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Abstract  

Post-disaster indoor environments, which occur after calamities such as floods, fires, and poisonous material spread, could 

include serious risks for search and rescue teams. For example, the building's structural integrity could be corrupted, and 

some harmful substances for humans and animals could exist. Exploiting robots could prevent search and rescue teams from 

these risks. Nevertheless, robots need to possess advanced techniques to produce high-level information from raw sensor data 

in these harsh environments. This study aims to explore the positive and negative aspects of point-based deep learning 

architectures for the semantic classification of ramps in search and rescue test arenas, which are proposed by the National 

Institute of Standards and Technology (NIST). Also, we take into account walls and terrain since they can provide crucial 

information for robots. In this study, we opted to utilize point cloud data that is robust against lousy illumination conditions, 

which is frequently encountered in post-disaster environments. We used the ESOGU RAMPS dataset that contains point 

cloud data captured from a simulated environment similar to NIST search and rescue arenas. We selected PointNet, 

PointNet++, Dynamic Graph Convolutional Neural Network (DGCNN), PointCNN, Point2Sequence, PointConv, and 

Shellnet point-based deep learning architectures to analyze their performance for semantic classification of ramps, walls, and 

terrain. The test results indicate that accuracy of semantic classification is over 90% for all architectures. 

Keywords: point-based deep learning, semantic classification, NIST ramps, point cloud data. 
 

Öz 

Sel baskını, yangın ve zehirli madde yayılımı gibi felaketlerden sonra meydana gelen afet sonrası iç ortamlar, arama ve 

kurtarma ekipleri için ciddi riskler barındırabilir. Örneğin, binanın yapısal bütünlüğü bozulmuş ve insanlar ve hayvanlar için 

bazı zararlı maddeler mevcut olabilir. Arama ve kurtarma ekiplerinin bu risklerden korunmasını sağlayabilmek için 

robotlardan yararlanılabilir. Bununla birlikte, robotların bu zorlu ortamlarda ham algılayıcı verilerinden üst düzey bilgi 

üretmek için gelişmiş tekniklere sahip olması gerekir. Bu çalışma, Ulusal Standartlar ve Teknoloji Enstitüsü (NIST) 

tarafından önerilen arama kurtarma test alanlarında bulunan rampaların anlamsal sınıflandırması için nokta tabanlı derin 

öğrenme mimarilerinin olumlu ve olumsuz yönlerini araştırmayı amaçlamaktadır. Ayrıca robotlar için çok önemli bilgiler 

sağladıklarından dolayı duvarlar ve zeminde dikkate alınmıştır. Bu çalışmada, afet sonrası ortamlarda sıklıkla karşılaşılan 

kötü aydınlatma koşullarına karşı dayanıklı olan nokta bulutu verilerini kullanmayı tercih ettik. NIST arama ve kurtarma 

alanlarına benzer bir ortamdan alınan nokta bulutu verilerini içeren ESOGU RAMPS veri kümesini kullandık. Rampaların, 

duvarların ve zeminin anlamsal sınıflandırma performanslarını analiz etmek için PointNet, PointNet ++, Dinamik Grafik 

Evrişimli Sinir Ağı (DGCNN), PointCNN, Point2Sequence, PointConv ve Shellnet nokta tabanlı derin öğrenme mimarilerini 

seçtik. Test sonuçları, anlamsal sınıflandırma doğruluğunun tüm mimariler için %90'ın üzerinde olduğunu göstermektedir. 

Anahtar Kelimeler: nokta tabanlı derin öğrenme, anlamsal sınıflandırma, NIST rampları, nokta bulutu verisi. 
 

I. INTRODUCTION 
In recent years, attempting to use robots for search and rescue missions in post-disaster environments, which 

occur after calamities such as floods, fires, and poisonous material spread, is among the hot topics in the robotic 

community. The main reasons for that are happening new collapses or leakage of harmful substances for humans 

and animals while search and rescue teams perform their tasks. Therefore, exploiting robots in these missions 

could prevent undesirable accidents and new casualties. However, post-disaster environments consist of some 

challenges even for robots such as uneven terrain and lousy illumination conditions due to these environments' 

dusty nature and power outages. To cope with these difficulties, robots need to possess advanced techniques to 

produce high-level information (semantic information of scenes or objects) from raw sensor data. Fortunately, 

robots have begun to utilize these advanced techniques owning to incoming perception technologies and 

developments in computer vision algorithms. Nevertheless, the advantages and disadvantages of these 

technologies and algorithms should be observed regularly for determining new research areas in the search and 

rescue domain. To achieve this, competitions related to search and rescue missions have been organized yearly 

by RoboCup society since 2001.  
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The RoboCup rescue competitions mainly aim to 

improve robots' abilities in autonomous navigation, 

mapping, and finding victims. Besides, these 

competitions monitor the performance of new 

technologies in software and hardware and encourage 

the researchers to introduce new challenges for robots. 

