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ABSTRACT: In this study, the finite-time stability of the time-delay system representing the COVID-19 

outbreak is analyzed. The infection dynamics is stated with the new kernel function to express the distribution 

of exposed people in the model. A history-wise Lyapunov functional is used to show the finite-time stability of 

the proposed system. A condition in terms of linear matrix inequalities is given to ensure finite-time stability. 

With this condition, it is guaranteed that the norm of the variables which are infected, confirmed, isolated and 

cured/recovered people do not exceed a certain bound in a fixed finite time interval. The solution of the 

generalized minimum/maximum parameters is explained and a numerical example is demonstrated to show the 

validity of the proposed method. 
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1. Introduction 

The novel coronavirus (COVID-19) was first identified in Wuhan, China on December 2019 

(World Health Organization, 2020b) and has resulted in an ongoing pandemic. Due to its 

highly contagious behavior, World Health Organization (WHO) classified the current 

outbreak as a pandemic on 12 March 2020 (World Health Organization, 2020a, Situation 

Report - 52). Shortly after this declaration, the virus has spread rapidly and WHO announced 

Europe as the new epicenter of the pandemic on March 14, 2020 (World Health Organization, 

2020a, Situation Report - 54). At the end of March, outbreak has reached to USA which has 

the highest number of confirmed cases in the world (World Health Organization, 2020a, 

Situation Report - 68). As of 26 May 2020, Brazil has the second-highest number of 

confirmed cases in the world behind the USA (World Health Organization, 2020a, Situation 

Report - 127). 

 

Currently, the impact area of the coronavirus has expanded worldwide and according to recent 

statistics, nearly 66 million people have infected while over one and a half million people 

passed away due to this disease (World Health Organization, 2020a, Weekly Operational 

Update - 07 December 2020). Several precautions taken both by national and international 

organizations, including travel restrictions, quarantine etc., have resulted in a control of the 

disease during summer, however, as of the September 2020, the number of cases has started 

to increase again. It is crucial to analyze infection control, impact of prevention and duration 

of isolation parameters to slow down and finally prevent such rise.  

 

WHO also has announced that the mathematical models of this outbreak play a decisive role 

for policy makers. The scholars proposed new models to simulate the sanitary phenomena: 

(Kermack and McKendrick, 1932), (Kermack and McKendrick, 1933), (Kermack and 
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McKendrick, 1937), (Kermack and McKendrick, 1939), (Kermack and McKendrick, 1991) 

and (Hethcote, 2000). In the recent outbreak of COVID-19, the latency period become 

prominent and the common models such as SIR, SEIR, SEIS or SEIJR fail to describe the 

current outbreak. Therefore, new models (Chen et al., 2020a) and (Chen et al., 2020b) are 

interpreted to describe the latent period as well as the isolation measures which plays a key 

role describing the infection dynamics of COVID-19. 

 

Stability is one of the fundamental research topic on dynamical systems. Most of the studies 

related to the stability focus on asymptotic or exponential stability, which is defined over an 

infinite time interval. However, in many practical applications, finite-time (FT) stability of a 

system is the main concern, which means keeping the system behavior/state within the 

specified bounds in a fixed FT interval. By definition, FT stability and asymptotic stability 

demonstrate two different concepts. Asymptotically stable systems may not be FT stable or 

FT stable systems may not be asymptotically stable. 

 

This paper gives insights to the behavior of COVID-19 in terms of FT stability. In contrast to 

the other stability definitions which consider the asymptotic behavior or saturating behavior 

of the infection dynamics, we analyze to determine whether the norm of the infected, 

confirmed, isolated and cured/recovered people exceeds a certain bound. Here are the 

contributional highlights of this study: 

 

• In this paper, we propose a novel kernel function to describe the distribution of 

exposed people in the model. 

• We also state a new condition in linear matrix inequalities to guarantee FT stability 

of the corresponding infection dynamics. 

• Moreover, this condition is tested in a numerical example to show the validity. 

 

The notation in this study is fairly standard. Throughout the paper, given  

𝑥 ∈ ℝn, |𝑥|, denotes its Euclidean norm. Given  
𝜙 ∈ 𝑋𝑛 ≔ 𝐶([−𝛿, 0], ℝn), ||𝜙||[−𝛿,0]: = sup

𝜏∈[−𝛿,0]
|𝜙(𝜏)| and ``*" denotes the term that is 

induced by symmetry. 

 

The organization of the paper is as follows. Definitions and technical lemmas are given in 

Section 2. The system under study is given in Section 3. Section 4 presents the main result 

where in Theorem 1, the sufficient conditions to guarantee FT stability is expressed. Finally, 

a numerical example is presented to illustrate the effectiveness of the proposed method in 

Section 5. 

2. Definitions and Technical Lemmas 

Consider the nonlinear TDS 

�̇�(𝑡) = 𝑓(𝑥𝑡), (2.1) 

where x(𝑡) ∈ ℝ𝑛 is the is the current value of the solution and 𝑥𝑡 ∈ 𝑋
𝑛 is the state history 

defined with the maximum delay δ ≥ 0 as 

𝑥𝑡(𝑠): = 𝑥(𝑡 + 𝑠), ∀ 𝑠 ∈ [−𝛿, 0]. (2.2) 
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Our result requires the definition of FTS as well as the use of partial upper/lower right Dini 

derivatives and total upper/lower right Dini derivatives for the functions of variables. 

