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ABSTRACT: 
Purpose: The coronavirus, known as severe acute respiratory syndrome (SARS-CoV-2), is accountable for the global epidemic disease 
COVID-19. The effective treatment of this disease is still unknown and there is an emergent need to use all resources to find the 
effective medication. The use of off-label natural medicinal compounds may be effective remedy for this scourge. For this reason, it 
was aimed to investigate the theoretical effect of Mesua ferrea Linn, an Asian medicinal plant, against COVID-19 disease.  
Material and Methods: In silico studies, molecular docking was performed using AutoDock Tools (ADT) version 1.5.6 package, and 
the coupling processes were performed using AutoDock 4.2 package.  
Results: Towards the investigation of effective inhibitor of 3CL protease, we studied the in silico interaction of the selected 
compounds of Mesua ferrea Linn. The studied compounds have shown significant inhibition properties. The timber extracts, 
Mesuabixanthone-B (∆Gbind = -15.51 kcal/mol) and Mesuferrol-B (∆Gbind = -14.32 kcal/mol) have the exciting impact on 6LU7. 
Conclusion: The in silico prediction of toxicities of the extracts are promising. The further lab research is necessary to identify their 
drug candidate capabilites against COVID-19 infections. 
Keywords: Coronavirus, Mesua ferrea Linn, molecular docking, autodock, 6LU7 

 
 
 

COVID-19 Ana Proteazının Doğal Inhibitörleri Olarak Mesua ferrea Linn'in Özleri: Hesaplamalı Bir 
Araştırma  

 
 
 

ÖZET:  
Amaç: Şiddetli akut solunum sendromu (SARS-CoV-2) olarak bilinen koronavirüs, küresel salgın COVID-19 hastalığından sorumludur. 
Bu hastalığın etkili tedavisi hala bilinmemektedir ve etkili ilacı bulmak için tüm kaynakların kullanılmasına acil bir ihtiyaç vardır. Başka 
bir hastalık tedavisinde kullanılan doğal tıbbi bileşikler bu hastalık için etkili bir çare olabilir. Bu sebeple bir Asya tıbbi bitkisi olan 
Mesua ferrea Linn COVID-19 hastalığına karşı teorik olarak etkisinin araştırılması amaçlanmıştır.  
Gereç ve Yöntem: In siliko çalışmalarda, moleküler yerleştirme, AutoDock Tools (ADT) sürüm 1.5.6 paketi kullanılarak birleştirme 
işlemleri ise AutoDock 4.2 paketi kullanılarak gerçekleştirildi. 
Bulgular: 3CL proteazın etkili inhibitörünün araştırması için, Mesua ferrea Linn'in seçilen bileşiklerinin in siliko etkileşimini inceledik. 
İncelenen bileşikler, etkili inhibisyon özellikleri göstermiştir. Ağaç özleri, Mesuabixanthone-B (∆Gbind = -15.51 kcal/mol) ve Mesuferrol-
B (∆Gbind = -14.32 kcal/mol), 6LU7'da heyecan verici etkiye sahiptirler.  
Sonuç: Ekstrelerin toksisitelerinin in silico tahmini ümit vericidir. Bunların COVID-19 enfeksiyonlarına ilaç adayı kapasitelerinin 
belirlenmesi için daha fazla laboratuvar araştırması gereklidir. 
Anahtar Kelimeler: Koronavirüs, Mesua ferrea Linn, moleküler yerleştirme, autodock, 6LU7 
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INTRODUCTION 
Among viruses, the coronavirus has gained much 

significance. A number of coronaviruses has been 

identified during the last decade. They are the 

potent infectants with diverse range of hosts from 

mammals to birds (Peiris et al., 2003; Masters, 2006). 

COVID-19, a novel coronavirus has been first 

reported from Wuhan in China and associated with 

rapid inter-human transmission, leading to various 

infections symptoms such as pneumonia, cough, 

weakness and digestive tract problems. Upon the 

exhaustive examination, it was observed that the 

COVID-19 mainly consist of three essential proteins: 

PLpro, 3CL and spike proteins (Zhang et al., 2020). 

