
The engineering systems are the potential damage ac-
cumulated structures at environmental and operati-

onal conditions. The most research conducted in struc-
tural health monitoring (SHM) has focused on ways of 
detecting the damages in these structures at the earlier 
possible time. The ability of monitoring accurately the 
all parts of the structure is crucial to improve both the 
reliability and safety. During the last two decades, the 
structural monitoring techniques have been focused to 
diagnose the damage by equipping the structure with 
various types of sensor. One such a monitoring proce-
dure is vibration based damage identification which is 
based upon the changes in dynamic response such as 
crack, stiffness reduction or loosed connection that alter 
the response of that structure [1-4]. There has been a 
much research on this field such as Doebling et al. pre-
sented a review for the vibration based damage detec-
tion techniques [5]. The model based SHM approach 
is generally implemented by building a physics based 
model for the system. Once the model of the system is 
established based on a physical description, it is updated 

Article History: 
Received: 2019/12/10

Hittite Journal of Science and Engineering, 2020, 7 (3) 169-179

ISSN NUMBER: 2148-4171

DOI: 10.17350/HJSE19030000186

Damage Diagnosis of Bolt Loosening via Vector 
Autoregressive - Support Vector Machines 
Mahmut Pekedis
Ege University, Department of Mechanical Engineering, Izmir, Turkey

Accepted: 2020/09/08
Online: 2020/09/30

Correspondence to: Mahmut Pekedis, 
Deparment of Mechanical Engineering, 
Ege University, İzmir, Turkey
Tel: +90 2323114970
Fax: +90 2323888562
E-Mail:mahmut.pekedis@ege.edu.tr

on measurements obtained from sensors that attached 
to structure. Although the much of vibration based 
SHM studies were concentrated on model based SHM, 
Farrar et al., have presented statistical pattern recogni-
tion paradigm for diagnosing the damage using direct 
data of vibrations [6]. This paradigm includes of four 
parts: (a) operational evaluation, (b) data acquisition, (c) 
feature extraction and reduction, (d) statistical model 
development. Recent advancements regarding of this 
technique is demonstrated in detail by Farrar and his 
coworker [7]. 

The algorithms mostly used in statistical model de-
velopment can be categorized as, (1) classification [7-8], 
(2) regression [9] and (3) outlier detection [10]. The sui-
table technique to be selected is based on the capability
of performing unsupervised or supervised learning. Su-
pervised learning depicts that, the data of undamaged
and damaged conditions are available. It is mostly used
in group classification. However, unsupervised learning 
refers the structural state where the data are available

A B S T R A C T

Developments in engineering techniques have concentrated on how to build better solu-
tions for engineering structures in order to main the integrity and to reduce the costs 

in operations. Since the last two decades, advances in computational power have allowed 
machine learning algorithms to be applied as a powerful tool in anomaly detection problems, 
classification as well as in regression analysis. The objective of this study is to detect the 
damage  using the vector auto regression model (VAR) coupled with support vector machines 
(SVM). A base excited three storey manufactured from an aluminium is investigated in a 
lab medium for various structural states. Accelerometers are fastened to the each corner of 
structure's f loor to collect time series data. Damage simulation scenarios in structure are per-
formed by releasing the bolt load which cause the nonlinear effects. Once the sensors' meas-
urements are collected for each state and organized to represent the appropriate scenario's 
label, they are processed in VAR model to obtain feature vectors such as residuals and VAR 
parameters. Then, SVM with optimal kernels are implemented on those features to classify 
and locate the damage. The results demonstrate that the VAR residuals shows a significant 
performance over VAR parameters once they are used as features in SVM technique. Moreo-
ver, it is also found that detection performance rises as the number of damage increases.
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order of the model is predicted by Akaike [17] and Bayesian 

[18] information criterions as following equations.

