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Abstract: Advancement of the manufacturing system is governed by robots which improve the product 

quality and decrease market availability period. Different robots have been used for the pick and drop 

the operation of components in flexible manufacturing systems (FMS). Each robot have their advantages 

and disadvantages therefore, selection of the most suitable robot is significantly important. The selection 

of robots based on various criteria is a multi-decision making problem (MCDM). In this study seven 

robots (R1, R2, R3, R4, R5, R6, R7) are ranked using the proposed approach on the basis of five criteria 

viz. load capacity (LC), memory capacity (MC), manipulator reach (MR), maximum tip speed (MTS), and 

repeatability (RE) by employing hybrid Criteria Importance Through Inter criteria Correlation 

(CRITIC) and Multi-attributive border approximation area comparison (MABAC) methods. Weights of 

criteria were obtained using correlation coefficient and standard deviation method whereas, the ranking 

of alternative was done using hybrid CRITIC and MABAC method. As a result of this study, robot R3 

acquired the first rank whereas, R1 occupied the last rank which showed that R3 is the most suitable 

robot for the pick and place operation in FMS. Besides, Ranking comparison was also done with other 

MCDM methods.  
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1. Introduction  

An activated instrument with a level of independence, programmable in more than one axis used 

to execute deliberated operations is known as a robot. The term independence defines the capability of 

a robot to execute projected operations within the existing conditions and sensing, exclusive of human 

interference. In this regard, robots overpass the breach among mechanical instruments and human 

operators. They are considered to execute repetitious, complex, and dangerous operations in an accurate 

manner for eminence, production, and safety reasons [1], [2]. Due to which they have been expansively 

accepted to execute different operations. In the last decade, a hot-headed escalation of robot 

implementation in flexible manufacturing systems (FMS) and automatic storage and retrieval systems 

(AS/RS) have been observed. However, the use of a robot in manufacturing systems has a significant 

impact on the company. As the cost of these robots is generally high, using an inappropriate robot in the 

manufacturing system will unfavorably influence the productivity and efficiency of the system [1], [2]. 
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Hence, in order to improve the efficiency and productivity of entire manufacturing systems, an 

appropriate selection of industrial robots is vital [3], [4]. With the advancement of information 

technology and computer science, there are a large number of robots with enormously diverse 

stipulations and potential for a variety of application fields [5]. In such conditions, the selection of a 

qualified robot among a variety of existing alternatives is a very difficult task for decision-makers [2].  

Robot selection is reasonably complex because of the convolution, characteristics, quality, and 

capabilities of different robots that are constantly improved [6]. Additionally, the incompatible 

characteristics and capabilities of some robots complicate the decision-making process. It has been 

found that there exist a large number of criteria that should be reckoning while selecting a robot to 

perform desired operations [5]. However, it is very difficult to consider all the criteria simultaneously 

while selecting an appropriate robot for the desired output. This entails that multiple criteria decision 

making (MCDM) methods might be helpful to solve this kind of problem. The solution to the robot 

selection process starts with the identification of the appropriate evaluation criteria and thereby 

prioritizing these criteria using MCDM methods. Subsequently, the best amalgamation of these criteria 

is used to select a qualified robot among the available robots in the market [7].  

Over the years researchers have used different MCDM methods to solve robot selection problems 

[13, 14]. This work put forward a hybrid MCDM model based on Criteria Importance Through Inter 

criteria Correlation (CRITIC) and Multi-attributive border approximation area comparison (MABAC) 

methods. The viability of the proposed approach is demonstrated by employing the proposed approach 

to select an appropriate robot for pick and place operation. Pick and drop operation in an FMS is usually 

performed by automated guided vehicles (AGVs) which are a specific type of robot used for picking 

and placing part at the desired location. Seven robots are ranked using the proposed approach on the 

basis of five criteria viz. load capacity (LC), memory capacity (MC), manipulator reach (MR), maximum 

tip speed (MTS), and repeatability (RE) [8]. The rest of the paper is organized as follows: Section 2 of 

the paper describes the proposed approach to solve the robot selection problem. The computations steps 

involved in CRITIC and MABAC methods are also discussed in this section. Section 3 of the paper 

depicts the results of the study. The comparison of the ranking results of the proposed method with 

previous methods is also shown in this section to validate the results of the study. Finally, Section 4 of 

the paper presents the conclusion of this study. 

