the 

dominant mode and the temperature inside the enclosure 

is higher. Pl = 0.1 and 100 temperature distributions are 

similar. The temperature gradient is more evident in the 

hot and cold walls. 

 

Figure 10 illustrates the effect of the Planck number on 

the horizontal and vertical velocity profile along the 

respective horizontal and vertical mid-planes. When 

Planck number decreases, the horizontal and vertical 

velocity magnitude increases. The decrease in the 

number of Planck indicates that it increases the gradient 

of temperature and velocity across the active walls and 

generates a non-stagnant flow enclosure. The radiation 

effect is stronger and the convection effect is weakened. 

 

In Table 4, for Ra=1010, =1 and =0, the mean total, 

radiative and convection Nusselt numbers change is 

seen in different Pl numbers. For =1, the mean total 

and radiative Nusselt numbers decrease with increasing 

the Planck number, however, the mean convection 

Nusselt number increases with increasing Planck 

number. 
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Pl=0.001 Pl=0.1 Pl=100 

   

   
Figure 8. Isotherms (top) and streamlines (bottom) and at Ra=1010, =1, =0,w1=w2=w3=w4=1 and for various Pl numbers. 

 

  
Figure 9. Temperature distribution at X=0.5 mid-plane (left) and Y=0.5 mid-plane (right) for Ra=1010, =1, 

=0,w1=w2=w3=w4=1. 

 

 

 

 

Table 4. Variation of the mean total, radiative and convection 

Nusselt number at various Pl number for Ra=1010, =1, 

=0,w1=w2=w3=w4=1. 

Pl tNu  rNu  cNu  

0.0005 830.640 800.616 30.024 

0.001 445.837 413.304 32.533 

0.1 71.088 5.195 65.892 

10 68.100 0.052 68.048 

100 68.090 0.005 68.085 

 

 

 

 

 

Effects of Scattering Albedo Parameter 

 

To investigate the effect of scattering albedo on flow 

field and temperature distribution for three values of 

scattering albedo coefficient (=0, 0.5 and 1), the 

following parameter are fixed, namely, Ra=1010, 

Pl=0.02 for =1. Figure 11 displays the effect of the 

scattering albedo on isotherms and streamlines. The 

effect of scattering albedo on streamlines is limited and 

the flow field in the core enclosure expands slightly. 

However, for =1, the streamlines is similar to =0 

profiles. Additionally, as the scattering albedo increases, 

the effect of radiative transfer decreases, and the 

isotherms profiles are very similar. 
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Figure 10. Horizontal velocity at X=0.5 mid-plane (left) and vertical velocity Y=0.5 mid-plane (right) for Ra=1010, =1, 

=0,w1=w2=w3=w4=1. 

 

ω=0 ω=0.5 ω=1 

   

   
Figure 11. Albedo effect on isotherms (top) and streamlines (bottom) at Ra=1010, Pl=0.02 =1, w1=w2=w3=w4=1. 

 

Figure 12 displays the dimensionless temperature 

profiles in the horizontal and the vertical mid-plane for 

three values of scattering albedo.  The temperature 

profiles seem to be less affected by variations in 

scattering albedo. When the environment is completely 

absorbent (=0), the temperature is somewhat higher 

than the others. 

 

Figure 13 depicts the effect of scattering albedo on the 

horizontal and vertical velocity profile along the 

respective horizontal and vertical mid-planes. As the 

scattering albedo increases, the vertical velocity profile 

remains to be similar. The horizontal velocity 

magnitude is listed as =0, 0.5 and 1, respectively. 

 

 

 

Effects of Wall Emissivities 

 

The effect of wall emissivity on total heat transfer is 

investigated for Ra=1010, Pl=0.02, =1 and =0, while 

the wall emissivity can take the values 0, 0.1, 0.5 and 1. 