 

Definition 1. (Finite-Time Stability) Given three positive numbers 𝜖, 𝛿,  𝑇𝑓 with 𝛿 ≤ 𝜖, the 

system (2.1) is said to be FTS with respect to (𝜖, 𝛿, 𝑇𝑓), if for every trajectory 𝑥(𝑡), 

||𝑥0||[−𝛿,0] < 𝛿 implies |𝑥(𝑡)| < 𝜖, ∀ 𝑡 ∈  [0, 𝑇𝑓]. 

 

Definition 2. (Partial Dini Derivatives) Let  𝐼, 𝐽 ⊂ ℝ denote intervals (possibly unbounded), 

and consider a continuous function 𝐹 ∶  𝐼 × 𝐽 → ℝ. Then, the partial upper right Dini 

derivatives of 𝐹 with respect to its first and second arguments are respectively defined as: 

 

𝒟,𝑡
+[𝐹(𝑡, 𝑦)]:= limsup

ℎ→0+

𝐹(𝑡 + ℎ, 𝑦) − 𝐹(𝑡, 𝑦)

ℎ
, 

𝒟,𝑦
+[𝐹(𝑡, 𝑦)]:= limsup

ℎ𝑦→0+

𝐹(𝑡, 𝑦 + ℎ𝑦) − 𝐹(𝑡, 𝑦)

ℎ𝑦
. 

 

(2.3) 

Similarly, its partial lower right Dini derivatives of 𝐹 with respect to its first and second 

arguments are respectively defined as: 

 

𝒟+,𝑡[𝐹(𝑡, 𝑦)]:= liminf
ℎ→0+

𝐹(𝑡 + ℎ, 𝑦) − 𝐹(𝑡, 𝑦)

ℎ
, 

𝒟+,𝑦[𝐹(𝑡, 𝑦)]: = liminf
ℎ𝑦→0+

𝐹(𝑡, 𝑦 + ℎ𝑦) − 𝐹(𝑡, 𝑦)

ℎ𝑦
, 

 

(2.4) 

Definition 3. (Total Dini Derivatives) Let 𝐼, 𝐽 ⊂ ℝ denote intervals (possibly unbounded), 

and consider continuous functions 𝐹 ∶  𝐼 × 𝐽 → ℝ and 𝑏 ∶  𝐼 →  𝐽. Then the total upper right 

Dini derivative of 𝐹 along 𝑏 is defined as: 

 

𝐷,𝑡
+[𝐹(𝑡, 𝑏(𝑡))]:= limsup

ℎ→0+

𝐹(𝑡 + ℎ, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎ
, 

 

(2.5) 

Similarly, the total lower right Dini derivative of 𝐹 along 𝑏 is defined as: 

 

𝐷+,𝑡[𝐹(𝑡, 𝑏(𝑡))]:= liminf
ℎ→0+

𝐹(𝑡 + ℎ, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎ
, 

 

(2.6) 

The proof of our main result relies on the following technical results. The first one is an 

extension of the chain rule for total upper right Dini derivative. Its proof is provided in 

Appendix. 

 

Lemma 1. (Chain Rule for Upper Right Dini Derivative) Let 𝐼, 𝐽 ⊂ ℝ be intervals 

(possibly unbounded), 𝐹 ∶  𝐼 × 𝐽 → ℝ be a function having finite partial upper and lower right 

Dini derivatives with respect to its first and second arguments on 𝐼 and 𝐽 respectively, and 

𝑏 ∶  𝐼 →  𝐽 be a function having continuous non-negative derivative on 𝐼. Then, it holds that 

 

𝐷,𝑡
+[𝐹(𝑡, 𝑏(𝑡))] ≤ [𝒟,𝑡

+ 𝐹(𝑡, 𝑦)]
(𝑡,𝑏(𝑡))

+ [𝒟,𝑦
+  𝐹(𝑡, 𝑦)]

(𝑡,𝑏(𝑡))
⋅  𝑏′(𝑡), ∀ 𝑡 ∈  𝐼, 

 

(2.7) 
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where [𝒟,𝑡
+𝐹(𝑡, 𝑦)]

(𝑡,𝑏(𝑡))
 denotes the partial upper right Dini derivative with respect to 𝑡 

evaluated at (𝑡, 𝑏(𝑡)), and [𝒟,𝑦
+  𝐹(𝑡, 𝑦)]

(𝑡,𝑏(𝑡))
 is the partial upper right Dini derivative with 

respect to 𝑦 evaluated at (𝑡, 𝑏(𝑡)). 
 

A similar chain rule holds for partial lower right Dini derivative, as stated next. 

 

Corollary 1. Under the assumptions of Lemma 1, it holds that 

 

𝐷,𝑡
+[𝐹(𝑡, 𝑏(𝑡))] ≥ [𝒟+,𝑡 𝐹(𝑡, 𝑦)](𝑡,𝑏(𝑡)) + [𝒟+,𝑦 𝐹

(𝑡, 𝑦)]
(𝑡,𝑏(𝑡))

⋅  𝑏′(𝑡), 

 

(2.8) 

for all 𝑡 ∈  𝐼. The proof of this result is omitted as it follows along the sames lines as that of 

Lemma 1 by noticing that (See for instance (Royden, 1988)). 

 

𝐷,𝑡
+[𝐹(𝑡, 𝑏(𝑡))] ≥ 𝐷,𝑡[𝐹(𝑡, 𝑏(𝑡)], ∀ 𝑡 ∈  𝐼. 

 

 

Based on these chain rules, we can extend the Leibniz integral rule to total upper right Dini 

derivative, as follows. Its proof is provided in Appendix. 

