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1. Introduction

Modular tensor categories arise in several diverse areas such as quantum group

theory, vertex operator algebras, and rational conformal field theory. Let G be a fi-

nite group, let D(G) denote the Drinfeld double of G, a quasi-triangular semisimple

Hopf algebra, and let Rep(D(G)) denote the category of finite-dimensional complex

representations of D(G). The category Rep(D(G)) is a modular tensor category

[1], and it is perhaps the most accessible constructions of a modular tensor cate-

gory. As such, it is desirable to have a thorough understanding of this category.

In this paper, we make a contribution towards this goal. The category Rep(D(G))

is equivalent to the G-equivariantization of VecG, and it is also equivalent to the

center Z(VecG) of the tensor category VecG of finite-dimensional G-graded complex

vector spaces.

In the papers [3,4], R. Dijkgraaf, V. Pasquier, and P. Roche introduce a quasi-

triangular semisimple quasi-Hopf algebra Dω(G), often called the twisted Drinfeld

double of G, where ω is a 3-cocycle on G. When ω = 1 this quasi-Hopf algebra coin-

cides with the Drinfeld double D(G) considered above. The category Rep(Dω(G))

of finite-dimensional complex representations of Dω(G) is a modular tensor cate-

gory. Analogous to the ω = 1 case, the category Rep(Dω(G)) is equivalent to the

G-equivariantization of VecωG, and it is also equivalent to the center Z(VecωG) of the

tensor category VecωG of finite-dimensional G-graded complex vector spaces with

associativity constraint defined using ω. Every braided group-theoretical fusion
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category is equivalent to a full fusion subcategory of some Rep(Dω(G)), and all

such subcategories were parametrized in the paper [12].

This paper contains two main results, stated below. The first gives a criterion for

a simple object of Rep(Dω(G)) to be a generator, and the second gives a description

of the adjoint category of Rep(Dω(G)).

Theorem. Let G be a finite group, let ω be a normalized 3-cocycle on G, and let

(a, χ) be a simple object of Rep(Dω(G)). Then (a, χ) is a generator of Rep(Dω(G))

if and only if the following two conditions hold.

(a) The normal closure of a in G is equal to G.

(b) For all b ∈ Z(G) and χ′ ∈ Irrβb
(G), if χ(b)χ′(a) = degχdegχ′ (equiva-

lently, (a, χ) and (b, χ′) centralize each other), then b = e and χ′ = 1.

Theorem. Let G be a finite group, and let ω be a normalized 3-cocycle on G. Then

Rep(Dω(G))pt = S(Zω(G), [G,G], B)

and

Rep(Dω(G))ad = S([G,G], Zω(G), (Bop)−1)

where B : Zω(G)× [G,G]→ C× is the G-invariant ω-bicharacter defined in Lemma

4.4.

Organization:

In Section 2, we recall basic facts about the modular tensor category Rep(Dω(G)).

In Section 3, we prove the first theorem above, and in Section 4, we prove the sec-

ond theorem.

Convention and notation:

Throughout this paper we work over the field C of complex numbers. The

multiplicative group of nonzero complex numbers is denoted C×. Let G be a finite

group. The identity element of G is denoted e, and the center of G is denoted Z(G).

For any character χ of G, the degree of χ is denoted degχ, the complex conjugate

of χ is denoted χ, and the kernel of χ is denoted Kerχ. Let µ be a 2-cocycle on G

with coefficients in C×. The set of irreducible µ-characters of G is denoted Irrµ(G).

When µ = 1, we write Irr(G) instead of Irr1(G). Finally, the coboundary operator

on the space of cochains of G with coefficients in C× is denoted d.
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2. Drinfeld doubles of finite groups

Let G be a finite group. As stated earlier, the category Rep(D(G)) of finite-

dimensional representations of the Drinfeld double D(G) is a modular tensor cat-

egory [1]. The simple objects of Rep(D(G)) are in bijection with the set of pairs

(a, χ), where a is a representative of a conjugacy class of G, and χ is an irreducible

character of the centralizer CG(a) of a in G. The S-matrix and the T -matrix of

Rep(D(G)) are square matrices indexed by the simple objects of Rep(D(G)), and

are given by the following formulas [1,2].

