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Abstract − The present study investigates the magnetohydrodynamic non-Newtonian 

peristaltic flow of the Casson fluid model embedded with a chemical reaction. The assumption 

of small Reynolds number and approximations of long-wavelength are considered. The 

constituent equations are analytically solved by the method of decomposition by Adomian. 

Distributions of the velocity field, pressure gradient and concentration field are obtained. The 

simulations of influencing parameters on the behaviour of the fluid model have been elaborated 

with the help of graphs, and detailed analysis has been done. It can be observed that both the 

reaction parameter and Schmidt Number show similar behaviour for concentration profile. The 

graphs clearly show that the fluid parameter drastically reduces the pressure rise and pressure 

gradient. The pressure gradient will be increased by the increase in Hartmann number, but it 

reduces the pressure rise. 

Subject Classification (2020): 

1. Introduction 

Peristalsis refers to a spontaneous wave mechanism like muscular contractions of the digestive tract 

or other tube-like structures. It is characterised by alternating contraction and relaxation, which helps 

push indigested food through the digestive duct towards its release at the anus. The pioneering work 

in this regard was initiated by starling and Bayliss [1], who described it as an ability of fluid to move or 

get around. Some of the peristaltically governing bodily flows are organs of the digestive system, 

oesophagus and intestine. Latham [2] study on peristaltic transport is influenced many researchers to 

develop many experimental and theoretical studies to understand the mechanical behaviour of fluids 

in different conditions. These works have been done by incorporating blood and other bodily fluids as 

Newtonian fluids. But it is much more significant to study the peristaltic transport of Bio-fluids by 

considering them as non-Newtonian fluids as human blood in arterioles, intestine etc., behave like a 

non-Newtonian fluid. 

A key point in considering the non-Newtonian fluid model ahead of the Newtonian model is its 

viscosity, which is dependent on the forces being applied to it. Some of the applications include syrup 

drugs, toothpaste, colloids. A Casson fluid model with a distinct feature and its rheological behaviour 
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was pioneered by Casson [3]. Some more research work related to the peristaltic transport of the 

Casson model is seen in refs. [4-10].  

However, studies related to a complex interaction of peristaltic motion of conducting fluid with 

extremely imposed magnetic field will enhance a better understanding of the performance of 

conductive physiological fluids like blood flow in small vessels (Casson fluid model), blood pump 

machines etc., Magnetohydrodynamics (MHD) or Magento fluid dynamics deal with magnetic 

properties and nature of fluids which easily have electrons pass through them, for instance, blood 

plasmas, saline. The motive behind using MHD is that applied magnetic fields can trigger currents in a 

flowing conductive fluid, which polarizes the fluid and that inertly changes the magnetic field itself. 

Some applications include sensors, casting by electromagnetic radiation, power generation with MHD, 

drug targeting by the applied magnetic field. Magneto hydrodynamic equations analyse the correlation 

between the external magnetic field and magnetic fluid particles in the bloodstream [11-23]. 

In many industrial and technological fields, problems that deal with differences in temperature and 

concentration difference have importance on chemical reaction processes. This phenomenon has its 

role in the conduction of heat and mass in a fluid motion. Chemical reactions are essential to chemical 

engineering, fluid dynamics, where they can be utilised to produce new compounds from naturally 

occurring raw materials like ores and petroleum. Related work can be seen in [24-32]. 

A semi-analytical method has been adopted to solve subsequent governing non-linear partial 

differential equations. This method allows a non-linear portion of the differential equation for solution 

convergence. Motivated by this, we attempted to analyse Casson fluid's peristaltic transport by the 

Adomian Decomposition Method (ADM). MHD and chemical reaction effects are considered. We have 

discussed the present study results through graphs, and the impact of pertinent parameters like rate of 

chemical reaction, Hartmann number and fluid parameter on pressure gradient, flow rate and, 

concentration profile are analysed in detail. 

2. Problem formulation 

The peristaltic motion of a steady condensed MHD Casson fluid model is considered with chemical 

reaction in a 2D channel with asymmetry at the walls. Where ( )', 'X Y is the coordinate with 'X  along 

the direction of wave and 'Y perpendicular to 'X  axis. The motion of the fluid model is driven by the 

sine wave having a constant speed c  along the channel walls. The description of the walls is given by 

1 'Y h=  and 2 'Y h= representing the boundaries of the channel (Figure 1). 