( ) 2ln ( ) 2AIC p L p k= − + (2)

( ) 2ln ( ) lnBIC p L p k T= − +   (3)

where k is the total parameter number of the model, 
T is the total observation points and L(p) is likelihood of 
the model. These criterions provide details about how 
the predicted parameters fit into the model. The model 
parameters and residuals are sensitive to varieties for 
structures in environmental and operational conditions. 
Each of these feature computed for various case is labeled 
with a structural case, then processed in support vector 
machines (SVM) to diagnose the damage. Briefly, SVM is 
a statistical technique which seeks the separate of classes 
[19]. Initially, the theory of SVM has been discussed for 
separation of two class data, then extended to separate of 
multi classes data  [20]. 

Consider the training dataset contains N input vec-
tors such that x1, x2 … xN, and target values t1,… tN , whe-

re tN ∈  {-1, 1}, the new data are classified in ( )kD x  .

The linear separation situation is 

( )
( )

1

2

1

1
k k k

k k k

x C D x wx b

x C D x wx b

∈ ⇒ = + ≥

∈ ⇒ = + ≤ −
(4)

where C1, C2 refer the class label, w is the weight vec-
tor and b is bias parameter [21].

Equation (4) could be written in Euclidean space as 
following

( ) ,  1k kkD x y w x= ≥ (5)

where yk is a class label.

The distance of each data   to the separated hyperp-
lane is defined as

( )  k
k

D x
y

w
τ≥ (6)

where τ   is the distance between two hyper planes. 
The parameterization of the hyper plane is unreasonable. 
It could be adjusted as

only for the healthy state of the system. This procedure is 
performed in SHM techniques to fit a time series predictive 
model. Once the model is set, the anomalies can be checked 
by using the observations. In other words, the residuals are 
used as a sensitive features for the damages. Then, the chan-
ges in residuals are considered to be caused due to damage 
in structure. Typically, linear based autoregressive (AR) mo-
del [11-12]  and non-linear based autoregressive SVM [9] are 
employed on time series to compute the damage sensitive 
feature. After the model has been established, the residual 
parameter which reflects the damage indicator has been 
interpreted with procedures such as sequential probability 
test [13] and sliding window [14]. The  majority of the studi-
es reported above have used auto regressive model (AR) mo-
del as damage sensitivity vector [9-12]. However, AR model 
does not include the relation between multiple time series. 
On the other hand, vector auto regression (VAR) which is 
a generalized form of univariate AR Model captures the in-
terdependencies between multivariate time series. Here, we 
propose a VAR (Vector Autoregressive) model coupled with 
SVM (Support Vector Machines) technique to diagnose 
and classify the damage using an array of sensors' measure-
ments. The study is investigated on a base excited three sto-
rey in a lab condition. The damage is performed by releasing 
the bolt load which causes a nonlinear effect on the system 
response. The measuring data of the sources that caused 
from variability such as temperature, humidity or external 
noises are not essential herein this technique. 

The layout of this study is as follow. First, the basic 
theory of VAR - SVM framework is briefly described. Next, 
experimental setup of the test structure is demonstrated. 
Then, the results obtained from the approach is presented 
in detail. Finally, the diagnosing performance is summari-
zed and discussed.

VECTOR AUTO REGRESSIVE - SUPPORT 
VECTOR MACHINE MODEL

Consider  { }1 2 T, , ,x  x  ...  x  are zero mean time multivariate 
time series collected from SHM networks. Each xt sensor 
{ }1 2t t tmx , x , ... , x    is the vector observations, m is the total 
number of sensor, T is time points and xti is the observa-
tion of ith sensor at time t. A VAR model is described as