Kitano and Tadokoro [1] assessed the first RoboCup 

rescue competition considering the initial standards 

and evaluation metrics. They examined requirements 

that the robots need to have, and they projected future 

works according to these requirements. One of them 

was to evaluate robot performance in standard test 

environments. For that reason, NIST introduced 

reference test arenas for search and rescue missions in 

2003 [2]. Figure 1 shows an example of these test 

arenas. In the first years of competitions, participant 

teams generally preferred to use visual and 2D laser 

range data to perform search and rescue missions. For 

example, the PoAReT team [3], the winner of the 

Virtual Robot Competition at RoboCup 2012, applied 

the simultaneous localization and mapping (SLAM) 

technique to 2D laser scans for building a map of 

reference test arenas. They also produced semantic 

information while determining rooms and corridors 

through the detection of doorway locations. This was 

the pioneering study in the search and rescue missions 

that considers semantic information to the best of our 

knowledge.   

 

Sheh et al. [4] evaluated the RoboCup rescue 

competitions in the 16th year. They noticed that 

participant teams of competitions improved the 

abilities of robots while integrating new sensors into 

robot systems such as RGB-D cameras, LiDARs, and 

3D laser scanners over the years. Besides, they 

observed that robots were able to perform search and 

rescue missions adequately in challenging 

environments. Robot Operating System (ROS) [5] 

have been begun to use in the RoboCup rescue 

competitions since 2017. This could be a milestone for 

competitions because ROS provides numerous 

packages that researchers can easily integrate their 

systems to achieve more complex tasks. The 

participant teams utilized GMapping [6] and Hector 

SLAM [7] packages to represent the environments 

with 2D maps. Then, OctoMap [8] and Real-Time 

Appearance-Based Mapping (RTAB-Map) [9] 

approaches were used to produce 3D information 

about the environment. OctoMap is an octree-based 

representation method, and it does not take into 

account semantic information. On the other hand, 

RTAB-Map exploited feature extractors to generate 

semantic information while recognizing frequently 

encountered objects in daily life. However, RTAB-

Map is not able to extract semantic information for 

ramps at reference test arenas since ramps are specific 

pieces for search and rescue missions.  

 

 
Figure 1. An example reference test arena [10] 

 

Although participant teams of the RoboCup rescue 

competitions generally do not concentrate on 

producing semantic information for search and rescue 

missions, semantic classification of walls, ramps, and 

terrain via point cloud data has been addressed in 

previous studies. These approaches could be separated 

into two categories. In the first category, the studies 

handled the segmentation problem, which clusters 

points into a segment considering their features such 

as x, y, z coordinates, point normals, and colors. The 

reviews proposed by Nguyen and Le [11], Grilli et al. 

[12], and Xie et al. [13] mainly divide the 

segmentation approaches into five groups: Edge-based 

[14], region growing [15], model-based [16, 17], 

clustering-based [18], and graph-based [19]. These 

approaches have been frequently applied for 

segmentation problems since their implementations 

are available on Point Cloud Library (PCL) [20]. 

Besides, Eruyar et al. [21] examined the performance 

of segmentation approaches situated in PCL for 

structural planar surfaces. However, only region 

growing and RANSAC approaches were employed to 

classify walls, ramps, and terrain. Region growing 

begins with determining seed points and searches 

points within a predetermined radius or a number of 

neighbors around the seed points to identify points 

that have similar features with seed points. The main 

disadvantages of region growing approaches are high 

time complexity and sensitivity to rapid changes on 

point features. In contrast, RANSAC requires less 

computational load, and robust against noise, in other 

words, rapid changes. However, it does not utilize 

local information for segmentation, and this can cause 

clustering points that have similar mathematical 

models into a segment, although they belong to 

different planes.  The approaches placed in the first 

category classified points considering plane equations 

to obtain semantic classes of points. 