 

Lemma 2. (Leibniz Rule for Upper Right Dini Derivative) Let 𝐼, 𝐽 ⊂ ℝ be intervals 

(possibly unbounded), 𝑓 ∶  𝐼 ×  𝐽 → ℝ be a continuous function having finite partial upper 

right Dini derivative with respect to its first argument on 𝐼 and 𝑎, 𝑏 ∶  𝐼 →  𝐽 be functions 

having continuous non-negative derivatives on 𝐼. Then, it holds that 

 

𝐷,𝑡
+ [∫ 𝑓(𝑡, 𝜏)𝑑𝜏

𝑏(𝑡)

𝑎(𝑡)
] ≤  𝑓(𝑡, 𝑏(𝑡))𝑏′(𝑡) − 𝑓(𝑡, 𝑎(𝑡))𝑎′(𝑡)  

                                          +∫ [𝒟,𝑡
+ 𝑓(𝑡, 𝑦)]

(𝑡,𝜏)
𝑑𝜏

𝑏(𝑡)

𝑎(𝑡)

, 

 

(2.9) 

for all 𝑡 ∈  𝐼. 

3. System Under Study 

In this study, we consider the time-delay system for the COVID-19 outbreak (Chen et al., 

2020a). Recalling that study, we have the four category of variables for the infection 

dynamics 

 

• 𝐼(𝑡): cumulative infected people at time 𝑡, 
• 𝐽(𝑡): cumulative confirmed people at time 𝑡, 
• 𝐺(𝑡): currently isolated people who are infected but still in latent period at time 𝑡, 
• 𝑅(𝑡): cumulative cured/recovered people at time 𝑡. 

 

For an area with no inflow, the authors proposed the following infection dynamics 

𝑑𝐼

𝑑𝑡
= 𝔗(𝑡), 

𝑑𝐽

𝑑𝑡
= 𝛾∫ℎ1(𝑡 − 𝛿1, 𝑡

′)

𝑡

0

𝔗(𝑡′)𝑑𝑡′, 
(3.1) 
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𝑑𝐺

𝑑𝑡
= 𝒢(𝑡) −∫ℎ2(𝑡 − 𝛿1

′ , 𝑡′)

𝑡

0

𝐺(𝑡′)𝑑𝑡′, 

𝑑𝑅

𝑑𝑡
= 𝜅∫ℎ3(𝑡 − 𝛿1 − 𝛿2, 𝑡

′)

𝑡

0

𝔗(𝑡′)𝑑𝑡′, 

 

where the increment of the number of infected people in this region is selected as 

𝔗(𝑡) ≔ 𝛽(𝐼(𝑡) − 𝐽(𝑡) − 𝐺(𝑡)), (3.2) 

and the newly isolated and infected people in the region is determined as 

𝒢(𝑡) ≔ ℓ(𝐼(𝑡) − 𝐽(𝑡) − 𝐺(𝑡)), (3.3) 

Let us recall that, the term 𝐼(𝑡) − 𝐽(𝑡) − 𝐺(𝑡) represents the number of exposed people at time 

𝑡 assuming that the individual would no longer transmit the coronavirus to others when he/she 

is isolated or in the treatment. For the dynamics above, the following constants are as follows: 

 

• 𝛾: morbidity rate, 

• 𝜅 and (1 − 𝜅): are the cured and death rates, 

• 𝛽: spread rate, 

• ℓ: isolation rate of the currently exposed people, 

• 𝛿1: latent period, 

• 𝛿1′: confirm period (𝛿1
′ < 𝛿1), 

• 𝛿2: days in average for the confirmed people become cured with rate 𝜅 or dead with 

rate (1 − 𝜅), 
• ℎ𝑖(𝑡1, 𝑡2), 𝑖 = 1, 2, 3 are the kernel functions representing the normalized probability 

distributions between times 𝑡1 and 𝑡2. 

 

Here, we consider the choice of kernel functions ℎ𝑖(𝑡1, 𝑡2), 𝑖 = 1, 2, 3. By practical reasons 

to modify the lower bounds of the integrals of (3.1), we take triangular type of kernel 

functions rather than a Gaussian one of the form 

 

ℎ1(𝑡1, 𝑡2):= max (
ℎ1,𝑚𝑎𝑥
𝛿1

|𝑡1 − 𝑡2| − ℎ1,𝑚𝑎𝑥, 0), 

ℎ2(𝑡1, 𝑡2) ≔ max (
ℎ2,𝑚𝑎𝑥
𝛿1′

|𝑡1 − 𝑡2| − ℎ2,𝑚𝑎𝑥, 0), 

ℎ3(𝑡1, 𝑡2):= max (
ℎ3,𝑚𝑎𝑥
𝛿1 + 𝛿2

|𝑡1 − 𝑡2| − ℎ3,𝑚𝑎𝑥, 0). 