2. 2. Proposed MCDM model for robot selection 

The proposed MCDM model to solve the robot selection problem has been depicted in the form 

of a flowchart in Figure 1. 

At first, alternative robots for the desired application are identified. It is likely that each robot has 

different properties for the different attributes. Hence, significant attributes for the evaluation of the 

robots are identified. Further, CRITIC method which is a widely used MCDM tool for calculation of 

criteria weight is employed to calculate the weights of the criteria. Using the weights of the criteria and 

the properties of robots, the MABAC method is employed to rank the identified robots. 

The Criteria Importance Through Inter criteria Correlation (CRITIC) method was proposed by 

[9]. This method computes the objective weight of the attributes on the basis of two fundamental notions 

of MCDM viz. Contrast intensity and conflict among the attributes. It has been established that the 

weight of the attributes obtained using CRITIC method is identical with PCA with simple computations 

steps [9]. The Multi-Attribute Border Approximation area Comparison (MABAC) method was 

developed in 2015 and is effectively employed to solve problems pertaining to different knowledge 
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domains [10]–[12]. In this method, ranks to the alternatives are defined on the basis of their distance 

from the border approximation area. An alternative having the highest distance from the border 

approximation area is ranked first and subsequently ranks to other alternatives are defined in descending 

values of their distance from the border approximation area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed MCDM model for robot selection 

 

The computational steps involved in the proposed MCDM model for robot selection are discussed 

as follows: 

Step 1: Formulate decision matrix by arranging alternative robots and their attribute values in 

rows and columns. Assuming there are "p" alternative robots and "q" decision attributes. The decision 

matrix (DM) can be formulated as shown in Eq. (1): 



Middle East Journal of Science  (2020) 6(2):68-77            https://doi.org/10.23884/mejs.2020.6.2.03 

71 

 

 

 

         

 

   

 

where its elements 𝑎𝑖𝑗 represents the value of the jth decision attribute for ith alternative robot. i 

= 1,2,3,……..,p; j = 1,2,3,………….,q. 

 

Step 2: Normalize the decision matrix to convert the distinct range of attribute values into a comparable 

range. Since attributes can be of different nature viz. beneficial and non-beneficial, they are normalized 

using Eq. (2) according to their nature. 

𝑛𝑖𝑗 =
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               (2) 

where nij indicates the normalized value of the ith alternative for jth attribute.  

Step 3: Determine the Correlation Coefficient (ρjk) among all the attributes using Eq. (3). 

 

𝜌𝑗𝑘 =
∑ (𝑛𝑖𝑗 − 𝑛𝑗)(𝑛𝑖𝑘 − 𝑛𝑘)
𝑝
𝑖=1

√∑ (𝑛𝑖𝑗 − 𝑛𝑗)
2 ∗∑ (𝑛𝑖𝑘 − 𝑛𝑘)

2𝑝

𝑖=1

𝑝

𝑖=1

                         (3) 

Step 4: Determination of the standard deviation of the attributes (σj) as defined by Eq. (4) 

𝜎𝑗 = √
1

𝑞−1
∑ (𝑛𝑖𝑗 − 𝑛𝑗)

2
𝑞

𝑗=1
                                            (4) 

Step 5: Compute the amount of information provided by each attribute (Aj) using Eqn. (5) 

𝐴𝑗 = 𝜎𝑗∑ (1− 𝜌𝑗𝑘)                                                      
𝑞

𝑗=1
(5) 

Step 6: Compute the weight of the attributes using Eqn. (6). 

𝑤𝑗 =
𝐴𝑗

∑ 𝐴𝑗
𝑛
𝑗=1

                                                        (6) 

It must be ensured that all weights add up to 1. 