S(a,χ),(b,χ′) =
1

|CG(a)||CG(b)|
∑

g∈G(a,b)

χ(gbg−1)χ′(g−1ag),

T(a,χ),(b,χ′) = δa,bδχ,χ′
χ(a)

degχ
,

where G(a, b) denotes the set {g ∈ G | agbg−1 = gbg−1a}.
Let ω : G×G×G→ C× be a normalized 3-cocycle. Then

ω(b, c, d)ω(a, bc, d)ω(a, b, c) = ω(ab, c, d)ω(a, b, cd)

for all a, b, c, d ∈ G, and ω(a, b, c) = 1 if a, b, or c is the identity element. Replacing

ω by a cohomologous 3-cocycle, if necessary, we may assume that the values of ω

are roots of unity.

For each a ∈ G, define a function βa : G×G→ C× by

βa(x, y) =
ω(a, x, y)ω(x, y, y−1x−1axy)

ω(x, x−1ax, y)
. (1)

The 3-cocycle condition on ω ensures that the relation

βx−1ax(y, z)βa(x, yz) = βa(xy, z)βa(x, y)

holds for all a, x, y, z ∈ G. Therefore, for any a ∈ G, the restriction of βa to the

centralizer CG(a) of a in G is a normalized 2-cocycle, that is,

βa(y, z)βa(x, yz) = βa(xy, z)βa(x, y)

for all x, y, z ∈ CG(a), and βa(x, y) = 1 if x or y is the identity element.

For each a ∈ G, define a function γa : G×G→ C× by

γa(x, y) =
ω(x, y, a)ω(a, a−1xa, a−1ya)

ω(x, a, a−1ya)
.

Direct calculations using the 3-cocycle condition of ω show that

βa(x, y)βb(x, y)

βab(x, y)
=

γxy(a, b)

γx(a, b)γy(x−1ax, x−1bx)
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for all a, b, x, y ∈ G. For all a ∈ G, the functions βa and γa are equal when restricted

to CG(a). Therefore, we have

βa(x, y)βb(x, y)

βab(x, y)
=

βxy(a, b)

βx(a, b)βy(a, b)
(2)

for all a, b ∈ Z(G), and x, y ∈ G.

As stated earlier, the category Rep(Dω(G)) of finite-dimensional representations

of the twisted Drinfeld double Dω(G) is a modular tensor category. The simple

objects of Rep(Dω(G)) are in bijection with the set of pairs (a, χ), where a is a

representative of a conjugacy class of G, and χ is an irreducible βa-character of the

centralizer CG(a) of a in G. The S-matrix and the T -matrix of Rep(Dω(G)) are

square matrices indexed by the simple objects of Rep(D(G)), and are given by the

following formulas [2].

S(a,χ),(b,χ′)

=
∑

g∈C`G(a)
g′∈C`G(b)∩CG(g)

(
βa(x, g′)βa(xg′, x−1)βb(y, g)βb(yg, y−1)

βa(x, x−1)βb(y, y−1)

)
χ(xg′x−1)χ′(ygy−1)

T(a,χ),(b,χ′) = δa,bδχ,χ′
χ(a)

degχ
,

where g = x−1ax, g′ = y−1by, and C`G(a) denotes the conjugacy class of a in G.

3. Tensor generators

In this section, we give a criterion for a simple object (a, χ) of Rep(Dω(G)) to

be a tensor generator, that is, the full fusion subcategory given by the intersection

of all fusion subcategories of Rep(Dω(G)) that contain (a, χ) is Rep(Dω(G)).

Let C be a modular tensor category with braiding c. Two objects X,Y ∈ C
centralize each other if

cY,X ◦ cX,Y = idX⊗Y .

Let D be a full (not necessarily tensor) subcategory of C. In the paper [10], M.

Müger defined the centralizer of D in C as the full subcategory of C, denoted D′,
consisting of all objects in C that centralize every object in D. That is,

Obj(D′) = {X ∈ Obj(C) | cY,X ◦ cX,Y = idX⊗Y for all Y ∈ Obj(D)} .

It was shown in [10] that D′ is a fusion subcategory, and that if D is a fusion

subcategory, then D′′ = D; we refer to this result as the double centralizer theorem.

We recall the following result from [11].
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Proposition 3.1. Let G be a finite group, and let (a, χ) and (b, χ′) be simple

objects of Rep(D(G)). Then (a, χ) and (b, χ′) centralize each other if and only if

the following two conditions hold.

(a) The conjugacy classes of a and b commute elementwise.

(b) For all g ∈ G, χ(gbg−1)χ′(g−1ag) = degχdegχ′.

Below, we record a special case of the result above.