(3.4) 

Please note that, regardless of choosing these kernel functions either of triangular or Gaussian 

form, we have ℎ𝑖(𝑡1, 𝑡2) ≤ ℎ𝑖,𝑚𝑎𝑥 for some positive ℎ𝑖,𝑚𝑎𝑥, 𝑖 = 1, 2, 3 which is attained in 

[𝑡1, 𝑡2]. To normalize the probability distribution, we will use ℎ1,𝑚𝑎𝑥 =
2

𝛿1
, ℎ1,𝑚𝑎𝑥 =

2

𝛿1
′  and 

ℎ3,𝑚𝑎𝑥 =
2

𝛿1+𝛿2
 (for the normalization procedure, see (Chen et al., 2020a)). In this regard, the 

altered dynamics is presented as follows:  

𝑑𝐼

𝑑𝑡
= 𝔗(𝑡), 

(3.5) 
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𝑑𝐽

𝑑𝑡
= 𝛾 ∫ ℎ1(𝑡 − 𝛿1, 𝑡

′)

𝑡

𝑡−𝛿1

𝔗(𝑡′)𝑑𝑡′, 

𝑑𝐺

𝑑𝑡
= 𝒢(𝑡) − ∫ ℎ2(𝑡 − 𝛿1

′ , 𝑡′)

𝑡

𝑡−𝛿1
′

𝐺(𝑡′)𝑑𝑡′, 

𝑑𝑅

𝑑𝑡
= 𝜅 ∫ ℎ3(𝑡 − 𝛿1 − 𝛿2, 𝑡

′)

𝑡

𝑡−𝛿1−𝛿2

𝔗(𝑡′)𝑑𝑡′, 

 

where 𝔗(𝑡) and 𝒢(𝑡) are defined as in (3.2) and (3.3), respectively. 

4. Main Results 

Now, we are ready to propose our main result. 

 

Theorem 1. Consider the TDS to describe the outbreak of COVID-19 (3.5). Assume that 

there exists 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7, 𝛼1, 𝛼2, 𝛼3 > 0 satisfying 

Ξ ≤ 0, 
(4.1) 

𝜆2𝛾ℎ1,𝑚𝑎𝑥
2

𝛿1
≤ 𝜆5𝑒

𝛼1𝛿1 , (4.2) 

𝜆3ℓℎ2,𝑚𝑎𝑥
2

𝛿1
′ ≤ 𝜆6𝑒

𝛼2𝛿1
′
, (4.3) 

𝜆4𝜅ℎ3,𝑚𝑎𝑥
2

𝛿1 + 𝛿2
≤ 𝜆7𝑒

𝛼3(𝛿1+𝛿2), (4.4) 

Λ(𝜆𝑚𝑎𝑥, 𝜆5, 𝜆6, 𝜆7) ≤
𝜖2

𝑒𝛼𝑇𝑓𝛿2
𝜆𝑚𝑖𝑛, (4.5) 

where 

 

Ξ ≔ [

Ξ11 Ξ12 Ξ13 0
∗ Ξ22 Ξ23 0

∗ ∗ Ξ33 0
∗ ∗ ∗ Ξ44

],  

Ξ11 = −𝛼𝜆1 + 2𝜆1𝛽 + 𝜆5𝛿1𝛽
2 + 𝛿7(𝛿1 + 𝛿2)𝛽

2,  

Ξ12 = −𝜆1𝛽 − 𝜆5𝛿1𝛽
2 − 𝛿7(𝛿1 + 𝛿2)𝛽

2,  

Ξ13 = −𝜆1𝛽 − 𝜆3ℓ − 𝜆5𝛿1𝛽
2 − 𝛿7(𝛿1 + 𝛿2)𝛽

2,  

Ξ22 = −𝛼𝜆2 + 𝜆2𝛾 + 𝜆5𝛿1𝛽
2 + 𝛿7(𝛿1 + 𝛿2)𝛽

2,  

Ξ23 = −𝜆3ℓ + 𝜆5𝛿1𝛽
2 + 𝜆7(𝛿1 + 𝛿2)𝛽

2,  

Ξ33 = −𝛼𝜆3 + 3𝜆3ℓ + 𝜆5𝛿1𝛽
2 + 𝜆6𝛿1

′ + 𝜆7(𝛿1 + 𝛿2)𝛽
2,  

Ξ44 = −𝛼𝜆4 + 𝜆4𝜅,  

λ𝑚𝑖𝑛 = inf
𝑖={1,2,3,4}

{𝜆𝑖}, λ𝑚𝑎𝑥 = sup
𝑖={1,2,3,4}

{𝜆𝑖},  

α = max{𝛼1, 𝛼2, 𝛼3},  

Λ(𝜆𝑚𝑎𝑥, 𝜆5, 𝜆6, 𝜆7) = 𝜆𝑚𝑎𝑥 + 3𝜆5𝛿1
2𝑒𝛼1𝛿1𝛽2 + 3𝜆6𝛿1

′2𝑒𝛼2𝛿1
′
ℓ2  

                                        +3𝜆7(𝛿1 + 𝛿2)
2𝑒𝛼3(𝛿1+𝛿2)𝛽2 

 

Then, the TDS (3.5) is FTS with respect to (𝜖, 𝛿, 𝑇𝑓). 
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Proof. Consider the LKF candidate for the TDS (3.5) defined as 

𝑉(𝜙𝐼 , 𝜙𝐽, 𝜙𝐺 , 𝜙𝑅) =∑ 𝑉𝑖(𝜙𝐼 , 𝜙𝐽 , 𝜙𝐺 , 𝜙𝑅)

4

𝑖=1

, (4.6) 

where 

𝑉1(𝜙𝐼 , 𝜙𝐽 , 𝜙𝐺 , 𝜙𝑅) = 𝜆1𝜙𝐼(0)
2 + 𝜆2 𝜙𝐽(0)

2 + 𝜆3𝜙𝐺(0)
2 + 𝜆4𝜙𝑅(0)