The 3CLpro main protease (PDB: 6LU7) is responsible 

for regulating vital functions in the virus body (Anand 

et al., 2003; Jin et al., 2020). The most important 

function which makes this protein an ideal target for 

the medicinal chemists is replication process and by 

inhibiting these proteins with the help of innocuous 

natural products can reduce the severity of infection 

(Bacha et al, 2004).  Mesua ferrea Linn (Ceylon iron 

wood) belongs to family Clusiaceae, is a rich source 

of secondary metabolites and is blessed with diverse 

medicinal properties e.g. antioxidant, antimicrobial, 

antiviral, antitumor and immunomodulatory (Teh et 

al., 2012; Asif et al., 2016). This evergreen plant is 

found abundantly in the Asian countries. 

Traditionally, the various parts of this plant is use for 

treatment of various diseases. A number of 

medicinal compounds have been isolated from the 

seed oil with significant antispasmodic, antibacterial 

and hypotensive activity (Verotta et al., 2004; 

Adewale et al., 2011; Chanda et al., 2013). 

Additionally, the seed oil is beneficial for the 

soothing the itch (Jalalpure et al., 2011). The 

ornamental flowers exhibit various medicinal assets 

including an antidote for the venomous snake bite. 

Furthermore, the paste of flower, butter and sugar is 

traditionally recommended for the treatment of 

bleeding piles and burning of feet.  Leaves extracts 

are beneficial for cough, stomach disorders and the 

treatment of scorpion prickle (Neligan, Hauser, & 

Sander, 2012). The use of medicinal herbs is an 

ancient method for the treatment of infectious 

diseases (Hsu et al., 2008; Asadbeigi et al., 2014; Lin, 

Hsu, & Lin, 2014; Chaachouay et al., 2019).  

MATERIAL and METHODS  

Purpose and Type of the Study 

The specific remedy for COVID-19 is still unidentified. 

Therefore, several ethnophamacological attempts 

have been made for the treatment of the viral 

infection (Aktas et al., 2020; Cetiner et al., 2020; 

Gedikli et al., 2021). In order to find the most suitable 

molecule for the treatment of COVID-19, herein, we 

demonstrated the computational interaction 

between the Linn extracts and Mpro. A clever 

experimentalist can get direction from the current 

study in order to find the suitable natural product for 

the treatment of COVID-19 infections. 

  

Data Collection Tools (3D structure of the ligands 

and receptor)  

The crystal structure of the 3CLpro/Mpro COVID-19 

(PDB ID: 6LU7) was downloaded from the Protein 

Data Bank (PDB) (Berman et al., 2000). The small 

molecules of Mesua ferrea Linn are selected from 

literature (Table 1) (Chahar, 2013; Sharma et al., 

2017) and all 3D structures of the ligands except 

Mesuabixanthone-A and -B, were obtained from 

PubChem Open Chemistry Database (Kim et al., 

2019). The 3D structures of Mesuabixanthone-A and 

–B were obtain from ChemDraw professional 17.1.  

 

Molecular Docking  

The residues inside the active pocket of 6LU7 were 

determined by Biovia Discovery studio client 2020 

(Systemes Dassault, 2016). The molecular docking 

was performed using AutoDock Tools (ADT) version 

1.5.6 package and the coupling processes use the 

AutoDock 4.2 package which is assisted by AutoDock 

and MGL tools.  The protein is set as rigid while the 

ligands as flexible. The global search was doing 

Lamarckian genetic algorithm (Goodsell et al., 1996; 

Morris et al., 1998; Morris et al., 2008; Huey et al., 

2012; Ravindranath et al., 2015). The reported 

binding interaction of chloroquine and small 

molecules showed the standard interaction (Samant 

& Javle, 2020) with MET49. This evidence was kept 

under consideration while adjusting the grid box. 