Proposition 3.2. Let G be a finite group, and let (a, χ) and (b, χ′) be simple objects

of Rep(D(G)), where b lies in the center of G, so that χ′ ∈ Irr(G). Then (a, χ) and

(b, χ′) centralize each other if and only if the following holds.

(i) χ(b)χ′(a) = degχdegχ′.

If b = e or χ = 1, then the condition above is equivalent to the condition

(i′) a ∈ Kerχ′.

Proof. If b = e or χ = 1, then the equality in condition (i) is equivalent to the

equality χ′(a) = degχ′, which is equivalent to condition (i′).

Suppose that (a, χ) and (b, χ′) centralize each other. Putting g = e in condition

(b) of Proposition 3.1, we get χ(b)χ′(a) = degχdegχ′, which is condition (i).

Conversely, suppose that condition (i) holds. Since b lies in the center of G, we

know that CG(b) = G and χ′ is a character of G. Condition (a) of Proposition 3.1

clearly holds. For all g ∈ G, we have χ(gbg−1)χ′(g−1ag) = χ(b)χ′(a), since b is

in the center of G and χ′ is a class function on G. By supposition, χ(b)χ′(a) =

degχdegχ′, and so condition (b) of Proposition 3.1 holds. Hence (a, χ) and (b, χ′)

centralize each other. �

Theorem 3.3. Let G be a finite group, and let (a, χ) be a simple object of Rep(D(G)).

Then (a, χ) is a generator of Rep(D(G)) if and only if the following two conditions

hold.

(a) The normal closure of a in G is equal to G.

(b) For all b ∈ Z(G) and χ′ ∈ Irr(G), if χ(b)χ′(a) = degχdegχ′ (equivalently,

(a, χ) and (b, χ′) centralize each other), then b = e and χ′ = 1.

Proof. By the double centralizer theorem, the simple object (a, χ) is a generator

of Rep(D(G)) if and only if the only simple object that centralizes (a, χ) is the

trivial simple object (e, 1).

Suppose that conditions (a) and (b) in the statement of the theorem hold, and

let (b, χ′) be a simple object of Rep(D(G)) that centralizes (a, χ). By Proposition

3.1, the conjugacy classes of a and b commute elementwise; combining this fact with
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condition (a), we deduce that b lies in the center of G, and so χ′ lies in Irr(G). By

Proposition 3.2, we must have χ(b)χ′(a) = degχdegχ′. Applying condition (b),

we get b = e and χ′ = 1, and it follows that (a, χ) is a generator of Rep(D(G)).

Conversely, suppose that (a, χ) is a generator of Rep(D(G)). Then the only

simple object that centralizes (a, χ) is the trivial simple object (e, 1). Let b ∈ Z(G),

let χ′ ∈ Irr(G), and suppose that χ(b)χ′(a) = degχdegχ′. Then the simple objects

(a, χ) and (b, χ′) centralize each other, by Proposition 3.2. Since the only simple

object that centralizes (a, χ) is the trivial simple object (e, 1), it follows that b = e

and χ′ = 1, showing that condition (b) holds.

To see that condition (a) holds, let H denote the normal closure of a in G,

and suppose that H 6= G. By Proposition 3.2, for all χ′ ∈ Irr(G), the simple

objects (a, χ) and (e, χ′) centralize each other if and only if a ∈ Kerχ′, equivalently,

H ≤ Kerχ′. Since H is proper in G, the action of G on the coset space G/H is not

trivial, and so the corresponding representation contains a nontrivial irreducible

constituent; let χ′ denote the character of this constituent. Since H is normal in

G, it acts trivially on G/H, and so H ≤ Kerχ′. It follows that (a, χ) and (e, χ′)

centralize each other, a contradiction. Hence H = G, showing that condition (a)

holds. �

Corollary 3.4. Let G be a finite group with trivial center, and let (a, χ) be a simple

object of Rep(D(G)). Then (a, χ) is a generator of Rep(D(G)) if and only if the

normal closure of a in G is equal to G.

Proof. Suppose that the normal closure of a in G is equal to G. To see that

condition (b) of Theorem 3.3 holds, let χ′ ∈ Irr(G), and suppose that the simple

objects (a, χ) and (e, χ′) centralize each other. By Proposition 3.2, the element a

belongs to Kerχ′. Since Kerχ′ is a normal subgroup of G, the supposition forces

Kerχ′ = G, equivalently, χ′ = 1, and so condition (b) of Theorem 3.3 holds. Hence

(a, χ) is a generator of Rep(D(G)).