'
2

( ', ) Cos[ ( ' )],
1 1 1

h X t d a X ct



+= −  upper wall (2.1) 

'
2

( ', ) Cos[ ( ' )].
2 2 2

h X t d a X ct





+= − −  lower wall (2.2) 
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 Figure1. A physical model of asymmetric channel. 

where 2 1,a a  the amplitude of the lower wall waves is   the wavelength, time t , phase- difference . It 

is noted that for the symmetric channel, 0 =  that means waves out of phase and  =  waves are in 

phase. and 2 1,d d  satisfies a criterion: 2 2 2 2

1 1 1 1 2 12 cosa b a b d d+ +  +  . 

Vector form of velocity V is ( , , 0)V U V=  where ,U V  are the velocity coordinates of the velocity field in 

the laboratory frame of reference. 

The Rheological model of a Casson fluid is  

0( )2 ,
2

y
eij ij

c


 


= +  when c   (2.3) 

0( )2 ,
2

y
eij ij

c


 


= +  when c   (2.4) 

Where y  is the fluid yield stress, expressed as: 

0 2
,y

 



=  (2.5) 

0 is the fluid’s plastic dynamic viscosity. 

 is given by .e eij ij = . 

eij  - ( , )
th

i j is the constituent of deformation rate and  

c is the critical value relying on the non-Newtonian behaviour. 

Denoting the velocity components U and V respectively along with ,X Y directions in a fixed frame. 

The governing equations of the flow are defined as: 
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2 2
2

0 02 2

1

1
1 ( ) ,

BUU U U U U P
U V B U g C CB

X Y t x y K X


    



     
+ + = + + − − + − −

     

    
    

    
 (2.6) 

2 2
2

02 2

1

1
1

B
B

VV V V P V V
U V B V

t X Y Y x y K


  



     
+ + = − + + + − −

     

    
    

    
, (2.7) 

2 2

1 02 2
( )

C C C C C
U V D k C C

B
X Y t Y X

    
+ + = + − −

    

  
  

   
, (2.8) 

where V and U are the velocity components along with the ,Y X directions, respectively,  denotes 

the fluid’s density, B - viscosity of the fluid,  the Casson parameter, P - pressure,  - fluid’s electrical 

conductivity, 0B the applied magnetic field,  volumetric expansion coefficient, C the concentration, 

D
B

the Brownian diffusion coefficient, g is the acceleration due to gravity, 1K the thermal conductivity 

of the fluid as seen in Equations 2.6-2.8 respectively. 

The flow can be considered unsteady if seen in the laboratory frame; however, in a coordinate plane 

moving at speed c  in the wave frame ( ),x y , it can be treated as steady. 

 In two frames, velocities, coordinates, pressure, and concentration are 

( ) ,x X c t= + − ( ),u U c= + − ,y Y= ,v V= ,c C= ,p P=  

Here ,U V and ,u v  are the components of velocity for the corresponding Cartesian systems. 

The dimensional boundary conditions are 

', at ,
0 1

U c C C y h= − = =  (2.9) 

', at ,
1 2

U c C C y h= − = =  (2.10) 

The following non-dimensional parameters are 

.

2 2
'1 1 1, , , , , , , ,

1

2
( )

0 1 1 01, , , ,
0 1 2

1 0 1

Pd k dU V ct X Y Bu v t p x y Sc R
c c c d DB B

C C gB d C Cd k c
C M B d Da Gm

C C cdB B



   




  

= = = = = = = =

− −
= = = = =

−

 (2.11) 

In view of Equation 2.11, Equations 2.6 - 2.8, reduce to  

2
1 12

1 ,
2

p u
M u G Cm

x ky

 
= + − + +

 

   
  
  

 (2.12) 

2
'

,
2

C
ScR C

y


=


 (2.13) 

 

The dimensionless boundary conditions are 
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0, 1, at ,
1

C u y h= = =  (2.14) 