1

p

t i t i t
i

x xϕ ε−
=

= +∑            (1)

where p is the order of the model and 

{ }1 2 ,  t t t tm t, , ... , Rε ε ε ε ε= ∈  are the residuals having normal 

distribution. The 1Φ , 2Φ , ..., pΦ  parameters can be estima-

ted by maximum likelihood method [15-16]. The optimum 
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The maximizing the margin can be conducted by 

minimizing the w . Then, the optimization problem 

simply requires that, 
21min

2
w 

  
 is to be maximized. By 

minimizing the  w  and subjected to constraints defined 

in equation (5), the objective function is defined as

( )2

1

1( ) ,  1
2

N

ii i
i

Q w w y w xα
=

= − −∑ (8)

where iα  are the Lagrange multipliers. It is noted 

that, the minus sign of the Lagrange multiplier term is 
due to minimization with respect to w. The parameters of 

w could be written in terms of iα  by performing Kuhn 

Tucker conditions. Then, the dual formulation will be as

1
0    

N

ii i
i

Q w y x
w

α
=

∂
= ⇒ =

∂ ∑   (9)

The Lagrange multipliers αi only can be nonzero if 
the constraints hold with

( ),  1 0ii iy w xα − = (10)

The data points xi observed at margin limits are na-
med support vectors. The formulation of dual could be 
maximized with respect to αi by substituting equation 
(10) into (8) such that

1 1 1

1( ) ,  
2

N N N

i ji i j i j
i i j

Q w y y x xα α α
= = =

= −∑ ∑∑                      (11)

subjected to the following constraints

i
1

0                   0,  1,  2,  3,  ...,  
N

i i
i

y i Nα α
=

= ≥ =∑       (12)

After the optimal parameter is determined by gradi-
ent descent or quadratic programming, the optimal sepa-
rating hyperplane given in equation (9) could be written 
as the following equation

( )
1

,
N

ii i
i

D x y x xα
=

=∑ (13)

This statement provides that the data are separable li-

nearly. If they are not separable linearly, iξ  slack variables 

are added to the non separable data as

( ) , 1i ii iD x y w x ξ= ≥ − (14)

where iξ  assess the non-separability. This can be sol-

ved by adding the penalty form 
1

N
p

i
i
ξ

=
∑   to the objective func-

tion.

The essential objective function is defined as

( ) ( )2

1 1 1

1 , 1
2

N N N

ii i i i i i
i i i

Q w w C y w xξ α ξ µ ξ
= = =

= + − − + −∑ ∑ ∑       (15)

and subject to the following constraints

1
0         0,      1,  2,  3......

N

i i i
i

y C i Nα α
=

= ≥ ≥ =∑          (16)

where the C value arranges the complexity for the mo-
del. The procedure is applied on nonlinearly separable data-
sets by asserting them in high dimensions [20,22].

The optimization includes the following objective 
function in high dimensional space

( ) ( )
1 1 1

1( ) ,  
2

N N N

i ji i j i j
i i j

Q w y y x xα α α ϕ ϕ
= = =

= −∑ ∑∑         (17)

where  ,  depicts the inner product on the feature 

space. The solution of CPU time increases as the feature spa-
ce increases.

The resulting nonlinear discriminant function for two 
label classes is given by

( ) ( )
1

,
N

i ii i
i

D x y H x xα
=

=∑ (18)

where ( ),  i jH x x  is assessed for input space  
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( ) ( ),  i jx xϕ ϕ . if ( ) 0iD x ≥ ; x is designated on the class

label 1; else, x is designated on the class label 2. Most com-

monly used kernel functions ( ),i jx xϕ   in SVM are polyno-

mial, normalized, polynomial, radial based and sigmoid. 
These functions are described by  Bishop in detail [20].  It is 
noted that, if the parameters of the kernels are not optimi-
zed, low classifications performance could be occurred due 
the separation problems of hyperplanes. The VAR-SVM 
model is constructed using MATLAB econometrics,  Statis-
tics and Machine Learning Toolbox. The regularization C 
in SVM is implemented via the box-constraint parameter 
with a value of 1 . It is noted that as this value increases more 
points are allowed in the margin. Hence, this regularization 
relaxes this constraint. The parameters processed in VAR 
are also standardized by  centering and dividing them by 
their standard deviations.