 

In the second category, machine and deep learning 

techniques were used to determine the semantic class 

of points. Machine learning techniques firstly 

determine suitable descriptors for the problem, and 

then they extract features. This step is probably the 

most challenging part because the selected descriptors 

directly affect the success of these techniques. 

Besides, 3D descriptors generally tend to overfit since 
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they are significantly high dimensional. On the other 

hand, deep learning architectures have become 

popular in recent years since they are able to provide 

useful features according to the problem. For example, 

Deng et al. [22] applied Convolutional Neural 

Network (CNN) approach to visual data and depth 

images acquired from a post-disaster environment 

similar to NIST reference test arenas to determine the 

semantic class of points. 

 

The first attempts to exploit deep learning techniques 

with point cloud data are to use CNN because of 

success of CNNs with image data.  However, CNN 

approaches cannot be employed to point cloud data 

directly since its permutation invariant and 

unstructured characteristic. For that reason, the deep 

learning techniques that have utilized point cloud data 

can be separated into two groups: direct (point-based) 

and indirect approaches [23]. Point-based approaches 

accept raw point cloud data, while indirect approaches 

convert unstructured point cloud data into a 2D or 3D 

structured form before receiving the data.  It can be 

observed from the previous studies that indirect 

approaches have some drawbacks such as quantization 

artifact, loss of the geometric details, and 

computational cost of conversion. In consequence, the 

researchers have generally preferred to develop point-

based approaches [23, 24]. Guo et al. [24] gave 

detailed information about 3D deep learning 

approaches and categorized them for classification, 

segmentation, object detection, and tracking problems. 

They addressed the point-based methods for semantic 

classification of point cloud data into four groups: 

point-wise Multi-Layer Perceptrons (MLP), point 

convolution, graph-based, and Recursive Neural 

Networks (RNN) based.  

 

PointNet [25] was the first point-based deep learning 

architecture accepted as a milestone since it works 

directly on unordered and permutation-invariant point 

cloud data. PointNet utilizes the point-wise MLP 

followed by maximum pooling to summarize the 

global feature. However, PointNet does not extract the 

local relationship because it considers all points in the 

point cloud as individually. Many point-wise 

architectures like PointNet++ [26], ShellNet [27], and 

PointWeb [28] were proposed based on PointNet to 

encode local neighborhood information because of 

simplicity and performance.  

 

Applying the convolution kernel to the point cloud is 

not straightforward because data may have missing 

parts and does not have a regular pattern. Some 

studies applied continuous convolution [29, 30] or 

discrete convolution [31] to point cloud data. KPConv 

[29] learns the weights of kernel points defined in 

Euclidean space. Linear correlation is applied between 

kernel points and the points around the kernel points. 

In the PointConv [30], convolution kernels defined as 

nonlinear weighting function on 3D space. The kernel 

weights are learned with MLP layers. PointCNN [31] 

learns the transformation matrix to order canonically 

for applying the discrete convolutional operator.  

 

In the graph-based methods, the points are considered 

as nodes, and the distance between nodes is treated as 

edges [32, 33]. Landrieu et al. [32] extended the 

superpixel term of images as superpoint for point 

clouds to partition into homogeneous parts. They 

introduced the superpoint graph to expose the 

contextual information between object parts. DGCNN 

[33] uses each point as a node and defines the graph 

for each local region. The features are extracted over 

edges, and the graph is updated in all layers.  

 

RNN-based architecture aims to capture contextual 

information of local parts [34-36]. 3P-RNN [34] 

utilized a two-directional RNN structure to exploit the 

long-range relationship of uniformly-spaced blocks 

along x and y directions. Point2Sequence [35] used 

the RNN structure to extract the correlation of multi-

scale local areas. An attention mechanism is used to 

highlight the critical feature of multi-scale local areas. 

RSNet [36] proposed the slice pooling layer, which 

slices the point cloud x, y, and z coordinate 

independently to project unordered point cloud onto a 

sequential form. 
 

In this study, semantic classification of point cloud 

data as walls, ramps, and terrain is aimed. Producing 

semantic information about walls, ramps, and terrain 

could promote the mapping and navigation tasks of 

robots in a post-disaster environment.  An example of 

that is the robot could augment the environment's 

representation with semantic information to generate 

maps that first-responders easily read. In this way, the 

robot can also improve its path plan while adding 

appropriate targets according to ramps. The robot can 

navigate without losing its balance when it passes over 

the ramps considering these target points. Besides, the 

robot can regulate its speed when being aware position 

and orientation of ramps.  