Table 5 shows the impact of the wall emissivity in the 

presence of thermal radiation. For the hot wall (right 

wall), the increase of wall emissivity leads to the 

increase of mean total Nusselt number. Additionally, the 

same trend can be seen for top wall emissivity.  

However, for cold wall (left wall), the increasing of wall 

emissivity leads to slightly the decrease of mean total 

Nusselt number, and there is also the same trend for 

bottom wall emissivity. Decreasing the emissivity of the 

hot wall reduces the radiation Nusselt number 

considerably. Actually, the wall emissivity effects 

significantly the heat transfer in the enclosure. When the 
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hot and cold walls are black and the insulated walls are 

reflected, the maximum heat transfer is obtained. 

 

 

  
Figure 12. Temperature distribution at X=0.5 mid-plane (left) and Y=0.5 mid-plane (right) for Ra=1010, Pl=0.02, 

=1,w1=w2=w3=w4=1. 

 

  
Figure 13. Horizontal velocity at X=0.5 midplane (left) and vertical velocity Y=0.5 midplane (right) for Ra=1010, Pl=0.02, 

=1,w1=w2=w3=w4=1. 

 

Table 5. Variation of the mean total, radiative and convection Nusselt number for various wall emissivities. 

Wall emissivity 
tNu  rNu  cNu  

bottom right top left 

0.1 1 1 1 84.830 24.291 60.538 

0.5 1 1 1 84.325 24.855 59.470 

1 0.1 1 1 70.968 2.758 68.210 

1 0.5 1 1 76.936 13.280 63.655 

1 1 0.1 1 76.271 22.471 53.800 

1 1 0.5 1 79.803 23.804 55.998 

1 1 1 0.1 84.403 25.729 58.674 

1 1 1 0.5 84.094 25.494 58.600 

0 1 0 1 85.507 24.586 60.921 

1 1 1 1 83.807 25.303 58.504 

0 0 0 0 66.165 0 66.165 

 

CONCLUSION 

 

An investigation has been performed on interactions 

turbulent natural convective and radiative heat transfer 

within a differentially heated enclosure with a gray and 

absorbing, emitting and isotropically scattering medium. 

The discrete ordinates method is used for radiative 

transfer calculations. Studies have been carried out for a 

wide range of influencing parameters such as Rayleigh 

number, the wall emissivity, the Planck number, optical 
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thickness and the scattering albedo. The effects of these 

parameters on flow and heat transfer are encountered in 

various engineering applications.  The effects of the 

parameters discussed on turbulent natural convection 

and radiation flow and heat transfer are summarized 

below. 

  

According to surface radiation, thermal radiation alters 

the characteristics of flow fields in the enclosure under 

the thermal boundary conditions considered.  

 

The increase in the Rayleigh number causes an increase 

in the heat transfer in enclosure. On the other hand, 

increasing the optical thickness reasons a decrease in the 

heat transfer for a fixed Rayleigh number and the 

maximum of heat transfer is occurred for low optical 

thickness with the presence of thermal radiation. 

tNu =87.796 and 82.351 is obtained for =0.2 and 5, 

respectively (Ra=1010, Pl=0.02 and =0). 

 

For Pl<0.001, the isotherm lines and the streamlines are 

considerably altered in enclosure and velocities are 

intensified by the presence of radiation. The heat 

transfer increases with decreasing the Planck number. 

tNu =445.837 and 68.10 is found for Pl=0.001 and 10, 

respectively (Ra=1010, =1 and =0). 

 

The albedo effect on the temperature and velocity 

distribution is quite limited in the enclosure and 

radiation effect decreases with the increase of scattering 

albedo. 

 

For a fixed optical thickness and the Planck number, the 

decrease in the hot wall emissivity leads to decrease in 

the heat transfer in enclosure. Especially, radiative heat 

transfer in hot wall decreases significantly. When the 

hot and cold walls are black and the adiabatic walls are 

reflected, the maximum heat transfer ( tNu =85.507) is 

obtained for Ra=1010, Pl=0.02, =1 and =0. 
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