The converse clearly holds, by Theorem 3.3 �

Next, we address the twisted case. Of course, the untwisted case above is a special

case of the twisted case below, but we find it instructive to treat the untwisted case

separately, as in [11] and [12]. We recall the following result from [11].

Proposition 3.5. Let G be a finite group, let ω be a normalized 3-cocycle on G,

and let (a, χ) and (b, χ′) be simple objects of Rep(Dω(G)). Then (a, χ) and (b, χ′)

centralize each other if and only if the following two conditions hold.

(a) The conjugacy classes of a and b commute elementwise.
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(b) For all x, y ∈ G,
βa(x,y

−1by)βa(xy
−1by,x−1)βb(y,x

−1ax)βb(yx
−1ax,y−1)

βa(x,x−1)βb(y,y−1) χ(xy−1byx−1)χ′(yx−1axy−1)

= degχdegχ′.

We will need the following result from [12].

Lemma 3.6. Let G be a finite group, let ω be a normalized 3-cocycle on G, and

let a, b, x ∈ G. If ab = ba, then

βa(x, x−1)

βa(x, b)βa(xb, x−1)
=

βb(x
−1, x)

βb(x−1, a)βb(x−1a, x)
.

Lemma 3.7. Let G be a finite group, and let µ be a normalized 2-cocycle on G.

(a) For all a, x, y ∈ G,

µ(y, x−1ax)µ(yx−1ax, y−1)µ(xy−1, yx−1axy−1)

µ(y, y−1)µ(a, xy−1)
=
µ(x, x−1ax)

µ(a, x)
.

(b) For all a, x ∈ G,

µ(x, x−1)

µ(x−1, a)µ(x−1a, x)
=
µ(x, x−1a)

µ(x−1a, x)
=
µ(x, x−1ax)

µ(a, x)
.

Proof. That µ is a normalized 2-cocyle means that

µ(y, z)µ(x, yz) = µ(xy, z)µ(x, y)

for all x, y, z ∈ G, and µ(x, y) = 1 if x or y is the identity element. Applying the

2-cocycle condition of µ to the triple (xy−1, yx−1ax, y−1) gives

µ(yx−1ax, y−1)µ(xy−1, yx−1axy−1) = µ(ax, y−1)µ(xy−1, yx−1ax).Making this sub-

stitution in the expression

µ(y, x−1ax)µ(yx−1ax, y−1)µ(xy−1, yx−1axy−1)

µ(y, y−1)µ(a, xy−1)

yields
µ(y, x−1ax)µ(ax, y−1)µ(xy−1, yx−1ax)

µ(y, y−1)µ(a, xy−1)
.

Applying the 2-cocycle condition of µ to the triple (a, x, y−1) gives µ(ax,y−1)
µ(a,xy−1) =

µ(x,y−1)
µ(a,x) . Making this substitution in the expression above yields

µ(y, x−1ax)µ(xy−1, yx−1ax)µ(x, y−1)

µ(y, y−1)µ(a, x)
.

Applying the 2-cocycle condition of µ to the triple (y, y−1, yx−1ax) gives µ(y,x−1ax)
µ(y,y−1) =

1
µ(y−1,yx−1ax) . Making this substitution in the expression above yields

µ(xy−1, yx−1ax)µ(x, y−1)

µ(a, x)µ(y−1, yx−1ax)
.
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Applying the 2-cocycle condition of µ to the triple (x, y−1, yx−1ax) gives
µ(xy−1,yx−1ax)µ(x,y−1)

µ(y−1,yx−1ax) = µ(x, x−1ax). Making this substitution in the expression

above yields

µ(x, x−1ax)

µ(a, x)
,

establishing (a).

Applying the 2-cocycle condition of µ to the triple (x, x−1, a) gives µ(x,x−1)
µ(x−1,a) =

µ(x, x−1a). Making this substitution in the expression

µ(x, x−1)

µ(x−1, a)µ(x−1a, x)

yields

µ(x, x−1a)

µ(x−1a, x)
,

Applying the 2-cocycle condition of µ to the triple (x, x−1a, x) gives µ(x,x−1a)
µ(x−1a,x) =

µ(x,x−1ax)
µ(a,x) , and so the expression above is equal to

µ(x, x−1ax)

µ(a, x)
,

establishing (b). �

Proposition 3.8. Let G be a finite group, let ω be a normalized 3-cocycle on G,

and let (a, χ) and (b, χ′) be simple objects of Rep(Dω(G)), where b lies in the center

of G, so that χ′ ∈ Irrβb
(G). Then (a, χ) and (b, χ′) centralize each other if and only

if the following holds.