1, 1 at .
2

C u y h= = − =  (2.15) 

3. Method of solution 

Using Adomian decomposition method, Equation 2.12 can be written as 

,
2

1 1

dp

G Cdx mL u N uyy




 
− = −

+ +

 
 
 
 
 

 (3.1) 

Where 
( )2

1 /
2

,
1

M k
N





+

=
+

2

,
2

d
Lyy

dy
=  

Since Lyy  is a second order differential operator,
1

Lyy
−

is an inverse integration operator of order 2 

defined by 

0 0

1
(.) (.) .

y y

L dydyyy
−

=    (3.2) 

Employing 1
,Lyy

−  Equation 3.1 becomes  

( ) .
1 1 2

1 2
1 1

dp

G Cdx mu C C y L L N uyy yy




 

− −
= + + − +

+ +

 
 
 
 
 

 (3.3) 

By the semi-analytical Adomian Decomposition method we get 

.
0

u un
n


= 

=
 (3.4) 

Equation 3.3 gives, 

2 ( )
1 ,

0 1 2 21 2! 1 ( )
2 1

dp

Sinhk y hGydx mu C C y
k Sinhk h h




 

−
= + + −

+ + −

  
    
    

   
  

 

2 1
( ), 0.

1
u N L u nyy nn

−
= 

+
 (3.5) 

Using boundary conditions in Equation 2.14 and 2.15 to Equations 3.3-3.5, we obtain  

( ) ( ) ( )
2 3 4 2

( )
2 1 ,

1 1 2 42! 3! 4! 1(1 ) ( )
2 1

C N Sinhk y hNy Ny Ny Gdp mu C
N dxN k Sinhk h h





−
= + + −

++ −

    
    

   
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( ) ( ) ( )
4 5 6 4

( )
2 1 ,

2 1 2 64! 5! 6! 1(1 ) ( )
2 1

C N Sinhk y hNy Ny Ny Gdp mu C
N dxN k Sinhk h h





−
= + + −

++ −

    
    

   
 

( ) ( ) ( )
6 7 8 6

( )
2 1 ,

3 1 2 86! 7! 8! 1(1 ) ( )
2 1

C N Sinhk y hNy Ny Ny Gdp mu C
N dxN k Sinhk h h





−
= + + −

++ −

    
    

   
 

( ) ( ) ( )
2 2 1 2 2 ( )

2 1 ,
1 2 2 202 ! (2 1)! 2 ! 1 ( )(1 ) 2 1

n n n nGC Sinhk y hNy Ny Nydp Nmu Cn nnn N n dx n Sinhk h hN k





+
−

= + + − 
+=+ + −+

     
       

     

 

( )
( )12 11 .

1 2 2 21 ( )(1 ) 2 1

C Sinhk y hGdp mu C CoshNy SinhNy CoshNy
N dx Sinhk h hN k N





−
= + + − −

+ −+ −

     
     

    
 (3.6) 

where 

2
1 1 2

2( ) ( ) (1 )1 1 2 1 21
1

1 1 2 1 1
2 2( ) (1 )(k ) ( )1 2 1 2

1
1

2
(1 )

CoshNh CoshNh CoshNh dp

SinhN h h SinhN h h dxNSinhNh
C

CoshNh CoshNh CoshNh CoshNh G CoshNhm

SinhN h h N SinhN h h

dp
CoshNhdx

CN













−
− +

− − +
= −

−
−

− + − −

−
−

+

  
  
  
 
  
   
  

1
oshNh

 
  
 

 

2 ( )
2 1 1 2 2 1

2( ) ( ) ( )(1 )1 2 1 2 1 2

1
2 2

(1 )(k ) ( )
1 2

C CoshNh CoshNh CoshNh CoshNh CoshNhdp

N SinhN h h SinhN h h dx SinhN h hN

G CoshNhm

N SinhN h h









− −
= − +

− − −+

−
+ − −

  
    

     

.'k scR=  

The flow rate in the ( ),x y  is given as 

.
2

1

h

q udy
h

=   (3.7) 

 

( ) ( )

( )( )