The box size was adjusted at 60 x 60 x 60 Å with 

spacing 0.5 Å. The docking results were interpreted 

and pictured with the help of PyMOL Molecular 

Graphics System (Schrödinger LCC, 2020) and Biovia 
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Discovery studio client 2020 systemes (Systemes 

Dassault, 2016). 

 

Toxicity Prediction 

The cardiotoxicity and carcenoginicity were 

predicted from the webserver eMOLTox (Ji et al., 

2018). while the software TEST (Martin, 2016) 

facilitated the mutagenicity forecast. The site of 

metabolism is calculated from the web server SOMP 

(Rudik et al., 2015). The SMILES strings of each 

compound was submitted to the web server. The 

SOM prediction results include a tested structure 

with numbered atoms and tables, which include the 

atoms and their ranks according to the probability to 

be attacked by each enzyme. The result was saved in 

the form of PDF files, which contain CYPs and UGT 

tables with the prediction results.  

 

RESULTS and DISCUSSION  

Keeping in view the tremendous medicinal 

applications of Mesua ferrea Linn, we selected some 

small molecules (flavonoids, coumarins, xanthones 

etc.) from the various parts of the tree and carried 

out Molecular Docking simulations in order to 

identify the suitable inhibitors against the 

coronavirus peptidase (PDB ID: 6LU7). 

 

 
Figure 1.  The surface presentation of 6LU7 peptidase receptor (blue) with ligands (pink sticks) in the binding pocket 
and residue MET 49 (yellow). 

 

The molecular docking results, presented in Table 1, 

indicates that the compounds under investigation 

showed excellent inhibition activity (Figure 1). 

Mesuabixanthone-B, extracted from the stem 

(Taylor et al., 1993) of Mesua ferrea linn. has shown 

the most intense interaction with the target protein 

(6LU7). The binding energy of -15.51 kcal∙mol−1 with 

inhibition constant of 0.0043 nM indicates that the 

compound under observation possess the excellent 

molecular affinity (Table 1, Figure 3). The two 

hydrogen bridges positioned on the residues THR 26 

and GLY 143, formed the strongest interaction 

between the ligand and the protein. Another dimeric 

xanthone called Mesuabixanthone-A (Taylor et al., 

1993) is a stem extract and exhibit attractive 

molecular affinity value -13.32 kcal∙mol−1 and an 

inhibition constant  0.173 nM. The residues THR 24, 

THR 26, GLY 143, HIS 164 and ARG 188 form the 

intense hydrogen bond interaction with the ligand 

molecule (Figure 2). 

The docking molecular affinity studies of 

Mesuaferrol-A and Mesuaferrol-B, found in the 

timber extract, revealed to exhibit the excellent 

inhibitory properties with binding energy of -13.91 

and 14.32 kcal∙mol−1 respectively. The value of their 

inhibition constants 0.063 nM and 0.032 nM 

respectively, strongly endorse that the both 

compounds are potential inhibitors. The amino acids 

THR 26, GLY 143, ASP187 and GLN 189 are involve in 

hydrogen link interaction. 



Saddiqa et al. / TFSD, 2021, 2(2), 40-47 

43 
 

 

 
Figure 2. The interactions of selected ligands with active residues of 6LU7.  A) Rusflavanone, B) Mesuaferrol-B,  C) 
Mesuabixanthone-A 
 

 

Table 1. Molecular affinity parameters of the ligands with 6LU7 

Ligand 
(pubchem id) 

Isolated from 
∆Gbind 

(kcal∙mol−1) 

*(IME, IE, TFE, 
UBS) 

(kcal∙mol−1) 