Step 7: Determine weighted normalized decision matrix W = [vij]p×q.  
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𝑊 = [𝑣𝑖𝑗]𝑝×𝑞 = 

[
 
 
 
 
 
𝑣11 𝑣12 … 𝑣1𝑗 … 𝑣1𝑞
𝑣21 𝑣22 … … … 𝑣2𝑞
… … … … … …
𝑣𝑖1 … … 𝑣𝑖𝑗 … 𝑣𝑖𝑞
… … … … … …
𝑣𝑝1 … … 𝑣𝑝𝑗 … 𝑣𝑝𝑞]

 
 
 
 
 

                               (7) 

where, vij = (nij+1)×wj. 

Step 8: Determine the border approximation area of each attribute as defined by Eqn. (8). 

                                                                       𝐵𝑗 = (∏ 𝑣𝑖𝑗
𝑝
𝑖=1 )

1/𝑝
                                                          (8) 

Step 9: Compute total distance of each alternative from the border approximation area as given by Eqn. 

(9). 

𝑆𝑖 =∑𝑟𝑖𝑗                                                                  (9)

𝑞

𝑗=1

 

where, rij = vij −  Bj 

Step 10: Rank the alternatives based on Si values in ascending order. An alternative with the 

minimum Si value is ranked first and an alternative with the highest value is ranked last. 

 

3. Additional instructions  

To demonstrate the potential application of the proposed MCDM model to solve the robot 

selection problem, it has been employed on a specific problem chosen from the literature [5]. Every 

manufacturing company requires a robot for picking parts and placing them in the right place. Hence, 

the selection of an appropriate robot for performing these operations is imperative. Five criteria are used 

for the selection of these types of robots i.e. load capacity (LC), memory capacity (MC), manipulator 

reach (MR), maximum tip speed (MTS), and repeatability (RE). These criteria are defined as follows: 

 Load capacity (LC): It is the maximum load that a manipulator can carry without affecting the 

performance. 

 Memory capacity (MC),: It is the number of points or steps that a robot can store in its memory while 

traveling along its predetermined path. 

 Manipulator reach (MR): It is the maximum distance that can be covered by the robotic manipulator 

so as to grasp the object for the given pick-and-place operation. 

 Maximum tip speed (MTS): It is the speed at which a robot can move in an inertial reference frame 

 Repeatability (RE): It measures the ability of a robot to return to the same position and orientation 

over and over again. 

Among these criteria, LC, MTS, MC, and MR are benefit-type criteria, and RE is a cost-type criterion. 

Seven robots have been identified which are widely used in the industry for pick and place operations. 

The criteria values of these robots are shown in Table 1. 
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Table 1. Attribute Values for different robots 

 

Robot 
LC 

(kg) 
MC 

MR 

(mm) 

MTS 

(mm/s) 

RE 

(mm) 

ROB1 6 500 990 2540 0.4 

ROB2 6.35 3000 1041 1016 0.15 

ROB3 6.8 1500 1676 1727.2 0.1 

ROB4 10 2000 965 1000 0.2 

ROB5 2.5 500 915 560 0.1 

ROB6 4.5 350 508 1016 0.08 

ROB7 3 1000 920 177 0.1 

 

Since the first step in the proposed MCDM model is to formulate a decision matrix. Table 1 acts 

as a decision matrix for this robot selection problem. The attribute values provided in Table 1 are 

normalized as per Eqn. (2) and the normalized values are depicted in Table 2: 

 

    Table 2.  Normalized attribute 

 

 LC RE MTS MC MR 

R1 0.5333 1.0000 0.0000 0.9434 0.5873 

R2 0.4867 0.2188 0.6449 0.0000 0.5437 

R3 0.4267 0.0625 0.3440 0.5660 0.0000 

R4 0.0000 0.3750 0.6517 0.3774 0.6087 

R5 1.0000 0.0625 0.8379 0.9434 0.6515 

R6 0.7333 0.0000 0.6449 1.0000 1.0000 

R7 0.9333 0.0625 1.0000 0.7547 0.6473 

 

Further, the correlation coefficient and standard deviation of the attributes are computed using 

Eqn. (3) and Eqn. (4) as per step 3 and step 4 of the proposed model. On the basis of the correlation 

coefficient and standard deviation, the amount of information and weights of the attributes are computed 

using Eqn. (5) and Eqn. (6) and are exhibited in Table 3. 