The methodology used in VAR-SVM model is as fol-
lows:

a. Initially, the VAR model is established for the raw
sensor measurements. The optimum model order p is deter-
mined at minimized values of AIC(p) or BIC(p) function.

b. The VAR model is re-established with an optimi-
sed p order. Then, the VAR parameters and residual vectors 
are used as features in SVM.

c. Once the features data are obtained from VAR
model for various cases, they are partitioned into two gro-
ups. The 1st group is the training dataset. This training 
group is then separated into more two groups. One training 
group is used to develop the SVM model and the other is 
determine the optimal kernel parameters.

d. The 2nd group is testing dataset. This group is
used to determine the performance of the model that is cre-
ated in the first group. Once the kernel parameters are opti-
mized in first group, the diagnosing performance of SVM is 
assessed on testing dataset. 

EXPERIMENTAL SETUP
Three storey structure made of aluminum frames is ma-
nufactured as a test platform (Fig. 1). The structure can 
slides on rails that allow movement in lateral direction 
only and its ground storey has been excited with an elect-
romagnetic shaker vibrating at band limited random fre-
quencies (15 - 150 Hz). In order to prevent the system to 
move away during excitation, a tensional spring is placed 
between the lower surface of structure and the base plate. 
It is noted that the stretch magnitude of this spring can 
be controlled with a bakelite screw. The connections of 
columns, frames and lower base are carried out by bolts. 
The loosen bolt during excitation yields in a non-linear 
behavior that represents a damages. In other words, exci-
ting the system while no joints loosened presents a linear 

response of structure, while loosed joints result in a non-
linear dynamic response. 

The structure which located on base plate is excited by 
a YMC, MS-50 type electrodynamics shaker. This shaker is 
amplified with a YMC, LA-100 instrument. This amplifier 
is embedded with a signal generator that can only produce 
sine signals. However, the real world engineering systems 
are exposed to environmental and operational uncertainti-
es. In order to simulate this variability, the system is excited 
with band limited signals generated by Agilent 33210A.The 
procedure steps that we deployed are numbered in Fig 1, and 
these are briefly as follows. Initially, band limited digital ran-
dom signals (1) are transferred to Agilent 33210A on TCP/
IP connection to generate analog signals (2). Then, these 
analog signals are amplified in YMC, LA-100 (3). Finally, the 
amplified band limited analog signals are transferred to the 
shaker to excite the structure (4).  The base plate slides on 
rails and the entire system (three storey, shaker) is placed at 
a foam to minimize external sources of unmeasured excita-
tion. Four YMC  piezo accelerometers  have a sensitivity of 
9.39 mV/g are attached on the corner of each storey (5).

The shaker is centered at the edge of base plate. Moreo-
ver, the structure and accelerometers are placed on the same 
axes line of base plate's axis to reduce the torsional effects 
during excitation. The measurements are collected with NI 
9234 (6). The force sensor at base floor and accelerometers 
located at 1st, 2nd and 3rd floor are connected to channel 1, 
2, 3, 4 and 5 of the device, respectively. Then, these measu-
rements are processes with Labview software. Totally, 8298 
data points are acquired with a sampling rate of  1765.53 
Hz for each case. The structure is excited at band limited 
random frequencies at 15 -150 Hz. Note that, these levels 
are chosen to avoid rigid motion caused by 1st mode, and   
these values are slightly above the first mode. The excitation 
level of amplifier is set to be as 3.4 V RMS (root mean square 
error).  The datasets collected for these cases are categori-
zed in accordance for bolt looose variation as given in Table 
1. Here, while the case 1 represents  the healthy conditi-
on, the rest 7 cases shows the damaged states.  Note that,
each datasets given in Table 1 consist of 6 dimensions where 

Figure 1. Experimental setup 
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the 1st is the time (s), 2nd is  force (N), and the rests are 
accelerations  (g). Since the system consist of 3 horizontal 
frames including loosing bolts,  eight different damage ca-
ses combinations 23= 8 could be investigated. We note that, 
there is not a general rule about how many repeated datasets 
should be collected for each test. However we know that as 
the number of case is increased higher datasets are needed 
to be collected. Initially, in order to determine to each algo-
rithm' classification sensitivity the investigations have been 
performed for the 4 cases listed in Group I (Table 1). Then, 
the algorithm which reflect the highest accuracy  has been 
implemented for all cases given in Group I and II.

