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Abstract  

This study is related to a novel numerical technique for solving the singularly perturbed reaction-

diffusion boundary value problems. First, explicit boundaries for the solution of the problem are 

established. Then, a finite difference scheme is established on a uniform mesh supported by the 

method of integral identities using the remainder term in integral form and the exponential rules 

with weight. The uniform convergence and stability of these schemes are investigated concerning 

the perturbation parameter in the discrete maximum norm. At last, the numerical results that 

provide theoretical results are presented. 
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1. INTRODUCTION 

 

In the present study, we deal with the singularly perturbed reaction-diffusion problem in the form of a 

boundary value as follows: 

 

𝐿𝑢 ≡ −𝜀𝑢″ + 𝑎(𝑥)𝑢 = 𝑓(𝑥), 0 < 𝑥 < 𝑙,                                                                                                  (1) 

 

𝑢(0) = 𝐴, 𝑢(𝑙) = 𝐵.                                                                                                                                   (2) 

 

Here, 0 < 𝜀 ≪ 1 is a small positive parameter, 𝐴 and 𝐵 represent constants. Further, we suppose that 

𝑎(𝑥) ≥ 𝛼 > 0 and 𝑓(𝑥) are smooth enough functions in [0, 𝑙]. Under these conditions obtained, the rection-

diffusion problem has a unique solution 𝑢(𝑥), which can show two boundary layers near 𝑥 = 0 and 𝑥 =
𝑙 for small 𝜀 values.  

 

The problems with singular perturbation properties for differential equations are mathematically known as 

problems in which the coefficients of the terms containing the highest-order derivative are a positive small 

parameter. The solution to such problems has a very rapid change in some parts of layer regions. In other 

words, the solutions change fast in thin transition layers called boundary layers and change regularly and 

slowly in other regions. These problems emerge in various fields of mathematics, including Navier–Stokes 

equation of fluid flow at higher Reynolds numbers, fluid dynamics, chemical reactions, oceanography, 

meteorology, quantum mechanics, reaction-diffusion status, theory of magneto-hydrodynamics duct 

problems, elasticity, etc [1-8]. 
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These problems are known to be caused by a positive small parameter 𝜀 for which the solution has a 

multiscale property. Therefore, these types of problems have thin transitional layers where solutions change 

very quickly for small values, and these solutions which are moving away from layers appear to change 

regularly and slowly. Thus, exploring the properties of the solution within boundary layers or near corners 

is the main difficulty as it requires a fine enough grid to result in a numerical solution [9-13]. 

 

Almost most of the traditional numerical techniques are not appropriate for singularly perturbed boundary 

value problems. Therefore, we require to find uniform convergent techniques to solve these problems, 

whose precision and accuracy of which do not depend on the values that the parameter will take. Some of 

the most useful and the easiest methods to produce these methods consist of fitted finite difference and 

finite element methods that use private elements like exponential elements and fitted mesh methods. Here 

the finite difference method mentioned is applicable very readily to a uniform mesh. In recent years, a great 

deal of research has been studied on numerical methods to solve singular perturbation problems [14-24]. 
The method we use has many advantages because fewer smooth conditions are required for the estimate of 

our problem. Therefore, the method is more useful and gives good results. Because of these results, we can 

also use our method for different types of singular perturbation boundary value problems.  

 

We will show the structure of the article as follows: 

 

In section 2, we present some features of the solution of the problem (1)-(2). In Section 3, we have created 

the finite difference scheme and the mesh for the singularly perturbed reaction-diffusion boundary value 

problems. In section 4, the stability analysis, error evaluations and uniform convergence of the singular 

perturbation reaction-diffusion boundary value problems have been proven according to the perturbation 

parameter at the maximum norm. Lastly, the algorithm is presented for the singularly perturbed problem, 

and numerical results are given in tables and graphs. 

 

2. PROPERTIES OF THE EXACT SOLUTION AND ITS DERIVATIVE 

 

This section has presented some features of solutions to the problem (1)-(2). These properties are used in 

the next sections for the analysis of the convenient numerical solutions. Here, we will use the following 

notations. 

 

Lemma 2.1. We suppose that 𝑎(𝑥), 𝑓(𝑥) ∈ 𝐶1[0, 𝑙]. Then the following estimates provide the solution 

𝑢(𝑥) of the singular perturbation problem (1)-(2) 

 
‖𝑢‖ ≤ 𝐶0,                                                                                                                                                     (3) 

 

and 

|𝑢′(𝑥)| ≤ 𝐶 {1 +
1

√𝜀
(𝑒

−
√𝛼𝑥

√𝜀 + 𝑒
−
√𝛼(𝑙−𝑥)

√𝜀 )} ,   0 ≤ 𝑥 ≤ 𝑙.                                                                               (4) 

 

Here, we take 

 

𝐶0 = |𝐴| + |𝐵| + 𝛼
−1 𝑚𝑎𝑥

𝑥∈[0,𝑙]
|𝑓(𝑥)|. 