 

In this study, we prefer to use point cloud data because 

visual and/or 2D laser range data could not be 

adequate for post-disaster environments. The success 

of studies that utilized visual data highly depends on 

the illumination condition of the environment, and the 

post-disaster environments have lousy illumination 

conditions due to these environments' dusty nature and 

power outages. Although 2D laser range data robust 

against these conditions, it only captures information 

about the plane at the height that the laser scan is 

placed. Besides, 2D laser range data cannot provide 

any information about the ramps below that height. On 

the other hand, point cloud data could describe 3D 

characteristics of walls, ramps, and terrain and cannot 

be influenced by the environment's illumination 

condition. After that point, we analyzed point-based 

and indirect deep learning approaches for semantic 



Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 57-66  Deep for Semantic in SAR 

60 
 

classification of point cloud data, and we decided to 

use point-based approaches when disadvantages of 

indirect approaches are thought. In our previous works 

[37, 38], we showed that PointNet, PointNet++, 

DGCNN, and PointCNN point-based deep learning 

architectures are classified walls, ramps, and terrain 

with over 90% accuracy. This study aims to extend 

our previous works by considering Point2Sequence, 

PointConv, and Shellnet point-based deep learning 

architectures. In this way, these architectures' positive 

and negative aspects could be revealed for semantic 

classification of walls, ramps, and terrain in reference 

test arenas. To train and test these architectures, we 

used the ESOGU RAMPS dataset [39]. The 

architectures were evaluated with recall, precision, 

Intersection over Union (IoU), Mean Intersection over 

Union (MIoU), and accuracy metrics.  

 

The rest of the paper is organized as follows: Section 

2 briefly explains the point-based deep learning 

architectures. Section 3 describes the ESOGU 

RAMPS dataset. Section 4 and 5 presents 

experimental works and concludes the paper, 

respectively. 

 

II. METHODS 

The point cloud data is defined as a set of points that 

contain x, y, and z coordinates. Besides, other features 

such as point normal and color could be attached to 

each point.  Although point cloud has a simple nature, 

a variety of architectures were proposed due to its 

unstructured, permutation, and rotation invariant 

characteristic. In this section, notable attributes of 

PointNet, PointNet++, DGCNN, PointCNN, 

Point2Sequence, PointConv, and Shellnet point-based 

deep learning architectures are concisely described. 

 

2.1. PointNet 

The first architecture that receives raw point cloud 

data, in other words, point-based deep learning 

architecture, is PointNet. It employs successive Multi-

Layer Perceptron (MPL) layers to point's x, y, and z 

coordinates to learn weight matrices. These matrices 

are shared among points for each feature channel as 

similar to CNN structure. Besides, normal, curvature, 

and color features can be used in the feature extraction 

process. It is important to note that PointNet assesses 

each point individually and also independently from 

other points. Namely, neighbor points of a point do 

not take into account for feature extraction. This could 

be the most characteristic feature of the PointNet 

architecture. PointNet provides a maximum pooling 

method named as the symmetric function to obtain the 

global feature. The symmetric function receives the 

feature vector of all points and determines each 

feature channel's maximum values to summarize a 

single global feature vector.  The classification scores 

for each category of points are acquired by successive 

MLP layer again after the global and local features are 

concatenated. 

2.2. PointNet++ 

PointNet++ architecture derives from the PointNet. 

The main difference between PointNet and 

PointNet++ is that PointNet++ considers neighbors of 

points to extract the feature vector of each point. The 

architecture first selects center points to construct 

local regions. These center points are specified 

according to a predefined number of nearest neighbors 

or a predefined radius. After local regions are 

determined, the feature vector of each point that 

belongs to a local region is extracted by employing 

PointNet to point's x, y, and z coordinates. The 

symmetric function then takes the feature vector of all 

points in a local region and determines the region 

feature vector. This process is repeated for each local 

region. At that point, PointNet++ continues with the 

successive layer while extending the local regions 

hierarchically based on x, y, and z coordinates. In this 

way, local regions cover large portions, and the region 

feature vectors begin to approximate the scene's 

characteristics. After successive layers, similar to 

PointNet, the symmetric function summarizes local 

region feature vectors to obtain a global feature vector. 