(i) χ(b)χ′(a) = degχdegχ′.

If b = e, then the condition above is equivalent to the condition

(i′) a ∈ Kerχ′.

Proof. If b = e, then χ′ is an ordinary character, and the equality in condition (i)

is equivalent to the equality χ′(a) = degχ′, which is equivalent to condition (i′).

Suppose that (a, χ) and (b, χ′) centralize each other. Putting x = y = e in

condition (b) of Proposition 3.5, we get χ(b)χ′(a) = degχdegχ′, which is condition

(i).

Conversely, suppose that condition (i) holds. Since b lies in the center of G,

we know that CG(b) = G, βb is a 2-cocycle on G, and χ′ is a βb-character of G.

Condition (a) of Proposition 3.5 clearly holds. It remains to show that condition
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(b) of Proposition 3.5 holds. Let x, y ∈ G. Since b lies in the center of G, the

left-hand side of condition (b) of Proposition 3.5 reduces to

βa(x, b)βa(xb, x−1)βb(y, x
−1ax)βb(yx

−1ax, y−1)

βa(x, x−1)βb(y, y−1)
χ(b)χ′(yx−1axy−1). (3)

Let ρ : G → GL(V ) be a projective βb-representation of G whose character is χ′,

and let z ∈ G. Then

ρ(a)ρ(z) = βb(a, z)ρ(az) = βb(a, z)ρ(z(z−1az)) =
βb(a, z)

βb(z, z−1az)
ρ(z)ρ(z−1az),

and so

ρ(z−1az) =
βb(z, z

−1az)

βb(a, z)
[ρ(z)]−1ρ(a)ρ(z).

Taking the trace of both sides, we get

χ′(z−1az) =
βb(z, z

−1az)

βb(a, z)
χ′(a).

Putting z = xy−1 in the equation above, we get

χ′(yx−1axy−1) =
βb(xy

−1, yx−1axy−1)

βb(a, xy−1)
χ′(a).

Substituting the expression above in (3), we get

βa(x, b)βa(xb, x−1)βb(y, x
−1ax)βb(yx

−1ax, y−1)βb(xy
−1, yx−1axy−1)

βa(x, x−1)βb(y, y−1)βb(a, xy−1)
χ(b)χ′(a).

Using Lemma 3.6, we see that the expression above is equal to

βb(x
−1, a)βb(x

−1a, x)βb(y, x
−1ax)βb(yx

−1ax, y−1)βb(xy
−1, yx−1axy−1)

βb(x−1, x)βb(y, y−1)βb(a, xy−1)
χ(b)χ′(a).

Applying Lemma 3.7 with µ = βb, and noting that βb(x
−1, x) = βb(x, x

−1), we

see that the expression above reduces to χ(b)χ′(a). By supposition, χ(b)χ′(a) =

degχdegχ′, and so condition (b) of Proposition 3.5 holds. Hence (a, χ) and (b, χ′)

centralize each other. �

Theorem 3.9. Let G be a finite group, let ω be a normalized 3-cocycle on G, and let

(a, χ) be a simple object of Rep(Dω(G)). Then (a, χ) is a generator of Rep(Dω(G))

if and only if the following two conditions hold.

(a) The normal closure of a in G is equal to G.

(b) For all b ∈ Z(G) and χ′ ∈ Irrβb
(G), if χ(b)χ′(a) = degχdegχ′ (equiva-

lently, (a, χ) and (b, χ′) centralize each other), then b = e and χ′ = 1.
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Proof. The proof to be given is almost identical to the one given for the untwisted

case. By the double centralizer theorem, the simple object (a, χ) is a generator

of Rep(Dω(G)) if and only if the only simple object that centralizes (a, χ) is the

trivial simple object (e, 1).

Suppose that conditions (a) and (b) in the statement of the theorem hold, and

let (b, χ′) be a simple object of Rep(Dω(G)) that centralizes (a, χ). By Proposition

3.5, the conjugacy classes of a and b commute elementwise; combining this fact with

condition (a), we deduce that b lies in the center of G, and so χ′ lies in Irrβb
(G). By

Proposition 3.8, we must have χ(b)χ′(a) = degχdegχ′. Applying condition (b),

we get b = e and χ′ = 1, and it follows that (a, χ) is a generator of Rep(Dω(G)).