2
2 1 1 2 1

( )
1 1 1 2

1 1 2 2 1

( )
1 1 2

SinhNh SinhNh Sinh Nh SinhNh SinhNh
q

N CoshNh N CoshNh SinhN h h

SinhNh CoshNh CoshNh SinhNh SinhNh

N CoshNh SinhN h h

− −
= − +

−

− −
−

−

( )

( )
( )

( )

1 ( )
1 1 2

2 1
22 1 1 2 1 1

3 ( )(1 ) ( ) 1 21 1 2

CoshNh SinhN h hdp
SinhNh SinhNh

dx CoshNh CoshNh SinhNh CoshNh CoshNh CoshNh

N SinhN h hN CoshNh SinhN h h





− − +
−

− −
+

−+ −

 
 
 
   
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( ) ( )
( )( )

( ) ( )

2 2

2 1 2 1
( )

2 1 2 13( ) ( )(1 )1 2 1 2

2 ( ) 1
2 1 1 2 1

2 2 ( ) ( )( )(1 ) 1 2 2 1

dp

CoshNh CoshNh CoshNh CoshNh
dx SinhNh SinhNh N h h

N SinhN h h SinhN h hN

CoshNh CoshNh CoshNh Coshk h hGm

N SinhN h h k Sinhk h hk N









− −
+ + + − − −

− −+

− − −
− +

− −− +

 
 
 
 

 
 
 
 

 

From Equation 3.7, 

( )( )( )

( ) ( )
( )

( )

3
(1 ) ( )

1 1 2

( ) (
1 2 1 2 1 2 1

1 ( )2 1 1 2
1 2 1 2 1

1 2 1

2

N CoshNh SinhN h hdp

dx SinhN h h CoshNh SinhNh SinhNh N h h

CoshNh SinhN h h
CoshNh CoshNh CoshNh SinhNh SinhNh

SinhNh CoshNh CoshNh

SinhNh
q





+ −
=

− − − − +

− − +
− − −

−

−
−

 
 
 
 
 
 
 
 
  
  

  
  

( ) ( )

( )( ) ( )

( )

( )

2
1 1 2 1
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1 1 1 2

2
1 2 1 2 1 2 1 1

( ) ( )
1 1 2 1 2

2

2 1
2 2( ) (1 )1 2

SinhNh Sinh Nh SinhNh SinhNh

N CoshNh N CoshNh SinhN h h

SinhNh SinhNh SinhNh CoshNh CoshNh CoshNh CoshNh CoshNh

N CoshNh SinhN h h N SinhN h h

k S

CoshNh CoshNh Gm

NSinhN h h k N





−
+ +

−

− − −
− −

− −

−
+

− + −

( )

( ) )

( )
2 1 1 2 1

( 1 ( )
2 1 1 2

( ) ( )
1 2 2 1

inhk h h CoshNh CoshNh CoshNh

Coshk h h N SinhN h h

N k SinhN h h Sinhk h h

− −

+ − − −

− −

 
 
 
 
 
 
 
 
 
 
 
  

  
  
  
  
  
  
  

 

The dimensionless equation of the pressure rise is given by 

1
.

0

dp
p dx

dx
 =   (3.8) 

The volumetric flow rate at a given instant of the fixed frame is provided by, 

( )
'

,
'

2 ''' ' '( , ) , ,

1

h

dyQ x t tU X Y
h

=   (3.9) 

where '
2

h  and '
1

h are mappings of 'X and 'Y respectively. 

In wave frame the rate of flow is given by, 
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( )
'

'

1 ''' ', .

2

h

dyq yu x
h

=   (3.10) 

Utilising the transformations into the Equations 3.9 and 3.10, the entity among Q and q can be written 

as  

' '
2 1

( ) .Q c h h q= − +  (3.11) 

The mean time flow for a period T at a constant position 'X is given by  

1
.

0

T
Q Q dt

T
=   (3.12) 

Using Equation 3.12 in Equation3.11 the flow rate Q is, 

' '
1

( ) .
1 2 2 1

0

T
Q qdt c h h q cd cd

T
= + − = + +  (3.13) 

The dimensionless form of Equation 3.13 is given by  

1,F d = + +  (3.14) 

where '
/

1
Q d c = and / ,

1
F q d c=  such that  

1 2

1
.