 

Proof. Firstly, let us demonstrate the accuracy of (3). Here we will apply the maximum principle for the 

singularly perturbed problem (1)-(2). 

 

Assume that L be the differential operator in the the Equation (1) and 𝑣(𝑥) ∈ 𝐶1[0, 𝑙]. If 𝑣(0) ≥ 0, 𝑣(𝑙) ≥
0 and 𝐿𝑣(𝑥) ≥ 0, afterward 0 < 𝑥 < 𝑙, then 𝑣(𝑥) ≥ 0 for all 0 ≤ 𝑥 ≤ 𝑙.  
 

Next, consider a Barrier function as follows 
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𝛹(𝑥) = ±𝑢(𝑥) + |𝐴| + |𝐵| + 𝛼−1 𝑚𝑎𝑥
𝑥∈[0,𝑙]

|𝑓(𝑥)|. 

 

From the maximum principle, we find the relation as follows 

 

𝐿𝛹(𝑥) = ±𝑓(𝑥) + 𝑎(𝑥)(|𝐴| + |𝐵|) + 𝑎(𝑥)𝛼−1 𝑚𝑎𝑥
𝑥∈[0,𝑙]

|𝑓(𝑥)|,   (𝑎(𝑥) ≥ 𝛼 > 0)  

 
≥ ±𝑓(𝑥) + |𝐴| + |𝐵| + 𝑚𝑎𝑥

𝑥∈[0,𝑙]
|𝑓(𝑥)| 

 
≥ ±𝑓(𝑥) + 𝑚𝑎𝑥

𝑥∈[0,𝑙]
|𝑓(𝑥)| ≥ 0, 

 
𝛹(0) = ±𝑢(0) + |𝐴| + |𝐵| + 𝛼−1 𝑚𝑎𝑥

𝑥∈[0,𝑙]
|𝑓(0)| = ±𝐴 + |𝐴| + |𝐵| + 𝛼−1 𝑚𝑎𝑥

𝑥∈[0,𝑙]
|𝑓(0)| ≥ 0,      

 

𝛹(𝑙) = ±𝐵 + |𝐵| + |𝐴| + 𝛼−1 𝑚𝑎𝑥
𝑥∈[0,𝑙]

|𝑓(𝑙)| ≥ 0, 

 

and 

 
𝛹(𝑥) = ±𝑢(𝑥) + |𝐴| + |𝐵| + 𝛼−1 𝑚𝑎𝑥

𝑥∈[0,𝑙]
|𝑓(𝑥)| ≥ 0. 

 

By applying the barrier function obtained after these processes to the conditions in Lemma 2.1, we obtain 

the following expression 

     

|𝑢(𝑥)| ≤ |𝐴| + |𝐵| + 𝛼−1 𝑚𝑎𝑥
𝑥∈[0,𝑙]

|𝑓(𝑥)|.                                                                                                            (5) 

 

It gives the proof of (3). 

 

Now, let us give the proof of the inequality (4). From (1)-(2), we can write as follows 

 

|𝑢″(𝑥)| ≤
|𝑓(𝑥) − 𝑎(𝑥)𝑢(𝑥)|

𝜀
≤
|𝑓| + |𝑎||𝑢|

𝜀
. 

 

From the inequality (3), we obtain 

 

|𝑢″(𝑥)| ≤
𝐶

𝜀
,     𝑥𝜖[0, 𝑙].                                                                                                                                 (6) 

 

Then, we need to get relations for |𝑢′(0)| and |𝑢′(𝑙)|. Here we will use the following relationship 

for 𝑔𝜖𝐶2 and 𝛾 ≠ 𝛽, 

  

𝑔′(𝑥) =
𝑔(𝛾)−𝑔(𝛽)

𝛾−𝛽
− ∫ [

𝛾−𝜉

𝛾−𝛽
− 𝑇0(𝑥 − 𝜉)]

𝛾

𝛽
𝑔″(𝜉)𝑑𝜉,   𝛾 ≤ 𝑥 ≤ 𝛽,                                                                                  (7) 

 

where 

 

𝑇0(𝜆) = {
1, 𝜆 ≥ 0,
0,         𝜆 < 0.