In successive feature encoding layer, point number is 

subsampled. However, all original points feature is 

required to classify points semantically. A distance 

based interpolation technique is proposed to propagate 

the features of sampled points to original points. After 

interpolated feature are concatenated skip linked 

feature from feature encoding layer, PointNet is used 

to update these features.  Eventually, the semantic 

class of each point is determined. 

 

2.3. DGCNN 

DGCNN architecture is categorized as graph-based, 

according to the review presented by Guo et al. [24], 

because it constructs local regions similar to 

PointNet++, and it builds a graph for each local 

region. The main difference between PointNet++ and 

DGCNN is that DGCNN does not expand local 

regions hierarchically. DGCNN first selects center 

points to construct local regions. Then, it searches a 

predefined number of nearest neighbors of these 

center points to determine the points that belong to 

local regions. To do that, DGCNN uses distances 

between a point and center points, which are 

calculated with point's x, y, and z coordinates in the 

first layer, while feature space distances are utilized in 

successive layers. At that point, the graphs for each 

local region are formed. The nodes of these graphs are 

the points in the local regions. However, it is crucial to 

notice that the edges only exist for the center point and 

other points. The edge weights are calculated 

considering spatial and feature space distances in the 

first and successive layers, respectively. This is the 

second difference between PointNet++ and DGCNN. 

After edge weights are determined, they are used in 

the feature extraction process by employing MLPs. 

The authors are named these steps as EdgeConv 

operator.  In the DGCNN architecture, first EdgeConv 
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operator estimates features, and then PointNet accepts 

these features to classify points. 

 

2.4. PointCNN 

In contrast to PointNet, PointNet++, and DGCNN 

architectures that consider points individually while 

extracting features, PointCNN calculates features by 

applying convolution to a point and its neighbors. 

Unfortunately, convolution approaches, just like CNN, 

cannot be directly employed to point cloud data due to 

its permutation invariant nature. For that reason, the 

authors proposed a convolution operator, which is 

named as X-Conv. PointCNN first constructs local 

regions similar to previously mentioned architectures. 

Then, for each local region, a transformation matrix is 

learned through X-Conv operator, and according to 

the matrix, points in a local region are weighted and 

canonically ordered. Lastly, convolution is employed 

local regions to extract features. Similar to PointNet++ 

local regions are hierarchically expanded in the 

successive layers. PointCNN propagate summarized 

global into point feature with skip linked X-Conv.  

 

2.5. Point2Sequence 

Point2Sequence is an RNN-based architecture. Apart 

from the previously explained architectures, 

Point2Sequence does not have successive layers since 

it utilizes Long Short-Term Memory (LSTM) 

structure to extract features. Point2Sequence 

constructs local regions just like PointNet++. The 

main difference between Point2Sequence and 

PointNet++ is that Point2Sequence constructs more 

than one local region with different radius values 

around a center point, namely multi-scale concentric 

local regions. Then, features are determined separately 

for each different-scale local region. After features 

corresponding to multi-scale concentric local regions 

are obtained for a center point, RNN is employed to 

learn the correlation between these features. In this 

way, Point2Sequence intends to reveal contextual 

information about local regions. The relationship 

between features that belong to a local region is stored 

in LSTM, and the attention approach puts forward 

hidden states of LSTM. Consequently, the local region 

features are calculated through a context vector, which 

is built consolidation of different scale features. The 

global feature vector is propagated from shape level to 

point level by using the interpolation techniques in 

PointNet++.  

 

2.6. PointConv 

The continuous convolution-based PointConv applies 

the convolution operator to each point in the point 

cloud in a similar way as traditional 2D image 

convolution. Firstly, the local region is defined around 

each point, and the convolution kernel weight is 

learned by using weight-shared MLP over the relative 

position of points in the local neighborhood. Because 

it uses the weight-shared kernel across all points, 

permutation invariance is satisfied. The density 

function is used to re-weight convolution filter weight 

to handle non-uniform density in local regions. The 

learned convolution kernel is applied to the feature of 

the local points, and the encoded feature of each point 

is obtained. Similar to PointNet++, the feature 

encoding module consists of sampling, grouping, and 

PointConv layer to learn feature hierarchically. Also, 

the PointDeconv layer is introduced to increase the 

point number, which is decreased in the feature 

encoding layers by applying interpolation and 

PointConv convolution. 