2, 

𝑉2(𝜙𝐼 , 𝜙𝐽 , 𝜙𝐺 , 𝜙𝑅) = 𝜆5 ∫ ∫𝑒−𝛼1𝑡
′
 𝜙𝔗(𝑡

′)2𝑑𝑡′𝑑𝑠

0

𝑠

0

−𝛿1

 , 

𝑉3(𝜙𝐼 , 𝜙𝐽 , 𝜙𝐺 , 𝜙𝑅) = 𝜆6 ∫ ∫𝑒−𝛼2𝑡
′
 𝜙𝐺(𝑡

′)2𝑑𝑡′𝑑𝑠

0

𝑠

0

−𝛿1
′

 , 

𝑉4(𝜙𝐼 , 𝜙𝐽 , 𝜙𝐺 , 𝜙𝑅) = 𝜆7 ∫ ∫𝑒−𝛼3𝑡
′
 𝜙𝔗(𝑡

′)2𝑑𝑡′𝑑𝑠

0

𝑠

0

−𝛿1−𝛿2

 , 

(4.7) 

for all 𝜙𝐼 , 𝜙𝐽, 𝜙𝐺 , 𝜙𝑅 ∈  𝐶([−𝛿1 − 𝛿2, 0], ℝ) and where 𝜙𝔗 ≡ 𝛽(𝜙𝐼 − 𝜙𝐽 − 𝜙𝐺). By 

applying Lemma 2, we have 

𝐷,𝑡
+𝑉2(𝐼𝑡, 𝐽𝑡 , 𝐺𝑡 , 𝑅𝑡) ≤ 𝛼1𝑉2(𝐼𝑡, 𝐽𝑡, 𝐺𝑡 , 𝑅𝑡) + 𝜆5𝛿1𝔗(𝑡)

2 − 𝜆5𝑒
𝛼1𝛿1 ∫ 𝔗(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1

 , 

𝐷,𝑡
+𝑉3(𝐼𝑡, 𝐽𝑡 , 𝐺𝑡 , 𝑅𝑡) ≤ 𝛼2𝑉3(𝐼𝑡, 𝐽𝑡 , 𝐺𝑡 , 𝑅𝑡) + 𝜆6𝛿1

′𝐺(𝑡)2 − 𝜆6𝑒
𝛼2𝛿1

′
∫ 𝐺(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1
′

 , 

𝐷,𝑡
+𝑉4(𝐼𝑡, 𝐽𝑡, 𝐺𝑡 , 𝑅𝑡) ≤ 𝛼3𝑉4(𝐼𝑡, 𝐽𝑡 , 𝐺𝑡 , 𝑅𝑡) + 𝜆7(𝛿1 + 𝛿2)𝔗(𝑡)

2 

                                        −𝜆7𝑒
𝛼3(𝛿1+𝛿2) ∫ 𝔗(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1−𝛿2

. 

(4.8) 

The derivative of 𝑉 along the solutions of (3.5) reads 

𝐷,𝑡
+𝑉(𝐼𝑡, 𝐽𝑡 , 𝐺𝑡 , 𝑅𝑡) ≤ 2𝜆1𝐼(𝑡)𝔗(𝑡) + 2𝜆2𝛾𝐽(𝑡) ∫ ℎ1(𝑡 − 𝛿1, 𝑡

′)𝔗(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1

 

                                       +2𝜆3𝐺(𝑡) [𝐺(𝑡) − ∫ ℎ2(𝑡 − 𝛿1
′ , 𝑡′)𝐺(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1
′

] 

                                       +2𝜆4𝜅𝑅(𝑡) ∫ ℎ3(𝑡 − 𝛿1 − 𝛿2, 𝑡
′)𝔗(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1−𝛿2

 

                                       +𝛼𝑉2(𝐼𝑡, 𝐽𝑡 , 𝐺𝑡 , 𝑅𝑡) + 𝜆5𝛿1𝔗(𝑡)
2 

(4.8) 
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                                      −𝜆5𝑒
𝛼𝛿1 ∫ 𝔗(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1

 

                                      +𝛼𝑉3(𝐼𝑡, 𝐽𝑡 , 𝐺𝑡 , 𝑅𝑡) + 𝜆6𝛿1
′𝐺(𝑡)2 

                                      −𝜆6𝑒
𝛼𝛿1

′
∫ 𝐺(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1
′

 

                                      +𝛼𝑉4(𝐼𝑡, 𝐽𝑡 , 𝐺𝑡 , 𝑅𝑡) + 𝜆7(𝛿1 + 𝛿2)𝔗(𝑡)
2 

                                      −𝜆7𝑒
𝛼(𝛿1+𝛿2) ∫ 𝔗(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1−𝛿2

 

By using 2𝑓(𝑡)𝑔(𝑡) ≤  𝑓(𝑡)2 + 𝑔(𝑡)2 and 

2𝑓(𝑡) ∫ 𝑔(𝑡′)𝑑𝑡′ ≤ [𝑓(𝑡)2 + ( ∫ 𝑔(𝑡′)𝑑𝑡′
𝑡

𝑡−𝛿

)

2

] ≤ [𝑓(𝑡)2 +
1

𝛿
∫ 𝑔(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿

]

𝑡

𝑡−𝛿

,  

and after arranging the terms, we have 

𝐷,𝑡
+𝑉(𝑋𝑡) ≤ 𝛼𝑉(𝑋𝑡) + 𝑋

𝑇(𝑡)Ξ𝑋(𝑡) 