Conversely, suppose that (a, χ) is a generator of Rep(Dω(G)). Then the only

simple object that centralizes (a, χ) is the trivial simple object (e, 1). Let b ∈ Z(G),

let χ′ ∈ Irrβb
(G), and suppose that χ(b)χ′(a) = degχdegχ′. Then the simple

objects (a, χ) and (b, χ′) centralize each other, by Proposition 3.8. Since the only

simple object that centralizes (a, χ) is the trivial simple object (e, 1), it follows that

b = e and χ′ = 1, showing that condition (b) holds.

To see that condition (a) holds, let H denote the normal closure of a in G,

and suppose that H 6= G. By Proposition 3.8, for all χ′ ∈ Irr(G), the simple

objects (a, χ) and (e, χ′) centralize each other if and only if a ∈ Kerχ′, equivalently,

H ≤ Kerχ′. Since H is proper in G, the action of G on the coset space G/H is not

trivial, and so the corresponding representation contains a nontrivial irreducible

constituent; let χ′ denote the character of this constituent. Since H is normal in

G, it acts trivially on G/H, and so H ≤ Kerχ′. It follows that (a, χ) and (e, χ′)

centralize each other, a contradiction. Hence H = G, showing that condition (a)

holds. �

Corollary 3.10. Let G be a finite group with trivial center, let ω be a normalized

3-cocycle on G, and let (a, χ) be a simple object of Rep(Dω(G)). Then (a, χ) is a

generator of Rep(Dω(G)) if and only if the normal closure of a in G is equal to G.

Example 3.11. Let G be a finite group, and let ω be a normalized 3-cocycle on G.

If G has trivial center, and a is an element of G whose normal closure is G, then,

by Corollary 3.10, for every irreducible βa-character of CG(a), the simple object

(a, χ) is a generator of Rep(Dω(G)). We give three related examples below.

(a) Take G = Sn, the symmetric group on n letters, with n ≥ 3. Then Sn has

trivial center, and the normal closure of the transposition σ = (12) is Sn.

Therefore, for every irreducible βσ-character of CSn(σ), the simple object

(σ, χ) is a generator of Rep(Dω(Sn)).
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(b) Let n ≥ 3 be an odd integer, and take G = Dihn, the dihedral group of

order 2n generated by the elements a and b subject to the relations an = e,

b2 = e, and ba = a−1b. Then Dihn has trivial center, and the normal closure

of the element b is Dihn. Therefore, for every irreducible βb-character of

CDihn
(b) = {e, b}, the simple object (b, χ) is a generator of Rep(Dω(Dihn)).

Note that, since the Schur multiplier of a cyclic group is trivial, the 2-cocycle

βb is cohomologically trivial, and so χ may be identified with an ordinary

character.

(c) Suppose that G is nonabelian and simple. Then G has trivial center, and

the normal closure of every nontrivial element a is G. Therefore, for every

nontrivial element a, and for every irreducible βa-character of CG(a), the

simple object (a, χ) is a generator of Rep(Dω(G)).

Example 3.12. Let p be an odd prime, and consider the special linear group

SL(2, p) consisting of all 2 × 2 matrices of determinant 1 whose entries belong to

the field of p elements. This group has order p3 − p2. The matrices

X =

(
0 −1

1 0

)
and Y =

(
1 1

0 1

)
generate the group SL(2, p). The center of SL(2, p) is a subgroup of order 2, con-

sisting of the matrices ± ( 1 0
0 1 ).

The character table of SL(2, p) was first obtained by F. G. Frobenius. Later, I.

Schur [13] and independently H. Jordan [9] obtained the characters of the special

linear groups over arbitrary finite fields [8]. We use the exposition given in [5]. The

group SL(2, p) has exactly p + 4 distinct irreducible characters. For the purpose

of this example, we will only need a portion of the character table of SL(2, p). Set

ε = (−1)(p−1)/2. The table below gives the values of the irreducible characters

evaluated at the identity matrix I and at the matrix Y , omitting identical columns.

I 1 p p+ 1 p− 1 p+1
2

p+1
2

p−1
2

p−1
2

Y 1 0 1 −1
1+
√
εp

2

1−√εp
2

−1+√εp
2

−1−√εp
2

It is easily verified that X = Y −1(XY −1X−1)Y −1, and since the matrices X

and Y generate SL(2, p), it follows that the normal closure of Y is SL(2, p).