 

 

First, we evaluate 𝑢′(0). Using the values 𝛽 = 0, 𝛾 = √𝜀,  𝑥 = 0, and  𝑔(𝑥) ≡ 𝑢(𝑥) in the Equation (7), 

we get 

 

|𝑢′(0)| ≤
|𝑢(√𝜀)|

√𝜀
+∫

√𝜀 − 𝜉

√𝜀

√𝜀

0

|𝑢″(𝜉)|𝑑𝜉. 
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Considering the relations (3) and (6) in this inequality, we have 

 

|𝑢′(0)| ≤
𝐶

√𝜀
 .                                                                                                                                                                   (8) 

 

Now we take a review for |𝑢′(𝑙)|. Using the values 𝛽 = 𝑙 − √𝜀, 𝛾 = 𝑙, and 𝑔(𝑥) ≡ 𝑢(𝑥), 𝑥 = 𝑙 in 

Equation (7), we take the following inequality 

 

|𝑢′(𝑙)| ≤
𝐶

√𝜀
 .                                                                                                                                                                    (9) 

 

If we take derivative from Equation (1), we have 

 

 −𝜀𝑣″ + 𝑎(𝑥)𝑣 = 𝛷(𝑥).                                                                                                                                            (10) 
 

Here we get 
 

𝑣(𝑥) = 𝑢′(𝑥), 𝛷(𝑥) = 𝑓′(𝑥) − 𝑎′(𝑥)𝑢(𝑥). 
 

From the relations (8) and (9), we have 

 

|𝑣(0)| = 𝑂 (
1

√𝜀
) , |𝑣(𝑙)| = 𝑂 (

1

√𝜀
).                                                                                                                        (11) 

 

We estimate the function 𝛷(𝑥) given below  

 
|𝛷(𝑥)| ≤ |𝑓′(𝑥)| + |𝑎′(𝑥)||𝑢(𝑥)| ≤ 𝐶. 
 
The solution to the problem  (10)-(11) is shown as follows 

 

𝑣(𝑥) = 𝑣1(𝑥) + 𝑣2(𝑥). 
 
The functions 𝑣1(𝑥) and 𝑣2(𝑥) are given as solutions of the following problems, respectively:  

 
𝐿𝑣1(𝑥) = 𝛷(𝑥),            

      
                                                                                                                                                   (12) 

𝑣1(0) = 𝑣1(𝑙) = 0,                                                                                                                                                 (13)                                                                         

 

and 

 

𝐿𝑣2(𝑥) = 0,                                                                                                                                                                  (14) 

  

𝑣2(0) = 𝑣(0),      𝑣2(𝑙) = 𝑣(𝑙).                                                                                                                 (15) 

 

The solution to the problem (12)-(13) is written according to the maximum principle as follows 

 

|𝑣1(𝑥)| ≤ 𝛼
−1𝑚𝑎𝑥

𝑥∈[0,𝑙]
|(𝛷(𝑥))|.                                                                                                                                   (16) 

 

Because the function 𝛷(𝑥) is uniformly restricted according to ε, we have  

 
|𝑣1(𝑥))| ≤ 𝐶, 0 ≤ 𝑥 ≤ 𝑙.                                                                                                                                         (17) 
   

The solution to the problem (14)-(15) is written according to the maximum principle as follows 

 
|𝑣2(𝑥)| ≤ 𝜃(𝑥).                                                                                                                                                            (18) 
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From these inequalities, the function 𝜃(𝑥) is demonstrated to be a solution of the problem in the form 

below: 

 

−𝜀𝜃′′(𝑥) + 𝛼𝜃(𝑥) = 0,                                                                                                                                                                                         (19) 

 

𝜃(0) = |𝑣2(0)|, 𝜃(𝑙) = |𝑣2(𝑙)|.                                                                                                                             (20) 
 

From problem (19)-(20), we obtain 

𝜃(𝑥) = 𝜃(0)

𝑠𝑖𝑛ℎ (
√𝛼

√𝜀
(𝑙 − 𝑥))

𝑠𝑖𝑛ℎ (
√𝛼

√𝜀
𝑙)

+ 𝜃(𝑙)

𝑠𝑖𝑛ℎ (
√𝛼

√𝜀
𝑥)

𝑠𝑖𝑛ℎ (
√𝛼

√𝜀
𝑙)

. 

 

According to the boundary conditions of the problem (17), we have 

 

|𝜃(𝑥)| ≤
𝐶

√𝜀
{𝑒

−
√𝛼𝑥

√𝜀 + 𝑒
−
√𝛼(𝑙−𝑥)

√𝜀 }.                                                                                                                              (21) 

 

From the inequalities (17), (18), and (21), we can write 

 
|𝑢′(𝑥)| ≤ |𝑣1(𝑥)| + |𝑣2(𝑥)|, 
 

which arrive at the proof of (4). 