                                       + (
𝜆2𝛾ℎ1,𝑚𝑎𝑥

2

𝛿1
− 𝜆5𝑒

𝛼1𝛿1) ∫ 𝔗(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1

 

                                       + (
𝜆3ℓℎ2,𝑚𝑎𝑥

2

𝛿1
′ − 𝜆6𝑒

𝛼2𝛿1
′
) ∫ 𝐺(𝑡′)2𝑑𝑡′

𝑡

𝑡−𝛿1
′

 

                                       + (
𝜆4𝜅ℎ3,𝑚𝑎𝑥

2

𝛿1 + 𝛿2
− 𝜆7𝑒

𝛼3(𝛿1+𝛿2)) ∫ 𝔗(𝑡′)2𝑑𝑡′
𝑡

𝑡−𝛿1−𝛿2

 

 

(4.9) 

where 𝑋(𝑡):= [𝐼(𝑡) 𝐽(𝑡) 𝐺(𝑡) 𝑅(𝑡)]𝑇. Using (4.1)-(4.4), we have the following 

𝐷,𝑡
+𝑉(𝑋𝑡) ≤  𝛼 𝑉(𝑋𝑡). (4.10) 

Integrating (4.10) by virtue of Theorem 11 in (Hagood and Thomson, 2006), we have 

𝑉(𝑋𝑡) ≤ 𝑒𝛼𝑡𝑉(𝑋0) ≤ 𝑒
𝛼𝑇𝑓𝑉(𝑋0). (4.11) 

By definition of 𝑉(𝑋𝑡) in (4.6) and (4.7), we obtain 

𝑉(𝑋0) ≤ (𝜆𝑚𝑎𝑥 + 3𝜆5𝛿1
2𝑒𝛼1𝛿1𝛽2 + 3𝜆6𝛿1

′ 2𝑒𝛼2𝛿1
′

ℓ2  

                                        +3𝜆7(𝛿1 + 𝛿2)
2𝑒𝛼3(𝛿1+𝛿2)𝛽2)||𝑋0||[−𝛿1−𝛿2,0]

, 
(4.12) 

and 

𝜆𝑚𝑖𝑛|𝑋(𝑡)|
2 ≤ 𝑉(𝑋𝑡) (4.13) 

The inequality |𝑋(𝑡)|2 ≤ 𝜖2 holds, if (4.5) holds, which implies |𝑋(𝑡)| ≤ 𝜖 for all 𝑡 ∈ [0, 𝑇𝑓]. 

This indicates that (3.5) is FTS with respect to (𝜖, 𝛿, 𝑇𝑓).        ∎ 
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Note that, there is no expression for the existence of 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 in the condition in 

Theorem 1. This is due to the fact that 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 rely on the existence of 𝜆𝑖, 𝑖 = 1, 2, 3, 4, 

by definition, and we can easily convert their definition into an inequality constraint as 

λmin ≤ 𝜆1, 𝜆𝑚𝑖𝑛 ≤ 𝜆2, 𝜆𝑚𝑖𝑛 ≤ 𝜆3, 𝜆𝑚𝑖𝑛 ≤ 𝜆4, 
(4.14) 

λ1 ≤ λmax, λ2 ≤ λmax, λ3 ≤ λmax, λ4 ≤ λmax,  (4.15) 

In the following section, we show a numerical example to show the validity of the proposed 

theorem. 

5. Numerical Example 

Here, we present a numerical example to verify the validity and efficiency of the proposed 

methodologies to ensure the FTS of the TDS to describe the outbreak of COVID-19 (3.5) 

𝛽 = 0.27, ℓ = 0.6, 𝜅 = 0.97, 𝛾 = 0.99, 𝛿1 = 7, 𝛿1
′ = 4, 𝛿2 = 12,  

To apply Theorem 1, we choose 

𝛼 = 1, 𝛿 = 5, 𝜖 = 50000, 𝑇𝑓 = 14,  

and for the simulation, we choose the initial state history as 

𝑋(𝑡) =

{
 
 

 
 [1 0 0 0]𝑇 , 𝑡 ∈ [−19,−12),

[2 0 0 0]𝑇 , 𝑡 ∈ [−12,−6),

[4 0 0 0]𝑇 , 𝑡 ∈ [−6,−3),

[5 0 0 0]𝑇 , 𝑡 ∈ [−3,0],

 

 

 

Note that, this initial state history satisfy ||𝑋0||[−𝛿1−𝛿2,0]
≤ 𝛿. By applying Theorem 1, the 

numbers that safisfy (4.1)-(4.5) are found as 

λ1 = 438.49, 𝜆2 = 11701, 𝜆3 = 337.67, 𝜆4 = 6347.3, 𝜆5 = 0.48687, 
 

𝜆6 = 2.1251, 𝜆7 = 2.3232 ⋅ 10
−7, 𝜆𝑚𝑖𝑛 = 300.18, 𝜆𝑚𝑎𝑥 = 12418.   

Thus, the TDS (3.5) is found FTS with respect to (𝜖, 𝛿, 𝑇𝑓) = (50000,5,14). 