Ki 

(nM) 
Amino acid interact via hydrogen 

bonds 

Rhusflavanone  
466314 

Stamen, 
flower 

-12.95 
-15.63, -5.10,  
+2.68, -5.10 

0.324 CYS 145, HIS 163, HIS 164, GLN 189 

Mesuol 
5277586 

Seed oil -11.91 
-14.00, -2.64, 
+2.09, -2.64 

1.85 HIS 164 

Mesuaferrol-B 
101995076  

Stem bark -14.32 
-16.70, -2.76, 
+2.39, -2.76 

0.032 THR 26, GLY 143, ASP187, GLN 189 

Mesuaferrol-A 
101995075 

Stem bark -13.91 
-16.30, -3.19, 
+2.39, -3.19 

0.063 THR 26, GLY 143, ASP187 

Mesuagin 
5319380   

Flower, seed -11.17 
-12.36, -1.80, 
+1.19, -1.80 

6.52 CYS 145, HIS 164 

Mesuaferrone-B 
90472563 

Stamen, 
flower 

-12.79 
-15.47, -6.46, 
+2.68, -6.46 

0.423 
PHE 140, LEU141, GLY 143, SER 144, 

CYS 145, GLU 166, HIS 172 

Mesuaferrone-A 
101324837 

Flower 
stamen 

-12.79 
-15.48, -6.47, 
+2.68, -6.47 

0.418 
PHE 140, LEU141, GLY 143, SER 144, 

CYS 145, GLU 166, HIS 172 

Mesuabixanthone-B- Stem bark -15.51 
-17.89, -2.91, 
+2.39, -2.91 

0.0043 THR26, GLY 143 

Mesuabixanthone-A- Stem bark -13.32 
-15.70, -3.12, 
+2.39, -3.12 

0.173 
THR 24, THR 26, GLY 143, HIS 164, 

ARG 188 

Mammeigin 
5319255 

Seeds and 
flowers 

-11.20 
-12.69, -2.19,  
+1.49, -2.19 

6.17 GLY 143, GLU 166 

Mesuanic acid 
101277421 

Stamen, 
flower 

-10.70 
-14.58, -4.87, 
+3.88, -4.87 

14.26 - 

*IME = intermolecular energy, IE = internal energy, TFE = tortional free energy, UBS = unbound system energy 
 
 

https://pubchem.ncbi.nlm.nih.gov/compound/101995076
https://pubchem.ncbi.nlm.nih.gov/compound/5319380
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A                                                              B                                                            C 

 
Figure 3. Different presentations of 6LU7 main protease with Mesuabixanthone-B (pink stick) A) hydrogen bond donor 
and acceptor surface on 6LU7 B) cartoon presentation of protein with the ligand C) solvent accessibility surface on the 
receptor 

 

The stamen extracts, Rhusflavanone, Mesuaferrone-

A, Mesuaferrone-B and Mesuanic acid unveiled the 

in silico binding energies as -12.95, -12.79, -12.79 

and 10.70 kcal∙mol−1 respectively with low values of 

inhibition constants (0.324, 0.418, 0.423 and 14.26 

respectively). The molecular interaction of Mesuanic 

acid did not result in hydrogen bondings, unlike the 

other three stamen extracts where PHE 140, LEU141, 

GLY 143, SER 144, CYS 145, HIS 163, HIS 164, GLU 

166, HIS 172 and GLN 189 are the prominent 

hydrogen bonding residues. Conversely, in Mesuanic 

acid, the residues HIS 41, MET165 and pro168, 

present a strong interaction in the active border of 

the target. Mesuol (Márquez et al., 2005), Mesuagin 

(Bhattacharyya et al., 1979; Wezeman et al., 2015) 

and Mammeigin were isolated from the seed extract. 

The docking results of these coupled compounds 

with the active site of 6LU7 showed the ∆Gbind and 

inhibition constants -11.91 kcal∙mol−1 (Ki = 1.85 nM), 

-11.17 kcal∙mol−1 (Ki = 6.52 nM) and -11.20 kcal∙mol−1 

(6.17 nM) respectively. The docking analysis of small 

molecules reflected typical interaction with MET49 

residue (Samant et al., 2020) among our studied 

compounds, Mesuferrol (Zar et al., 2019), Mesuagin, 

Mesuabixanthone-A and Mammeigin showed 

interaction with MET49 but these interactions did 

not result in hydrogen bridge. 