 

Thus, we arrive at the proof of Lemma 2.1. 

 

3. DISCRETIZATION 

 

Here, the continuous problem (1)-(2) is constructed by the finite difference scheme. Then, 𝜔ℎ is described 

with a uniform mesh on the range [0,𝑙] as follows: 

 

𝜔ℎ = {𝑥𝑖 = 𝑖ℎ,   𝑖 = 1,… , 𝑁 − 1;   ℎ =
𝑙

𝑁
}, 

 

and 

 

�̅�ℎ = 𝜔ℎ ∪ {𝑥 = 0 and 𝑥 = 𝑙}. 
 

To create the difference scheme, we begin with the following identity: 

 

 𝜒𝑖
−1ℎ−1∫ 𝐿𝑢(𝑥)𝜑𝑖

𝑥𝑖+1

𝑥𝑖−1

(𝑥)𝑑𝑥 = 𝜒𝑖
−1ℎ−1∫ 𝑓(𝑥)𝜑𝑖

𝑥𝑖+1

𝑥𝑖−1

(𝑥)𝑑𝑥,   𝑖 = 1,… ,𝑁 − 1.                                   (22) 

  
Here 𝜑𝑖(𝑥) are basis functions defined in the following format 
 

𝜑𝑖(𝑥) =

{
 
 

 
 𝜑𝑖

(1)(𝑥) =
 𝑠𝑖𝑛ℎ(𝛾𝑖(𝑥 − 𝑥𝑖−1))

𝑠𝑖𝑛ℎ(𝛾𝑖ℎ)
,    𝑥𝑖−1 < 𝑥 < 𝑥𝑖,

𝜑𝑖
(2)(𝑥) =

sinh(𝛾𝑖(𝑥𝑖+1 − 𝑥))

𝑠𝑖𝑛ℎ(𝛾𝑖ℎ)
,    𝑥𝑖 < 𝑥 < 𝑥𝑖+1,

 0,                                                          𝑥 ∉ (𝑥𝑖−1, 𝑥𝑖+1),
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𝛾𝑖 = √
𝑎(𝑥𝑖)

𝜀
,                                                                                          

 

𝜒𝑖 = ℎ
−1∫ 𝜑𝑖

(1)
𝑥𝑖

𝑥𝑖−1

(𝑥)𝑑𝑥 + ℎ−1∫ 𝜑𝑖
(2)

𝑥𝑖+1

𝑥𝑖

(𝑥)𝑑𝑥 =
2𝑡𝑎𝑛ℎ (𝛾𝑖ℎ/2)

𝛾𝑖ℎ
. 

It can easily be seen that the basis functions  𝜑𝑖
(1)(𝑥) and 𝜑𝑖

(2)(𝑥) are given as solutions of the problems in 

the form below, respectively: 

 
−𝜀𝜑′′(𝑥) + 𝑎𝑖𝜑(𝑥) = 0,   𝑥𝑖−1 < 𝑥 < 𝑥𝑖 ,

                            
                                                                                                             (23) 

𝜑(𝑥𝑖−1) = 0,   𝜑(𝑥𝑖) = 1,                                                                                                                                         (24) 
 
and 

 
−𝜀𝜑′′ + 𝑎𝑖𝜑 = 0,   𝑥𝑖 < 𝑥 < 𝑥𝑖+1,

              
                                                                                                                          (25) 

𝜑(𝑥𝑖) = 1,   𝜑(𝑥𝑖+1) = 0.                                                                                                                         (26) 

 

If the necessary arrangements are made and partial integration is applied in Equations (19)-(20), we obtain 

 

𝜒𝑖
−1ℎ−1𝜀∫ 𝜑𝑖

′
𝑥𝑖+1

𝑥𝑖−1

(𝑥)𝑢′(𝑥)𝑑𝑥 + 𝜒𝑖
−1ℎ−1𝑎𝑖∫ 𝑢(𝑥)𝜑𝑖

𝑥𝑖+1

𝑥𝑖−1

(𝑥) = 𝑓𝑖 − 𝑅𝑖, 𝑖 = 1,… ,𝑁 − 1.            (27) 

 

Here the remaining term 𝑅𝑖 is defined as follows 

 

𝑅𝑖 = 𝜒𝑖
−1ℎ−1∫ [𝑎(𝑥) − 𝑎(𝑥𝑖)]

𝑥𝑖+1

𝑥𝑖−1

𝑢(𝑥)𝜑𝑖(𝑥) + 𝜒𝑖
−1ℎ−1∫ [𝑓(𝑥𝑖) − 𝑓(𝑥)]