Table 1. Structural state cases

Case 
no

Bolt loose option

1st floor 2nd floor 3rd floor

Group I

1 - - -

2 - - •

3 - • •

4 • • •

Group II

5 • - -

6 - • -

7 • • -

8 • - •
" • " represents the bolted joint is loosed, while "-" shows the bolt is not loosed

RESULTS
In this study, machine learning based active structural 
health monitoring techniques have been implemented 
on a base excited three storey structure to diagnose the 
bolt loosening damage. In order to include the effects of  
environmental and operational varieties, this system is 
excited by a band limited random vibrations.  The raw 
measurements includes time (s), force (N) and accelerati-
ons (g) for a typical dataset are represented in Fig  2. The 

sensor measurements  located at base floor (Channel 1 
and 2) show more random distributions due to excitation. 

For the duplicated measurements, uncertainties may 
arise at different stages of a measurement process.  In or-
der to evaluate these uncertainties, the measurements have 
been evaluated using robust statistical techniques such as 
cumulative density function, Z-score and analysis of varian-
ce (ANOVA). For instance, the cumulative density function 
distribution of the discrete data obtained for the 4 repeated 
tests at Channel 1 and 5 are represented in Fig 3 and  Fig 4, 
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Figure 2. Typical raw data measurements of the 1st dataset 

Figure 3. Cumulative density functions for the repeated raw force 
measurements [case 1]. 

Figure 4. Cumulative density functions for the repeated raw 
acceleration measurements [case 1].
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Figure 5. Z-scores of the raw measurements obtained  for repeated raw 
acceleration measurements [case 1, Channel 4].
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respectively. The duplicated measurements converge each 
other which may show the uncertainty due to the DAQ de-
vice is low. 

Next, uncertainty is also evaluated using Z-scores ba-
sed on robust statistics. It is widely implemented for the pro-
cessing of experimental data obtained from inter laboratory 
comparisons [23-24]. Here, Z-score gives a measurement of 
how far a result is from the assigned value, and also gives a 
score to each result relative to the other results in the gro-
up. The measurement uncertainty can be estimated from 
Z-score and a value less than 3 is accepted an appropriate 
from the data group. In other words, |Z| ≤ 3.0 indicates a 
satisfactory performance [23]. For instance, Z-scores of the 
duplicated measurements are in the range of -3 and 3 (Fig 5). 
Moreover, these signals do not include outliers.

We finally have evaluated the raw measurement uncer-
tainty using box plots. Typically, the box plot is a standardi-
zed method of representing the distribution of samples cor-
responding to features using boxes and whiskers. The boxes 
show the inter quartile range of the data and the whiskers 
refer a multiple of the first and third quartiles of the variable. 
Any data that laid at the outside of this limit is considered as 
outliers. Box plots based on Z-scores for the raw repeated 
measurements for various channels are given in Fig 6. Note 
that each test data in each channel consist of 8298 data po-
ints. It can be seen that while the channel 2 and 5 include 
outliers, channel 3 and 4 do not. For instance, test data 1, 2, 
3 and 4 from the channel 1 include 162, 154, 149 and 159 
outliers. Additionally,  data from channel 4 covers 10, 11, 11, 
11 outliers for test 1, 2, 3 and 4 respectively.   We expect that 
the reason of higher outliers encountered in Channel 2 may 
occurred due the this sensor is laid at the excitation floor 
which include random distribution.