2

( )

h

F
h

u dy u h h=  = −  (3.15) 

Solving Equation 2.13, with the boundary conditions in Equation2.14 and 2.15, we can obtain  

,
B

C ACoshky Sinhky
k

= +  

where 

1

( )
2 1

1

( )
2 1

'

Sinhkh
A

Sinhk h h

k Coshkh
B

Sinhk h h

k ScR

−
=

−

=
−

=

 

This may be simplified as  

( )
1

.
( )

2 1

Sinhk y h
C

Sinhk h h

−
=

−
 (3.16) 

The expression determining velocity profile from stream function is given by, 
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.,u v
y x

  
= = −
 

 (3.17) 

We know that ˆ ˆ
x xu i v j = + , and 0vx = for the flow problem, so we get the desired equation of the 

streamlines of the flow as 

( )1 2
(1 )

( )1 1 .
2 21 ( )

2 1

x N
dp

C SinhNy C CoshNy SinhNy
N dx

kCoshk y hGm

Sinhk h hk N

u
u

x









 + +
+

−
−

+ −−

   
= = =   

   

  
  
  

 (3.18) 

4. Interpretation of Results 

This section gives numerical simulations with the aid of graphs. The numerical simulations are 

performed using the computational software Mathematica. 

4.1 Pressure Distribution 

Figure 2 illustrates the behaviour of numerous embedding parameters on pressure gradient for a 

given wavelength versus x . The channel walls /dp dx  are relatively small, thus helps the fluid in this 

region flow easily. The middle of the channel /dp dx is large, so relatively much pressure needed for the 

fluid to pass inside the region. Figure 2a depicts the variation in pressure gradient due to a change in 

Hartmann number M . Magnetic field parameter M raises the value of pressure gradient; fluid flow 

requires more pressure gradient to pass through the region. The effect of a fluid parameter   can be 

seen in Figure 2b. A rise in fluid parameter  decreases the pressure gradient. 

Similarly, the impact of the phase difference can be seen in Figure 2c. In the narrow part of the 

channel, there is a decrease in pressure gradient when there is a rise in phase difference and a rise in 

pressure in the broader part of the channel when we decrease phase difference. Figure 2d and 2e 

Depict the magnitude of pressure gradient decreases by increasing the Schmidt number Sc  and 

chemical reaction parameter 'R . 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 2. The figure represents variations of /dp dx versus x  for ', , , RM   respectively. 

 

In Figure 2a, when '0.1, 0.5, 0.6, 1, 0.7, , , , 2, 3Ra b d Sc M   = = = = = = = .  

In Figure 2b when '0.1, 0.5, 0.6, 1, 0.7, 2, 3Ra b d Sc M= = = = = = = .  

In Figure 2c when '0.1, 0.5, 1, 0.7, 2, 3Ra b d Sc M= = = = = = . 

In Figure 2d when 0.1, 0.5, 1, 0.7, 0.6, 3, 3a b d Sc M = = = = = = = .  

In Figure 2e when 0.5, 0.1, 1, .b a d= = =  

4.2 Flow Rate Distribution 

Figure 3 depicts the change in pressure rise P versus flow rate Q  for various parameters

', , , , ,RM d Sc  . Figure 3a Illustrates a non-linear relation between the pressure rise P  and flow rate

Q . It is observed that higher the value of   there is a drastic decrease in pressure rise, leading to a 

decline in the peristaltic pumping rate. Similar behaviour can be seen for the magnetic field M  in 

Figure 3b below. Figure 3c Illustrates that pressure rise P slowly decreases with an increase in d . But 

in Figure 3d, we can observe that rise in values of  suddenly enhances the pressure rise. In Figure 3e 

and 3f, it is noted that higher the numbers of there is a linearly increase in pressure rise, leading to rise 

in the peristaltic pumping rate.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3. The figure represents variations in pressure rise P versus Q  for different values of

', , , , ,RM d Sc  of respectively. 

In Figure 3a when '0.1, 0.5, 2, 0.5, 1.5, 3, 2Ra b d Sc M= = = = = = = . 