𝑥𝑖+1

𝑥𝑖−1

𝜑𝑖(𝑥)𝑑𝑥.                     (28) 

 

If the quadrature formulas (2.1) and (2.2) in the study [24] are applied to the Equation (27) on each of the 

intervals (𝑥𝑖−1, 𝑥𝑖) and (𝑥𝑖, 𝑥𝑖+1), we find the exact relation below 

 

𝜒𝑖
−1ℎ−1𝜀∫ 𝜑𝑖

′
𝑥𝑖+1

𝑥𝑖−1

(𝑥)𝑢′(𝑥)𝑑𝑥 + 𝜒𝑖
−1ℎ−1𝑎𝑖∫ 𝑢(𝑥)𝜑𝑖

𝑥𝑖+1

𝑥𝑖−1

(𝑥)𝑑𝑥 

 

= −𝜀𝜒𝑖
−1 {1 + 𝑎𝑖𝜀

−1∫ 𝜑𝑖
′

𝑥𝑖

𝑥𝑖−1

(𝑥)(𝑥 − 𝑥𝑖)𝑑𝑥}𝑢�̅�𝑥,𝑖            

+ 𝑎𝑖𝜒𝑖
−1 {ℎ−1∫ 𝜑𝑖

(1)
𝑥𝑖

𝑥𝑖−1

(𝑥)𝑑𝑥 + ℎ−1∫ 𝜑𝑖
(2)

𝑥𝑖+1

𝑥𝑖

(𝑥)𝑑𝑥}𝑢𝑖 

 

= −𝜀𝜃𝑖𝑢�̅�𝑥,𝑖 + 𝑎𝑖𝑢𝑖.                                                                                                                                                      (29) 

 

Here 𝜃𝑖 is taken as follows  

 

𝜃𝑖 = 𝜒𝑖
−1 {1 + 𝑎𝑖𝜀

−1∫ 𝜑𝑖
(1)

𝑥𝑖

𝑥𝑖−1

(𝑥)(𝑥 − 𝑥𝑖)𝑑𝑥}  

     ≡ 𝜒𝑖
−1 {1 − 𝑎𝑖𝜀

−1∫ 𝜑𝑖
(2)

𝑥𝑖+1

𝑥𝑖

(𝑥)(𝑥 − 𝑥𝑖)𝑑𝑥}. 

 

After doing simple operations on the coefficient 𝜃𝑖, we obtain 
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𝜃𝑖 =
𝜌2𝑎𝑖

4𝑠𝑖𝑛ℎ2(√𝑎𝑖𝜌/2)
, 𝜌 =

ℎ

√𝜀
.                                                                                                                    (30) 

 

If we go back to (29) and consider the relation (27), we can write a difference scheme for the Equation (1) 

as follows, 

 
𝑙𝑢𝑖 ≡ −𝜀𝜃𝑖𝑢�̅�𝑥,𝑖 + 𝑎𝑖𝑢𝑖 = 𝑓𝑖 − 𝑅𝑖 ,        𝑖 = 1,… ,𝑁 − 1.                                                                                                 (31) 
 

If the remaining term 𝑅𝑖  is omitted in (32), to approach the problem (1)-(2) we receive a difference scheme 

in the form below. 

 
𝑙𝑦𝑖 ≡ −𝜀𝜃𝑖𝑦�̅�𝑥,𝑖 + 𝑎𝑖𝑦𝑖 = 𝑓𝑖,       𝑖 = 1,… ,𝑁 − 1,                                                                                         (32) 

 

𝑦0 = 𝐴, 𝑦𝑁 = 𝐵.                                                                                                                                                          (33) 
 

Here the coefficient 𝜃𝑖 is given by the formula (30). 

 

4. STABILITY BOUND AND UNIFORM CONVERGENCE 

 

To research the convergence of the difference scheme, notice that the error function 𝑧𝑖 = 𝑦𝑖 − 𝑢𝑖, 𝑖 =
1,… ,𝑁 − 1 is a solution of the discrete singularly perturbed problem: 

 
𝑙𝑧𝑖 ≡ −𝜀𝜃𝑖𝑧�̅�𝑥,𝑖 + 𝑎𝑖𝑧𝑖 = 𝑅𝑖, 𝑖 = 1,… ,𝑁 − 1,                                                                                                                     (34) 
 

𝑧0 = 0, 𝑧𝑁 = 0,                                                                                                                                                           (35) 
 
where the truncation error 𝑅𝑖 and the coefficient 𝜃𝑖 are given by the relations (28) and (30), respectively. 