Once the datasets are collected and the raw measure-
ment uncertainty is investigated, the next step is to establish 
the VAR model. The optimum VAR order p has been deter-
mined to be as 16. This value is otained by asserting the mi-
nimum values of AIC(p) and BIC(p) function.  Hence, VAR 
(16) model for 8298x4 acceleration data points is resulted in
64x4 VAR parameters and 8282x4 residuals for each dama-
ge scenario case. VAR(16) parameters distributions for vari-
ous duplicated tests at case 1 for  channel 4 and 5 are given
in Fig 7.a and Fig 7.b, respectively. In order to assess whether 
there is significant difference between these VAR parame-
ters, they are processed using ANOVA statistical analysis.
The F ratios and p values for the duplicated test from the
channel 1, 2,  3 and 4 have been found as (F = 3.7487e-09,
p = 1.0), (F = 1.2992e-08, p = 1.0), (F = 2.0614e-09, p = 1.0)
and  (F = 9.2864e-10, p = 1.0), respectively. There is not a
statistical difference between each repeated measurement
(p>0.05) which may show that any test data that will pro-
cess in learning algorithms may not effects the classification 
performance.

The computational results of the VAR parameters and 
residuals obtained by VAR(16) model for all cases are shown 
in Fig 8 and 9, respectively. It can be seen that the residuals 
of the 2nd channel sensor exhibits more random distribu-
tions due to it is aligned with the axis of random excitation 

Figure 7. VAR(16) parameters distribution for various repeated tests 
[case 1]. a) Channel 4, b) Channel 5
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Figure 6. Box plots of the Z-scores for the raw repeated 
measurements[case 1]. a) Channel 2, b) Channel 3, c) Channel 4, d) 
Channel 5
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(Fig 9).     

Fig 10 represents a typical SVM diagram with the de-
cision boundary for a healthy (Case 1) and damaged case 
(Case 4). This diagram can be used to improve the shape 
of decision by modifying the kernel type and its parameters. 
For instance, the decision boundaries for polynomial (p=2) 
and radial type kernel are given in Fig 10.a and 10.b, respec-
tively.

The damage diagnosis scores are assessed by receiver 
operating characteristic (ROC) curves. These curves sum-
marizes  the performance of the classifiers. They are typi-
cally built by plotting the false positive rate (FPR) and true 
positive rate (TPR) in decision threshold. Once the curve 
closes  the correct positive ratio (TPR) axis the success inc-
reases, while it closes false positive ratio (FPR) axis the score 
decreases. Therefore, a curve with high performance passes 
through a point at top left side (0, 1) of the graph. Each point 
on the curve complies with a certain threshold and the ove-
rall performance of the curve is evaluated in terms of area 
under curve (AUC). The highest score is obtained when the 
area under curve (AUC) is equal to 1, while the worst is 0.5 
[25]. As mentioned before, each structural case investigated 
in this study includes 4 repeated measurements. These da-
tasets are categorized as 50 % for training, 25 % for verifica-
tions and the rest of them for testing datasets. The optimal 
parameters of the kernels are obtained with cross validation.

In first algorithm raw data measurements have used as 
feature vectors for the SVM classifier. Here, 500x4 feature 
vectors from each case have been used to establish the SVM 
model with an optimum radial bases type kernel. One vs. 
one type approach is used for binary multi classifications. 

Figure 9. Typical VAR(16) residuals for the 1st dataset
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Figure 10. A typical scatter diagram with the decision boundary for 
VAR(16) model. a) VAR residuals, b)  VAR parameters
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Fig 11 represents the ROC curves of SVM technique for raw 
data observations. It can be seen that AUC values of around 
0.5 are obtained, which indicate that the SVM with raw me-
asurements could not discriminate structural states from 
each other.