In Figure 3b when '0.1, 0.5, 2, 0.5, 1, 1.5, 2Ra b d Sc = = = = = = = .  

In Figure 3c when '0.1, 0.5, 0.5, 1, 1.5, 2, 3Ra b Sc M = = = = = = = .  

In Figure 3d when '0.1, 0.5, 2, 2, 0.3, 1, 2Ra b d Sc M= = = = = = = .  

In Figure 3e when 0.1, 0.5, 2, 0.7, 2, 1.5, 3a b d Sc M = = = = = = =  

In Figure 3f when '0.1, 0.5, 2, 0.7, 2, 1.5, 3Ra b d M = = = = = = =  
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4.3 Concentration Profile 

Figure 4 illustrates the concentration profile for numerous parameters ',, , , ,Ra b d Sc , respectively. In 

Figure 4a, we can observe that enhance in Schmidt number Sc gradually minimizes the concentration 

profile. Figure 4b Shows the same behaviour as the reaction parameter slowly declines the 

concentration profile. In Figure 4c, we observed that the amplitude value a  diminishes the 

concentration field. Similarly, in Figure 4d, we notice that the parameter b suddenly decreases the 

concentration field. Figure 4e Illustrates those higher parameter values d reduces the concentration 

profile. But in Figure 4f, we can see that higher phase difference values drastically enhance the 

concentration profile. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. The figure represents variations of C versus y  for ', , , , ,Sc a b dR  respectively. 
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In Figure 4a when '0.3, 0.1, 1, 0.4, 0.4a b d R= = = = = .  

In Figure 4b when 0.3, 0.1, 1, 0.4, 0.1a b d Sc= = = = = .  

In Figure 4c when 0.1, 1, 0.5, 1.5, ' 0.5b d Sc R= = = = = .  

In Figure 4d when '
0.1, 1, 0.5, 1.5, 2Ra d Sc= = = = = .  

In Figure 4e when '
0.1, 0.5, 0.3, 0.5, 1, x 0.1a b Sc R= = = = = =  

In Figure 4f when '
0.1, 0.3, d 1, 1.5, 1Ra b Sc= = = = =  

4.4 Trapping Phenomena 

The streamlines are the imaginary lines in a fluid flow such that tangent at any position on a 

streamline will provide us with the velocity at that point. These lines will exhibit the direction in which 

a zero-rest mass fluid element will travel at any instant of time. The accumulation of bolus of the fluid 

in the closed streamlines inside a wave frame is called trapping. The nature of the streamlines against 

fluid parameter 0.1, 0.5,1.0, 5.0 = , respectively, as shown in Figures 5. The fluid's viscosity relies on 

the parameter  , and it comes out to be highly viscous and turns thicker as we enhance the value of 

the Casson fluid parameter. Moreover, with the raising the values of the fluid parameter, the bolus will 

drastically shift to the middle of the channel, and the coupling streamlines sight below the wall. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. The figure represents streamlines against various values of  in wave frame with 

1.3, 0.2, 2, 0.5.Q a M = = = =  
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5. Conclusion 

The mass transfer and MHD analysis on peristaltic motion of Casson fluid model embedded with 

porous medium and asymmetric geometry were considered. The influence of various pertinent 

governing flow parameters on the fluid model has been analysed with graphs. The concluding points of 

the present study are stated below. 

1. At the centre of the channel, the amount of pressure gradient enhances when there is a magnetic 

field. But pressure gradient diminishes with an ascendance in parameters like 

'0.1, 0.3, d 1, 1.5, 1.a b Sc R= = = = =  

2. It is noted that pressure rise decreases with the increase in ', , ,M ScR and d . However, it increases 

with an increase in phase difference. 

3. The concentration profile reduces when there is a rise in parameters like ', , ,a b d R and Sc . However, 

it increases when we increase the value  . 

4. It is equal in value to observe that increase in the Schmidt parameter Sc  and chemical reaction term

'R  decreases the concentration profile. 

5. We observe a reduction in both pressure rise and pressure gradient when we enhance values of 

Schmidt number Sc  and reaction parameter 'R . 
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