The conjugacy class of Y contains (p2 − 1)/2 elements, and so the centralizer

of Y in SL(2, p) has order 2p. The matrix Y has order p, so the matrix −Y has

order 2p, and it follows that the centralizer of Y in SL(2, p) is a cyclic group with

generator −Y .
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Let ζ be a primitive 2p-th root of unity. For each 1 ≤ i ≤ 2p, let χi : 〈−Y 〉 → C×

denote the group homomorphism that sends −Y to ζi. Then the χi constitute all

of the irreducible characters of the centralizer of Y in SL(2, p). We have

χi(−I) = χi((−Y )p)) = ζpi = (−1)i.

Suppose that i is odd. We will show that the simple object (Y, χi) is a generator

of Rep(D(SL(2, p))). We have shown above that condition (a) of Theorem 3.3. To

see that condition (b) of Theorem 3.3 holds, let χ′ be an irreducible character of

SL(2, p). Suppose that the simple objects (Y, χi) and (I, χ′) centralize each other.

Then Y ∈ Kerχ′, by Proposition 3.2. Since the normal closure of Y is SL(2, p), it

follows that χ′ = 1. We have

χi(−I)χ′(Y ) = −χ′(Y )

and

degχi degχ′ = degχ′.

Inspecting the partial character table given above, we see that −χ′(Y ) 6= degχ′,

and so the simple objects (Y, χi) and (−I, χ′) do not centralize each other, by

Proposition 3.2. It follows that condition (b) of Theorem 3.3 also holds, proving

that (Y, χi) is a generator of Rep(D(SL(2, p))).

Note that if i is even, then the simple objects (Y, χi) and (−I, 1) centralize each

other, and so (Y, χi) is not a generator of Rep(D(SL(2, p))), by Theorem 3.3.

4. Adjoint category

In this section, we describe the adjoint category of Rep(Dω(G)). The case where

ω = 1 was addressed in the paper [12]. For a fusion category C, adjoint category

of C, denoted Cad, is the full fusion subcategory of C generated by all subobjects of

X⊗X∗, where X runs through simple objects of C. For example, for a finite group

G, we have Rep(G)ad ∼= Rep(G/Z(G)).

Lemma 4.1. Let G be a finite group, and let ω be a normalized 3-cocycle on G.

The set

Zω(G) = {a ∈ Z(G) | βa is cohomologically trivial}

is a subgroup of Z(G).

Proof. Since βe = 1, the identity element e lies in Zω(G). Let a, b ∈ Zω(G). Define

a function τa,b : G→ C× by τa,b(x) = βx(a, b). It follows from (2) that

βab = βa · βb · dτa,b,
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showing that βab and βaβb are cohomologous, where d denotes the coboundary

operator. Since βa and βb are cohomologically trivial, the same is true for βab, and

so ab ∈ Zω(G). �

The following definition is taken from [12].

Definition 4.2. Let G be a finite group, let ω be a normalized 3-cocycle on G,

let K and H be normal subgroups of G that commute elementwise, and let B :

K ×H → C× be a function. We say that B is an ω-bicharacter on K ×H if

(a) B(x, uv) = β−1x (u, v)B(x, u)B(x, v), and

(b) B(xy, u) = βu(x, y)B(x, u)B(y, u)

for all x, y ∈ K and u, v ∈ H. We say that B is G-invariant if

B(g−1xg, u) =
βx(g, u)βx(gu, g−1)

βx(g, g−1)
B(x, gug−1)

for all g ∈ G, x ∈ K, and u ∈ H.

We refer the reader to [12] for an explanation of the G-invariance property and

the apparent lack of symmetry. It was shown in [12] that the fusion subcategories

of Rep(Dω(G)) are parametrized by triples (K,H,B), where K and H are normal

subgroups of G that commute elementwise, and B is an ω-bicharacter on K ×H.

Given such a triple (K,H,B), denote by S(K,H,B) the full abelian subcategory

generated by simple objects (a, χ) such that a ∈ K and χ(h) = B(a, h) degχ for

all h ∈ H. It was shown in [12] that S(K,H,B) is, in fact, a fusion subcategory of

Rep(Dω(G)), and

S(K,H,B)′ = S(H,K, (Bop)−1), (4)

where (Bop)−1 : H ×K → C× is defined by (Bop)−1(h, k) = B(k, h)−1.

Lemma 4.3. Let G be a finite group, and let ω be a normalized 3-cocycle on G.

(a) For all a, g, x, y ∈ G,

βa(gxg−1, gyg−1) · βa(g, g−1)

βa(g, xy)βa(gxy, g−1)

= βg−1ag(x, y)· βa(g, g−1)

βa(g, x)βa(gx, g−1)
· βa(g, g−1)

βa(g, y)βa(gy, g−1)
.