Subsequently, the weighted normalized decision matrix is formulated as defined by Eqn. (7). 

Table 4 represents the weighted normalized decision matrix so formulated.  

Correspondingly, the border approximation area for each attribute is determined as defined by 

Eqn. (8). Finally, the ranking of the alternative robot is done on the basis of the sum of the distance of 

each alternative from the border approximate area computed using Eqn. (9). Table 5 exhibit the Si values 

and the rank of the alterative robot so obtained. 
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Table 3. Amount of information and weight of the attributes. 

 

Attribute A Weight 

LC 1.0361 0.1679 

RE 1.7854 0.2893 

MTS 1.3411 0.2173 

MC 1.1287 0.1829 

MR 0.8790 0.1424 

 

Table 4. Weighted normalized decision matrix 

 

 LC RE MTS MC MR 

R1 0.2575 0.5787 0.2173 0.3555 0.2261 

R2 0.2496 0.3526 0.3575 0.1829 0.2199 

R3 0.2396 0.3074 0.2921 0.2865 0.1425 

R4 0.1679 0.3979 0.3590 0.2520 0.2292 

R5 0.3358 0.3074 0.3995 0.3555 0.2353 

R6 0.2910 0.2894 0.3575 0.3659 0.2849 

R7 0.3246 0.3074 0.4347 0.3210 0.2347 

 

Table 5. Si and rank of the alternative robots 

 

 Si Rank 

R1 0.1671 7 

R2 -0.1053 2 

R3 -0.1999 1 

R4 -0.0621 3 

R5 0.1654 6 

R6 0.1206 4 

R7 0.1543 5 

 

Further, the ranking results of the proposed MCDM model are compared with that of the ranking 

results given by other researchers [6]. Figure 2 shows the comparison of the ranking results for all the 

seven robots using VIKOR, ELECTREII, and the proposed model.  

It can be observed from Figure 2 that the ranking results for the robots vary for all three methods. 

It is quite obvious as the approach adopted is different and it is difficult to suggest the best method 

among the available MCDM method. However, the proposed approach suggests ROB3 is the best robot 

which is in line with the results of the other methods. Hence, the proposed method can be profitably 

used to solve the robot selection problem.  
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Figure 2. Comparison of the ranking results 

 

4. Conclusions 

The selection of appropriate robots for desired operations in manufacturing systems is 

very difficult for decision-makers as there exist a number of different robots with a variety of 

characteristics and features. The problem of robot selection can be solved using MCDM 

methods. In this study, a hybrid MCDM method combining CRITIC and MABAC method has 

been employed to rank the robots used in manufacturing facilities. Weights of all the criteria 

were calculated using correlation coefficient and standard deviation methods and then, the 

ranking of seven alternatives was done. Besides, ranking results were also compared with 

widely used methods such as VIKOR and ELECTRE II. Based on the results obtained in this 

study, the following major conclusions are made. 

1.     Most suitable robot ranking sequence obtained using the CRITIC and MABAC 

method is R3>R2>R4>R6>R7>R5>R1. 

2.     Robot 3 is the most suitable alternative for pick and drop mechanism as it has the 

highest manipulator reach, optimum load capacity along with higher maximum tip 

speed and lower repeatability. Whereas, Robot 7 is the least favorable choice. 

3.     Ranking obtained using the VIKOR and ELECTRE II methods were similar to the 

hybrid method applied in this study which supported the reliability and consistency of 

the CRITIC and MABAC methods. 

The compliance to the Research and Publication Ethics: This study was carried out in accordance 

with the rules of research and publication ethics. 
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