 

Lemma 4.1. Under the conditions of  𝑎(𝑥), 𝑓(𝑥) ∈ 𝐶1[0, 𝑙], the remaining term 𝑅𝑖 provides the following 

inequality 

 
‖𝑅‖∞,𝜔ℎ ≤ 𝐶ℎ.                                                                                                                                                              (36) 

 
Proof. From the correlation (28), we can write 

 

𝑅𝑖 = 𝑅𝑎,𝑖 + 𝑅𝑓,𝑖.                                                                                                                                                            (37) 

 

Here we get 

 

𝑅𝑎,𝑖 = 𝜒𝑖
−1ℎ−1 ∫ 𝑢

𝑥𝑖+1
𝑥𝑖−1

(𝑥)[𝑎(𝑥𝑖) − 𝑎(𝑥)]𝑑𝑥,                                                                                                          (38) 

 

and 

 

𝑅𝑓,𝑖 = 𝜒𝑖
−1ℎ−1 ∫ 𝜑𝑖

𝑥𝑖+1
𝑥𝑖−1

(𝑥)[𝑓(𝑥) − 𝑓(𝑥𝑖)]𝑑𝑥.                                                                                                        (39) 

 

Firstly, we show the remaining term 𝑅𝑎,𝑖. If we apply the mean value theorem in the relation (38), the 

following expression is obtained 

 
|𝑎(𝑥𝑖) − 𝑎(𝑥)| = |𝑎

′(𝜉𝑖)(𝑥 − 𝑥𝑖)| ≤ 𝑚𝑎𝑥
[0,𝑙]

|𝑎′(𝑥)||𝑥 − 𝑥𝑖| ≤ 𝐶0ℎ.                                                                    (40) 

 

If we write this inequality in (33), we obtain 
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|𝑅𝑎,𝑖| ≤ 𝐶0𝐶1ℎ𝜒𝑖
−1ℎ−1∫ 𝜑𝑖

𝑥𝑖+1

𝑥𝑖−1

(𝑥)𝑑𝑥 ≤ 𝐶0𝐶1ℎ ≤ 𝐶ℎ. 

 

Here, we get 

 

|𝑅𝑎,𝑖| ≤ 𝐶ℎ.                                                                                                                                                                    (41) 

 
Now, let us show the remaining term 𝑅𝑓,𝑖. If we apply the mean-value theorem in the relation (39), we 

obtain 

 
|𝑓(𝑥) − 𝑓(𝑥𝑖| = |𝑓

′(𝜂𝑖)(𝑥 − 𝑥𝑖)| ≤ 𝑚𝑎𝑥
[0,𝑙]

|𝑓′(𝑥)||𝑥 − 𝑥𝑖| ≤ 𝐶1ℎ   𝜂𝑖 ∈ (𝑥, 𝑥𝑖).                                                      (42) 

 

If we write this inequality in (40), we get 

 

|𝑅𝑓,𝑖| ≤ 𝐶1ℎ𝜒𝑖
−1ℎ−1∫ 𝜑𝑖

𝑥𝑖+1

𝑥𝑖−1

(𝑥)𝑑𝑥 ≤ 𝐶ℎ. 

 
From this inequality, we have 

 

|𝑅𝑓,𝑖| ≤ 𝐶ℎ.                                                                                                                                                                    (43) 

 
Hence, taking into consideration the inequalities (41) and (43) in (37), we obtain 

 

‖𝑅‖∞,𝜔ℎ ≤ ‖𝑅𝑎‖∞,𝜔ℎ + ‖𝑅𝑓‖∞,𝜔ℎ
≤ 𝐶ℎ. 

 
Thus, we can express the convergence result of the problem (1)-(2). Therefore, we show the validity of 

Lemma 4.1. 

 

Lemma 4.2. Suppose that the error function 𝑧𝒊 = 𝑦𝑖 − 𝑢𝑖,  𝑖 = 1,… ,𝑁 is the solution to the difference 

problem (34)-(35). The following inequality holds: 

 

‖𝑧‖∞,�̅�ℎ ≤ 𝛼−1‖𝑅‖∞,𝜔ℎ .                                                                                                                                              (44) 

 
Proof. We use the discrete maximum principle. We can write the discrete maximum principle as follows 

  

𝑙𝑣𝑖 ≥ 0,  𝑣0 ≥ 0, 𝑣𝑁 ≥ 0 , 𝑣𝑖 ≥ 0, 𝑖 = 1,… ,𝑁 − 1. 