The performance of each damage diagnosis techniques 
can further be assessed by confusion matrix plot. The di-
agonal elements of this matrix show the percentage score 
for which the estimated case is equal to true case, while 
off diagonal elements are those that false diagnosed by the 
technique. The higher values in diagonal elements allows to 
determine the performance of the diagnosing classifier par-
ticularly at individual scenario. Confusion matrix plot obta-
ined with the raw signals processed in SVM model for each 
case is shown in Fig 12. Overall, SVM scheme gives a low 
value of 27.8 % correct classifications for the testing datasets.

In the second algorithm, the VAR parameters with a 
size of 64x4 observations from each case have been used as 
feature vectors in SVM. The best results have been obtained 

for RBF type kernel at validation step. ROC curves obtained 
by VAR SVM technique for each case are represented in Fig 
13. AUC values of these curves are 0.7258, 0.474, 0.6445 and 
0.7747 for case 1, 2, 3 and 4, respectively.  It is clear from
these results that the classification performance has been
improved when the raw observations are processed in VAR
model. The maximum correct classification performance
is obtained for the case 1 and 4 while the minimum is in
case 2 and 3. As the number of the bolt loosening damage
increases, higher classifications performance are obtained.
This result probably shows that, the more the nonlinear va-
riations in structures, the better the discrimination being
reached (Fig 13).

Confusion matrix plot obtained with the VAR parame-
ters features processed in SVM model for each testing case 
is shown in Fig 14. It is noted that here, the optimal kernel 
which obtained in validation stage is used during testing. 
The correct percentage of case 1, 2, 3 and 4 are  81.25, 53.13, 
59.38 and 64.06, respectively. As illustrated in Fig 14, the 
overall performance "VAR Parameters-SVM" model  shows 

Figure 13. ROC curves of the VAR parameters - SVM model 
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Figure 12. Confusion matrix plot obtained with the raw signals 
processed in SVM model for each case

Figure 11. ROC curves of the raw signals processed in SVM model for 
each case
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Figure 14. Confusion matrix plot obtained with the VAR parameters - 
SVM damage identification model
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that the algorithm could identify structural damage with a 
moderate accurate value of 64 %. It is also noted that pre-
diction with multi cases is intrinsically more complicated 
than multiple predictions because of that the algorithm has 
to learn to construct the separation boundaries or relations 
of the observation data.

The main objective of the third algorithm is to detect 
the structural case by evaluating the VAR residuals in SVM 
model. The residuals with a size of 500x4 observations (1st 
dataset) from each case have been used as feature vectors for 
establishing the SVM model. It is observed that a polynomi-
al kernel with an order of 2 gives the best results. The ROC 
curves obtained from the this approach are given in Fig 15. 
The highest AUC values of classifying the structural states 
are found in case 1 and case 4, while the lowest values are 
in case 2 and 3.

Finally, the confusion matrix plot obtained in third 
approach (VAR residuals - SVM) is represented in Fig 16. It 
is observed that the algorithm diagnoses the correct struc-

tural case with a percentage score of 97.4, 78.6, 69.8 and 91.6 
for the testing datasets. The false-positive (Type I error) and  
false-negative (type 2 error) is a common technique that 
used to determine  classification performance. The results 
of "VAR residuals -SVM" shows a significant performance 
over both "VAR parameters -SVM" and "raw measurements 

-SVM" in terms of Type I and Type 2 errors.

Once  the algorithm which give the highest accuracy  
has been determined, the final step is determine its perfor-
mance for all cases. The ROC curves of the VAR residuals 

- SVM diagnosis model for all cases are represented in Fig 17. 
The highest AUC values of classifying the structural case is 
found in case 1, while the lowest value is in case 7. It is obser-
ved that the algorithm diagnoses the overall correct structu-
ral case with a percentage score of 70.25 (Fig 18).  Once the 
performance of the this algorithm for 8 cases compared to 4 
cases, the accuracy decreased by 16.15 %. This result shows 
that as the number of case increase, the prediction perfor-
mance decreases due to separation boundaries as expected.
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Figure 17. ROC curves of the VAR residuals - SVM diagnosis model 
for all cases
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Figure 18. Confusion matrix plot obtained with VAR residuals - SVM 
damage identification model for all cases