 

2.7. Shellnet 

ShellNet architecture consists of the ShellConv 

convolution operator based on point-wise MLP and 

convolution approaches. In this architecture, firstly, 

the local region is constituted in a similar way as 

PointNet++. However, kNN neighborhoods of 

representative points are divided into multi-scale 

concentric shells. A fixed number of points is assigned 

to each shell. In each shell, MLP is used to encode 

relative point coordinates to higher-dimensional 

features. After the features came from the previous 

layer and encoded features are concatenated, 

maximum pooling is used to summarize the points 

feature in each shell. Thanks to maximum pooling, 

point order ambiguity is resolved in each shell. Also, 

by nature of the shell, it is ordered from inside to 

outside. Then, 1D convolution is applied to the shell 

features. Shellconv layers are added hierarchically to 

extract the abstract feature of the entire point cloud. 

Deconvolution layers with ShellConv are used to 

increase point size to the original point number for the 

point-wise classification. 

 

III. THE ESOGU RAMPS DATASET 

Gazebo [40] simulation environment and ROS [5] 

were utilized to construct the ESOGU RAMPS 

dataset. An Asus Xtion Pro RGB-D camera was 

emplaced on a Pioneer 3-AT mobile robot, and 681 

scenes were captured. For training, 581 scenes were 

randomly selected, and the remaining 100 scenes were 

separated for testing. In each scene, there are four 

classes: wall, terrain, inclined, and flat ramps. 

Examples for the ESOGU RAMPS dataset are 

presented in Figure 2. The point cloud data is shown 

in the left column. Wall, terrain, inclined, and flat 

ramps classes are described with red, yellow, blue, and 

magenta. The dataset also provides RGB images, 

which are shown in the right column. The details 

about the dataset are given in [37, 38] and you can 

download the dataset from [39]. 

 

IV. EXPERIMENTAL WORKS 

4.1. Experimental Setup 

PointNet, PointNet++, DGCNN, PointCNN, 

Point2Sequence, PointConv, and Shellnet point-based 

deep learning architectures were implemented with 

Tensorflow library [41] in Python programming 
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language for the semantic classification of scenes 

placed in the ESOGU RAMPS dataset. Before 

applying these architectures, we preprocessed the data, 

which is a requirement for point-based deep-learning 

architectures. First, the NaN values that correspond to 

unmeasured points were removed. Besides, using the 

whole scene to feed these architectures is making 

difficult to identify local features and causes losing 

data. Therefore, the point cloud data was separated 

into 1 m2 blocks in xy plane to avoid these drawbacks. 

Lastly, the number of points that belong to a block 

must be a fixed number, and it was selected as 4096 in 

this study. The farthest point algorithm was employed 

for upsampling and downsampling to fix the number 

of points in blocks. Also, we discard the blocks that 

have less than 500 points. Although these 

architectures are able to process color and normal 

features of points, we only used point's x, y, and z 

coordinates. In the training process, we used default 

parameters for all architectures.Recall, precision, 

Intersection over Union (IoU), Mean Intersection over 

Union (MIoU), and accuracy (Acc) metrics were used 

to analyze the architectures' efficiency. True positive 

(TP) and false positive (FP) are defined as a correctly 

and incorrectly classified sample, which is owned to a 

positive class, respectively. On the other hand, false 

negative (FN) is an incorrectly classified sample to a 

positive class while the sample belongs to a negative 

class. The recall value of a class is the ratio of the true 

positive and total number of samples of that class 

(Equation (1)). The ratio of the true positive and total 

number of classified samples of a class is called the 

class's precision value (Equation (2)). The Intersection 

over Union of a class is the ratio of the true positive 

and the summation of the total number of samples and 

incorrectly classified samples (Equation (3)). Mean 

Intersection over Union (MIoU) is the mean of IoU of 

classes (Equation (4)). Lastly, accuracy is defined as 

the ratio of the total number of true positive for all 

classes and the total number of samples (Equation (5). 