6. Conclusions 

In this study, the finite-time stability analysis of a time-delay system representing the 

COVID-19 outbreak was performed. The proposed infection dynamics in (Chen et al., 2020a) 

was restated with a novel kernel function to describe the distribution of exposed people in the 

existing model. A new condition in terms of linear matrix inequalities was given to guarantee 

FT stability of the corresponding infection dynamics. As a result of this condition, the norm 

of the variables which are infected, confirmed, isolated and cured/recovered people did not 

exceed a certain bound in a fixed finite time interval. Those findings were also successively 

supported with a numerical example by using the same parameters as in (Chen et al., 2020a) 

and the validity of the proposed method had been shown. 
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Appendix A. Proof of Technical Lemmas 

A.1. Proof of Lemma 1 

From the total upper right Dini derivative definition (see Definition 3) and the properties of 

supremum, we have that 

𝐷,𝑡
+[𝐹(𝑡, 𝑏(𝑡))] = 𝑙𝑖𝑚𝑠𝑢𝑝

ℎ→0+

𝐹(𝑡 + ℎ, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎ
  

                                = 𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

𝐹(𝑡 + ℎ, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡 + ℎ)) + 𝐹(𝑡, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎ
 

                                ≤ 𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

𝐹(𝑡 + ℎ, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡 + ℎ))

ℎ
  

                                     + 𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

𝐹(𝑡, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎ
  

In other words, in view of Definition 2, 

𝐷,𝑡
+[𝐹(𝑡, 𝑏(𝑡))] ≤ [𝒟,𝑡

+𝐹(𝑡, 𝑦)]
(𝑡,𝑏(𝑡))

+ 𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

𝐹(𝑡, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎ
. (A.1) 

Consequently, we are left to show that 

𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

𝐹(𝑡, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎ
= [𝒟,𝑦

+𝐹(𝑡, 𝑦)]
(𝑡,𝑏(𝑡))

⋅ 𝑏′(𝑡). (A.2) 

Exploiting differentiability of 𝑏, it holds that 
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𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

𝐹(𝑡, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎ
 

                                   = 𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

𝐹(𝑡, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

𝑏(𝑡 + ℎ) − 𝑏(𝑡)
⋅
𝑏(𝑡 + ℎ) − 𝑏(𝑡)

ℎ
 

                                   = 𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

𝐹(𝑡, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

𝑏(𝑡 + ℎ) − 𝑏(𝑡)
⋅
𝑏(𝑡 + ℎ) − 𝑏(𝑡)

ℎ
⋅ 𝑏′(𝑡). 

(A.3) 

Furthermore, it holds that 

𝑏(𝑡 + ℎ) = 𝑏(𝑡) + ∫ 𝑏′(𝜏)𝑑𝜏.

𝑡+ℎ

𝑡

  

Given any ℎ > 0, let ℎℐ𝑏(ℎ) ≔ ∫ 𝑏′(𝜏)𝑑𝜏
𝑡+ℎ

𝑡
. Then ℎℐ𝑏(ℎ) is finite for all ℎ > 0 and 

ℎℐ𝑏(ℎ) → 0+  as ℎ → 0+. It follows that 

𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

𝐹(𝑡, 𝑏(𝑡 + ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎℐ𝑏(ℎ)
= 𝑙𝑖𝑚𝑠𝑢𝑝

ℎ→0+

𝐹(𝑡, 𝑏(𝑡) + ℎℐ𝑏(ℎ)) − 𝐹(𝑡, 𝑏(𝑡))

ℎℐ𝑏(ℎ)
 

                                                                   = [𝒟,𝑦
+𝐹(𝑡, 𝑦)]

(𝑡,𝑏(𝑡))
. 

(A.4) 

Thus, (2.7) follows from (A.2) and (A.4), which concludes the proof.     ∎ 

A.2. Proof of Lemma 2 

Let 𝑦∗ ∈  𝐽 and given any 𝑡 ∈  𝐼 and any 𝑦∗ ∈  𝐽, define 𝐹(𝑡, 𝑦) ≔ ∫ 𝑓(𝑡, 𝜏)𝑑𝜏
𝑦

𝑦∗
. Then it holds 

that 

∫ 𝑓(𝑡, 𝜏)𝑑𝜏 = 𝐹(𝑡, 𝑏(𝑡)) + 𝐹(𝑡, 𝑎(𝑡))

𝑏(𝑡)

𝑎(𝑡)

, ∀𝑡 ∈ 𝐼.  

Note that, 𝐹 is a function having finite partial upper right Dini derivative with respect to its 

first and second arguments on 𝐼 and 𝐽, respectively and the functions 𝑡 ↦ 𝐹(𝑡, 𝑏(𝑡)) and 𝑡 ↦
𝐹(𝑡, 𝑎(𝑡)) have finite upper right Dini derivatives on 𝐼. From Lemma 1 and Corollary 1, it 

follows that 

𝐷,𝑡
+ [ ∫ 𝑓(𝑡, 𝜏)𝑑𝜏

𝑏(𝑡)

𝑎(𝑡)

] = 𝐷,𝑡
+[𝐹(𝑡, 𝑏(𝑡)) + 𝐹(𝑡, 𝑎(𝑡))] 

                                         ≤ [𝒟,𝑡
+𝐹(𝑡, 𝑦)]

(𝑡,𝑏(𝑡))
+ [𝒟,𝑦

+𝐹(𝑡, 𝑦)]
(𝑡,𝑏(𝑡))

⋅ 𝑏′(𝑡) 

                                               −[𝒟+,𝑡𝐹(𝑡, 𝑦)](𝑡,𝑎(𝑡)) − [𝒟+,𝑦𝐹
(𝑡, 𝑦)]

(𝑡,𝑎(𝑡))
⋅ 𝑎′(𝑡) 

 

(A.5) 