Next, the selected compounds are subjected to test 

for various toxicity assessment parameters (Table 2). 

Mutagenicity is the aptitude of a substance to 

stimulate mutations by interacting with DNA and to 

change its structure. A carcinogen is a type of 

mutagen that specifically causes cancer. Drug 

metabolism directly influence the drug effectiveness 

and toxicity. The metabolism reactions are classified 

into Phase I (oxidation, hydrolysis, reduction) and 

Phase II (conjugation). The Phase I enzymes includes 

Cytochromes P450 (CYP) (Lewis & Ito, 2008; Williams 

et al., 2004), which metabolize most drugs. 

Glucuronidation is the main reaction of Phase II, 

which is catalysed by UDP-glucuronosyltransferase 

(UGT) and serves as a clearance mechanism for drugs 

from many therapeutic classes (King et al., 2000). 

Site of metabolism prediction process identifies the 

location in a chemical structure, which is most likely 

to undergo metabolization, hence aiding with 

decision support in the drug optimization process. A 

positive result suggests liability of the site for 

metabolism while negative results point out the 

resistance of the moiety for undergoing metabolism. 

The inhibition of this CYP isoforms reduces the 

elimination and change in metabolic pathways of 

their substrates, which is the major cause of adverse 

drug-drug interactions.The toxicity assessment of 

the Linn extracts is displayed in Table 2 which clearly 

indicates that all compounds are non-carcinogenic 

and are susceptible to the metabolism. The negative 

or weak results in the mutagenicity and 

cardiotoxicity columns suggest that compounds are 

computationally predicted to be safe. Whereas 
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positive outcome provide computational evidence of 

the compound to be potential toxic.  Overall, the 

study shows that compounds are likely to exhibit low 

probable toxicity risks. 

The results obtained from AutoDock and toxicity 

calculation reflect that the candidates under 

investigation appeared to have the excellent 

potential to act as 6LU7 inhibitor. Nevertheless, 

further experimental studies are also required to 

investigate their potential medicinal use against 

COVID-19 main protease. 

 
 
Table 2. Predicted toxicity parameters of Mesua ferrea Linn. Extracts 

Entry 
Toxicity 

Site of metabolism 
Cardiotoxicity Carcinogenicity Mutagenicity 

Rhusflavanone  negative negative negative U: 32, 40, 12, 20. 
Mesuol  negative negative negative B: 2, C: 16. U: 12, 29. 
Mesuaferrol-B  weak negative positive E: 2, 17.   C: 2, 17. D: 2, 17. 
Mesuaferrol-A weak negative positive E: 10. C: 10. D: 10. U: 31, 38, 15. 
Mesuagin negative negative negative U: 1. F: 28. 
Mesuaferrone-B weak negative negative U: 27, 40, 30, 6. 
Mesuaferrone-A weak negative negative U: 6,7,21,23,19,16 
Mesuabixanthone-B weak negative positive E: 43, 44, 8. D: 43, 44. U: 40 
Mesuabixanthone-A weak negative positive D: 44. U: 36. 
Mammeigin negative negative negative B: 30. C: 30. F: 30. U: 30. 
Mesuanic acid weak negative negative U: 30, 37 

B = CYP3A4, C = CYP2C19, D = CYP2C9, E = CYP2D6, U = UGT 

 

CONCLUSION 

The constituents of Mesua ferrea Linn has been 

chosen to study the interactions against SARS-CoV-2 

Mpro (PDB 6LU7). The investigation provided 

interesting results. The values of binding energies, 

inhibition constants and toxicity predictions revealed 

that the observed small molecules are potential 

inhibitors of 6LU7. These theoretical results allow a 

direction for further studies in the mode in vitro and 

in vivo. 
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