(b) For all a, g, x, y ∈ G, if a lies in Zω(G), then

βa(gxg−1, gyg−1) = βa(x, y).
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Proof. Part (a) was proved in [12]. To see (b), let g, x, y ∈ G, and let a ∈ Zω(G).

Applying Lemma 3.7 with µ = βa to the equality in (a), we get

βa(gxg−1, gyg−1) · βa(g−1, gxy)

βa(gxy, g−1)
= βa(x, y) · βa(g−1, gx)

βa(gx, g−1)
· βa(g−1, gy)

βa(gy, g−1)
.

Since βa is cohomologically trivial, it is symmetric, and so the equation above

reduces to

βa(gxg−1, gyg−1) = βa(x, y),

proving (b). �

Lemma 4.4. Let G be a finite group, let ω be a normalized 3-cocycle on G, let

K be a subgroup of Zω(G), and let H be a subgroup of the commutator subgroup

[G,G] of G. For each a ∈ K, choose a function σa : G→ C× such that dσa = βa.

The function B : K ×H → C× defined by B(a, x) = σa(x) does not depend on the

choice of the σa, and it is a G-invariant ω-bicharacter on K ×H.

Proof. Since the restriction of any homomorphism G → C× to the subgroup H

is trivial, we deduce that for any two functions f1 : G → C× and f2 : G → C×,

if df1 = df2, then f1 and f2 are equal when restricted to H. It follows that the

function B does not depend on the choice of the σa.

The condition dσa = βa is equivalent to the first condition in the definition of

ω-character. To see that the second condition in the definition of ω-character holds,

let a, b ∈ K. Define a function τa,b : G→ C× by τa,b(x) = βx(a, b). As seen in the

proof of Lemma 4.1,

βab = βa · βb · dτa,b = d(σa · σb · τa,b).

Since we also have βab = dσab, we deduce that the functions σab and σa · σb · τa,b
are equal when restricted to H, that is, for all x ∈ H,

σab(x) = σa(x)σb(x)τa,b(x),

equivalently,

B(ab, x) = βx(a, b)B(a, x)B(b, x),

which is the second condition in the definition of ω-character.

To see that B is G-invariant, let g ∈ G, let a ∈ K, and let x ∈ H. Applying the

definition of B and Lemma 3.7 with µ = βa to the expression

βa(g, x)βa(gx, g−1)

βa(g, g−1)
B(a, gxg−1),
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we get
βa(g−1, gx)

βa(gx, g−1)
σa(gxg−1).

Since βa is cohomologically trivial, it is symmetric, and so the expression above

reduces to σa(gxg−1). By Lemma 4.3, (βa)g = βa, and so d(σa)g = (βa)g = βa =

dσa, where the superscript denotes the conjugation action. Therefore, the functions

(σa)g and σa are equal when restricted to H, and so σa(gxg−1) = σa(x) = B(a, b),

proving that B is G-invariant. �

A fusion category C is said to be pseudounitary if its categorical dimension co-

incides with its Frobenius-Perron dimension [6]. In this case, C admits a canonical

spherical structure with respect to which categorical dimensions of objects coincide

with their Frobenius-Perron dimensions [6]. The category Rep(Dω(G)) is pseu-

dounitary. In the paper [7], S. Gelaki and D. Nikshych showed that, for a pseu-

dounitary modular category C, the adjoint subcategory Cad and the full maximal

pointed subcategory Cpt are centralizers of each other, that is,

Cad = (Cpt)′. (5)

Theorem 4.5. Let G be a finite group, and let ω be a normalized 3-cocycle on G.

Then

Rep(Dω(G))pt = S(Zω(G), [G,G], B)

and

Rep(Dω(G))ad = S([G,G], Zω(G), (Bop)−1)

where B : Zω(G)× [G,G]→ C× is the G-invariant ω-bicharacter defined in Lemma

4.4.

Proof. The dimension of a simple object (a, χ) of Rep(Dω(G)) is |G|
|CG(a)| degχ,

which is equal to 1 if and only if a lies in the center of G and degχ = 1. The latter

condition implies that βa is cohomologically trivial. It follows that Rep(Dω(G))pt =

S(Zω(G), [G,G], B). Applying (4) and (5) to the previous equation, we get

Rep(Dω(G))ad = S([G,G], Zω(G), (Bop)−1). �
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