Moreover, for all 𝑡 ∈ 𝐼 and 𝑦 ∈ 𝐽, 

𝒟,𝑡
+[𝐹(𝑡, 𝑦)] = 𝑙𝑖𝑚𝑠𝑢𝑝

ℎ→0+

𝐹(𝑡 + ℎ, 𝑦) − 𝐹(𝑡, 𝑦)

ℎ
 

(A.6) 
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                       = 𝑙𝑖𝑚𝑠𝑢𝑝
ℎ→0+

1

ℎ
(∫𝑓(𝑡 + ℎ, 𝜏)𝑑𝜏

𝑦

𝑦∗

− ∫𝑓(𝑡, 𝜏)𝑑𝜏

𝑦

𝑦∗

) 

Since, for any fixed 𝜏, 𝑓 is assumed to have finite partial upper Dini right derivative with 

respect to its first argument on 𝐼, we get from Theorem 11 of (Hagood and Thomson, 2006) 

that 

𝑓(𝑡 + ℎ, 𝜏) = 𝑓(𝑡, 𝜏) + ∫ 𝒟,𝑡
+[𝑓(𝑡, 𝑦)](𝑠,𝜏)𝑑𝑠

𝑡+ℎ

𝑡

. (A.7) 

Consequently, 

𝒟,𝑡
+[𝐹(𝑡, 𝑦)] = 𝑙𝑖𝑚𝑠𝑢𝑝

ℎ→0+

1

ℎ
(∫∫ 𝒟,𝑡

+[𝑓(𝑡, 𝑦)](𝑠,𝜏)𝑑𝑠

𝑡+ℎ

𝑡

𝑦

𝑦∗

𝑑𝜏) . (A.8) 

By Fubini's Theorem, it follows that 

𝒟,𝑡
+[𝐹(𝑡, 𝑦)] = 𝑙𝑖𝑚𝑠𝑢𝑝

ℎ→0+

1

ℎ
(∫ ∫𝒟,𝑡

+[𝑓(𝑡, 𝑦)](𝑠,𝜏)𝑑𝜏

𝑦

𝑦∗

𝑡+ℎ

𝑡

𝑑𝑠) 

                       = ∫𝒟,𝑡
+[𝑓(𝑡, 𝑦)](𝑡,𝜏)𝑑𝜏

𝑦

𝑦∗

 

(A.9) 

Similarly, for the lower right Dini derivative: 

𝒟+,𝑡[𝐹(𝑡, 𝑦)] = 𝑙𝑖𝑚𝑖𝑛𝑓
ℎ→0+

𝐹(𝑡 + ℎ, 𝑦) − 𝐹(𝑡, 𝑦)

ℎ
 

                         = 𝑙𝑖𝑚𝑖𝑛𝑓
ℎ→0+

1

ℎ
(∫𝑓(𝑡 + ℎ, 𝜏)𝑑𝜏

𝑦

𝑦∗

− ∫𝑓(𝑡, 𝜏)𝑑𝜏

𝑦

𝑦∗

) 

(A.10) 

From (A.7), we have 

𝒟+,𝑡[𝐹(𝑡, 𝑦)] = 𝑙𝑖𝑚𝑖𝑛𝑓
ℎ→0+

1

ℎ
(∫∫ 𝒟,𝑡

+[𝑓(𝑡, 𝑦)](𝑠,𝜏)𝑑𝑠

𝑡+ℎ

𝑡

𝑦

𝑦∗

𝑑𝜏) . (A.11) 

Again by Fubini's Theorem, we obtain 

𝒟+,𝑡[𝐹(𝑡, 𝑦)] = 𝑙𝑖𝑚𝑖𝑛𝑓
ℎ→0+

1

ℎ
(∫ ∫𝒟,𝑡

+[𝑓(𝑡, 𝑦)](𝑠,𝜏)𝑑𝜏

𝑦

𝑦∗

𝑡+ℎ

𝑡

𝑑𝑠) 

                         = ∫𝒟,𝑡
+[𝑓(𝑡, 𝑦)](𝑡,𝜏)𝑑𝜏

𝑦

𝑦∗

 

(A.12) 

Going back to (A.5) and using (A.9) and (A.12), we get  
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𝐷,𝑡
+ [ ∫ 𝑓(𝑡, 𝜏)𝑑𝜏

𝑏(𝑡)

𝑎(𝑡)

] ≤ ∫ 𝒟,𝑡
+[𝑓(𝑡, 𝑦)](𝑡,𝜏)𝑑𝜏

𝑏(𝑡)

𝑦∗

+ [𝒟,𝑦
+𝐹(𝑡, 𝑦)]

(𝑡,𝑏(𝑡))
⋅ 𝑏′(𝑡) 

                                             − ∫ 𝒟,𝑡
+[𝑓(𝑡, 𝑦)](𝑡,𝜏)𝑑𝜏

𝑎(𝑡)

𝑦∗

− [𝒟+,𝑦𝐹(𝑡, 𝑦)](𝑡,𝑎(𝑡)) ⋅ 𝑎′(𝑡) 

                                     = ∫ [𝒟,𝑡
+ 𝑓(𝑡, 𝑦)]

(𝑡,𝜏)
𝑑𝜏

𝑏(𝑡)

𝑎(𝑡)

+ [𝒟,𝑦
+𝐹(𝑡, 𝑦)]

(𝑡,𝑏(𝑡))
⋅ 𝑏′(𝑡) 

                                             −[𝒟+,𝑦𝐹(𝑡, 𝑦)](𝑡,𝑎(𝑡)) ⋅ 𝑎′(𝑡) 

 

 

which concludes the proof.            ∎ 