 

Applying the maximum principle to the problem (34)-(35), we have  

 

‖𝑧‖∞,�̅�ℎ  ≤ 𝛼
−1‖𝑅‖∞,𝜔ℎ.                                                                                                                                             (45) 

 
Also, from the formula (7) for 𝑅𝑖, it is clear that 

 
‖𝑅‖∞,𝜔ℎ ≤ 𝐶ℎ.                                                                                                                                                              (46) 

 
So, the proof of Lemma 4.2 is completed from inequalities (45) and (46).  

 

We now can express the result of the convergence of the problem (3)-(4). 

 

Theorem 4.1. Under the conditions 𝑎(𝑥), 𝑓(𝑥) ∈ 𝐶1[0, 𝑙], the solution to the singularly perturbed 

difference problem (32)-(33) is uniform convergence to the solution of the singularly perturbed problem 

(1)-(2) in �̅�ℎ  with respect to 𝜀. The following evaluation satisfies: 
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‖𝑦 − 𝑢‖𝐶(�̅�ℎ) ≤ 𝐶ℎ.                                                                                                                                                     (47) 

 
Proof. Here, the proof of the Theorem 4.1 emerges from the two lemmas we explained earlier.  

 

5. NUMERICAL EXAMPLES 

 

In this chapter, to verify the constructed theoretical results we give numerical results obtained using the 

difference scheme (32)-(33). 

 

Example 5.1. Let us take the problem 

 

−𝜀𝑢″ + 𝑢 = −(𝑐𝑜𝑠2𝜋𝑥 + 2(𝜀𝜋)2𝑐𝑜𝑠2𝜋𝑥),    0 < 𝑥 < 𝑙,  
 
𝑢(0) = 0,   𝑢(1) = 0.  
 
We find the exact solution to the problem as follows 

 

𝑢𝜀(𝑥) =
𝑒
−𝑥

√𝜀 + 𝑒
−
(1−𝑥)

√𝜀

1 + 𝑒
−1

√𝜀

− 𝑐𝑜𝑠2𝜋𝑥. 

 
Thomas algorithm is used in this section. Because of a three-diagonal matrix in the setup of the difference 

scheme, this matrix is solved with the help of the Thomas algorithm. For the Thomas algorithm, 𝛼1 = 0  
and 𝛽1 = 0  is taken in the boundary term   

 

𝑦0 = 𝑘1𝑦1 + 𝜇1(𝑦1 ≠ 0). 
 
Let us organize the recurrence relation of  

 

𝑦𝑖 = 𝑦𝑖+1𝛼𝑖+1 + 𝛽𝑖+1,        
 
by writing  𝐴𝑖 ≠ 0 and 𝐵𝑖 ≠ 0  in the open writing of difference problems 

 

𝐴𝑖𝑦𝑖−1 − 𝐶𝑖𝑦𝑖 + 𝐵𝑖𝑦𝑖+1 = −𝐹𝑖, 𝑖 = 1,… , 𝑁 − 1, 
 
𝑦0 = 𝑦𝑁 = 0 .   
 
We obtain the relations  

 

𝛼𝑖+1 =
𝐵𝑖

𝐶𝑖 − 𝛼𝑖𝐴𝑖
, 𝛼1 = 0, 𝑖 = 1,… ,𝑁 − 1, 

 

𝛽𝑖+1 =
𝐹𝑖 + 𝐴𝑖𝛽𝑖
𝐶𝑖 − 𝛼𝑖𝐴𝑖

, 𝛽1 = 0, 𝑖 = 1,… ,𝑁 − 1, 

 
with 𝐶𝑖 − 𝛼𝑖𝐴𝑖 ≠ 0. Now we can calculate all values of 𝑦𝑖 from the recurrence formula  

 

𝑦𝑖 = 𝑦𝑖+1𝛼𝑖+1 + 𝛽𝑖+1, 𝑖 = 𝑁 − 1,… ,0. 
 
Therefore, by relations  

 

𝑦𝑁 = 𝑘2𝑦𝑁−1 + 𝜇2, and  𝑦𝑁−1 = 𝑦1 + 𝛼𝑁𝑦𝑁 + 𝛽𝑁. 
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We write  

 

𝑦𝑁 =
𝜇2 + 𝑘2𝛽𝑁
1 − 𝛼𝑁𝑘2

, 

 

with 1 − 𝛼𝑁𝑘2 ≠ 0  and it can be taken 𝜇2 = 𝑘2 = 0  in boundary condition 𝑦𝑁 = 0. 

 

In our example we get 

 

𝑎(𝑥) = 1, 𝑓(𝑥) = −(𝑐𝑜𝑠2𝜋𝑥 + 2(𝜀𝜋)2𝑐𝑜𝑠2𝜋𝑥). 
 