Figure 15. ROC curves of the VAR residuals - SVM diagnosis model 

Figure 16. Confusion matrix plot obtained with VAR residuals - SVM 
damage identification model 
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CONCLUSION
This study investigates of using time series to diagnose 
the damages by vector autoregressive - support vector 
machines . Initially, three floor structure has been ma-
nufactured as a test bed. The damage in this structure 
is simulated by releasing the bolt load which causes a 
nonlinear effect on the system response. The structure 
placed on rails is excited by a electrodynamics shaker. 
The measurements of the four sensors located at diffe-
rent regions have been acquired for various cases. Then, 
these measurements have been processed in VAR model 
to generate features of SVM for damage identification. 
Although improvements have been carried in unsuper-
vised learning structural health monitoring techniques, 
they are still limited to identify damage sensitive featu-
res derived from models of individual sensor. In other 
words, they are particularly limited to identifying which 
sensor/sensors is/are associated with the damage [7,9,10]. 
Therefore, we processed the raw measurements in VAR 
model to improve of damage identification performan-
ce. This model captures the interdependencies between 
multivariate sensor measurements. Once the features 
such as residuals and parameters are obtained from VAR 
model, they are divided into learning and testing group 
for SVM. In order to further summarize the performance 
of each damage diagnosis methods, the ROC curves for 
binary classification (healthy, damaged) are given in Fig 
19. Note that, while the case 1 is health, the rest cases
are the damaged conditions as given in Table 1. The op-
timum points of ROC curves are determined as (0.9700,
0.9920), (0.1146, 0.5156), and (0.05870, 0.9580) for "Raw
measurements-SVM", "VAR parameters-SVM" and "VAR 
parameters-SVM" algorithms, respectively. The first
magnitude given in parentheses herein is the "false po-
sitive rate" (FPR) or false diagnosis, and the second is the

"true positive rate" (TPR) or the correct diagnosis. The
most successful diagnosis of damage is achieved when
the VAR model residuals are used with SVM. Moreover,
it is seen that the binary two case classification scores ob-
tained from each algorithm are higher than multi cases
in terms of AUC. This result shows that separating the
damaged case from the healthy is easier than separating
from another damaged condition. In order to overcome
this issue, the stochastic residual errors needs to prep-
rocessed by Markov regime switching Copula model to
investigate whether there is a relationship between these
errors.

It is expected that the advancements in machine lear-
ning procedures will reflect as of increasing their potential 
uses in SHM applications. One such a machine learning al-
gorithm SVM rises with a number of possible applications. 
For example considering damage identification problems, 
an increase in classifier performance may reduce the main-

tenance period requirements for valuable engineering struc-
tures. It is noted that the VAR model coupled with Artificial 
Neural Network (ANN) could also be performed algorithm 
to detect the damage  in engineering structures at environ-
mental and operational conditions. However, the solution 
CPU time may lengthen which may not be a practical way 
particularly for real time SHM applications [20, 26]. 

The limitations of this study is that the VAR-SVM mo-
del has been investigated for a structure in a well controlled 
laboratory settings. Moreover, this structure is not a scale 
model of any engineering system and the uncertainties due 
to humidity and temperature should also be investigated 
by acquiring large datasets. It is also should be considered 
whether the created synthetic random excitations reflect 
the environmental uncertainties. The system this has been 
designed to validate the algorithms that develop for SHM 
research. Future struggles should be leaded to deploying of 
this approach in real physical engineering applications. Ad-
ditionally, further investigations may focus on the develo-
ping a graphical user interface (GUI) for real time damage 
diagnosing applications. In overall conclusion is that the 
VAR - SVM has been deployed to diagnose the damages in 
a well controlled structure. The results indicated that this 
approach appears to be a promising tool for autonomous 
SHM implementations.
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