Hence, the following expressions are obtained for the difference scheme with exponential coefficients 

 

𝐴 = −𝜀𝜃𝑖,  𝐵 = 𝐴, 𝐶 = 𝑎𝑖ℎ
2 − 2𝜀𝜃𝑖, and 𝐹 = ℎ2𝑓𝑖. 

 
Here we take the following term for absolute errors, 

 

𝑒𝜀
𝑁 = 𝑚𝑎𝑥

𝑖
|𝑢𝜀(𝑥𝑖) − 𝑦𝑖|. 

 

Table 1. The exact solution, approximate solution, and error results for  𝜀 = 10−5 and 𝑁 = 24 values  

             of Example 5.1 
𝑥     𝑢𝜀(𝑥) 𝑦𝑖 𝑒𝜀

𝑁 

0.00000  0.00000000  0.00000000 0.00000000 

0.12500 -0.85355339 -0.85363922 0.00008583 

0.18750 -0.69134172 -0.69141161 0.00006989 

0.25000 -0.50000000 -0.50005109 0.00005109 

⁝ ⁝  ⁝ ⁝ 

0.93750 -0.96193976 -0.96201071 0.00007095 

1.00000  0.00000000  0.00000000 0.00000000 

 

 

Table 2. The exact solution, approximate solution, and error results for  𝜀 = 10−6 and 𝑁 = 25 values 

             of Example 5.1 
𝑥      𝑢𝜀(𝑥) 𝑦𝑖  𝑒𝜀

𝑁 

0.00000  0.00000000  0.00000000 0.00000000 

0.03125 -0.99039264 -0.99039288 0.00000024 

0.06250 -0.96193977 -0.96194008 0.00000031 

0.09375 -0.91573481 -0.91573510 0.00000030 

⁝ ⁝  ⁝ ⁝ 

0.96875 -0.99039264 -0.99039288 0.00000024 

1.00000  0.00000000  0.00000000 0.00000000 
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Table 3. The exact solution, approximate solution, and error results for  𝜀 = 10−8 and 𝑁 = 210 values 

             of Example 5.1 
𝑥         𝑢𝜀(𝑥) 𝑦𝑖  𝑒𝜀

𝑁 

0.00000  0.00000000  0.00000000 0.00000000 

0.00098 -0.99993320 -1.01149996 0.01156676 

0.00195 -0.99996235 -1.01533225 0.01536990 

0.00293 -0.99991529 -1.01529920 0.01538391 

⁝ ⁝  ⁝ ⁝ 

0.99902 -0.99993320 -1.01149996 0.01156675 

1.00000  0.00000000   0.00000000 0.00000000 

 

 
Figure 1. Graph curve of the exact solution and approximate solution for 𝜀 = 10−5 and 𝑁 = 24 

values of Example 5.1 

 

 

 
Figure 2. Graph curve of the exact solution and approximate solution for 𝜀 = 10−6 and  𝑁 = 25 

values of Example 5.1 
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Figure 3. Graph curve of the exact solution and approximate solution for 𝜀 = 10−8 and 𝑁 = 210 

values of Example 5.1 

 

In Tables 1-3, it is seen that there is a convergence ratio with uniform convergence speed when values of 

𝑁 increasing and 𝜀 decreasing are taken. We see that the maximum error occurs in the boundary stratum 

areas. Also, we know that 𝑦 is the numerical approximation to 𝑢 for different worths of 𝜀 and 𝑁. In the 

given mesh, the approximate and exact solution for different values of 𝜀 and 𝑁 are plotted in Figures 1-3. 

We compare the approximate and exact solution for different worths of 𝑁 and 𝜀 in Tables 1-3. The 

consequences obtained here are that the discrete solution converges smoothly concerning the perturbation 

parameter 𝜀, and the errors converge smoothly with almost unity ratios as calculated according to our 

theoretical research. 

 

6. CONCLUSION 

 

In this work, we suggest a uniform numerical technique to resolve the singularly perturbed problem of 

reaction-diffusion form. This technique is based on the boundary layer using the asymptotic estimation 

technique, interpolated quadrature forms, exponential basis functions, weights, and remainder terms. Also, 

the numerical results for different 𝜀 values and different numbers of mesh spacing 𝑁 are given in Tables 1-

3. It is demonstrated that the finite difference method has 𝜀-uniform convergence regarding the perturbation 

parameter at the discrete maximum norm. The technique suitable for the standard test problem is applied. 

The biggest benefit of our method is that it provides suitable solutions. We applied the present method to 

test problems. In conclusion, numerical results show us how accurate and reliable analytical techniques we 

offer for singular perturbation of reaction-diffusion boundary value problems. 
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