 

  

  

  
 

Figure 2. Examples for the ESOGU RAMPS dataset. The left column shows the point cloud data. The right 

column indicates the corresponding RGB images. 
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4.2. Experimental Results 

The metric results obtained on the test dataset are 

given in Table 1. Besides, four example scenes are 

selected to examine the positive and negative aspects 

of architectures, and they are shown in Figure 3. In the 

figure, rows describe the ground truth and 

architectures, and columns are depicted selected 

example scenes. Besides, white ellipses are used to 

emphasize the incorrectly classified regions of 

architectures. It has been observed that for all classes, 

the DGCNN architecture produces results over 99% in 

all metrics, and it is the most successful among 

architectures. In contrast to other architectures, 

DGCNN does not expand local regions. Besides, it 

utilizes x, y, and z coordinates in the feature extraction 

process in the first layer while it considers feature 

space in the successive layers. These facts are the 

main reasons for the success of DGCNN. 
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

      (1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
       (2) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 
      (3) 

𝑀𝐼𝑜𝑈 =
∑ 𝐼𝑜𝑈𝑖
𝑛
𝑖=1

𝑛
        (4) 

𝐴𝑐𝑐 =
∑ 𝑇𝑃𝑖
𝑛
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)
𝑛
𝑖=1

       (5) 
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Figure 3. Visual Results 

 

Table 1. Metric Results 

 Inclined Ramp Wall Flat Ramp Terrain   

 𝑹 𝑷 𝑰𝒐𝑼 𝑹 𝑷 𝑰𝒐𝑼 𝑹 𝑷 𝑰𝒐𝑼 𝑹 𝑷 𝑰𝒐𝑼 MIoU Acc 

PointNet 98.3 96.1 94.6 99.1 99.9 99.0 96.8 98.1 95.0 99.9 99.8 99.8 97.1 98.9 

PointNet++ 99.5 98.9 98.5 99.9 99.9 99.8 89.0 93.4 83.8 95.9 93.6 90.0 93.0 96.8 

DGCNN 99.8 99.7 99.6 99.9 99.9 99.9 99.7 99.8 99.6 99.9 99.9 99.8 99.8 99.9 

PointCNN 99.7 99.4 99.2 99.5 99.9 99.4 99.6 64.6 64.4 67.0 99.4 66.8 82.5 90.4 

Point2Sequence 98.7 85.9 84.9 99.8 100.0 99.8 81.1 99.8 80.9 99.5 99.0 98.5 91.0 96.3 

PointConv 97.9 99.9 97.8 100.0 99.7 99.7 99.9 98.3 98.2 99.9 99.7 99.7 98.8 99.5 

ShellNet 99.7 99.9 99.6 100.0 100.0 99.9 71.2 93.5 67.9 97.1 84.7 82.7 87.5 94.2 

 

PointConv also yielded successful results similar to 

DGCNN. PointConv learns the convolution kernel 

weight through weight-shared MLP over the relative 

position of points in the local neighborhood. Then, it 

re-weight the convolution kernel according to the 

density of points. In this way, PointConv understands 

the general characteristic of a scene while avoiding 

suppressed features that correspond to dense local 

regions.  

 

PointNet assesses each point individually and also 

independently from other points. Therefore, it may 

produce erroneous results where the regions in which 

the points that belong to different classes are 

neighbors to each other. Examples for these erroneous 

regions are given in Figure 3. It is seen that wall and 

terrain classes are recognized successfully when the 

metric results are examined. However, PointNet may 

confuse flat and inclined ramp classes since they are 

generally placed together in scenes.  

 

PointNet++ classifies wall and inclined ramp classes 

with over 98% in all metrics. However, in some cases, 

it may not distinguish between terrain and flat ramp 

classes, as shown in Figure 3. PointNet++ exploits 

local information when it extracts point features 

similar to DGCNN. However, it expands the local 

regions in successive layers. This may cause 

confusing terrain and flat ramp classes since 

PointNet++ generally considers exact feature of points 

while the DGCNN utilizes the difference feature (in 

other words edges) of points.    

 

 

 

Point2Sequence, similar to PointNet, can identify wall 

and terrain classes. Point2Sequence constructs more 

than one local region with different radius values 

around a center point. Then, the features for these 

multi-scale concentric local regions are aggregated 

with the LSTM mechanism. Point2Sequence may 

yield erroneous results for the flat and inclined ramp 

classes. The reason for that, these ramps are generally 

situated together, and the  

 

features for different radius can describe these 

different classes. As a result, the LSTM mechanism 

may not consolidate a feature vector to distinguish 

these classes. Also, because of attention approaches, 

descriptive features may be suppressed.  

 

ShellNet behaves similar to PointNet++, which means 

that it can classify wall and inclined ramp, but it may 

confuse between terrain and flat ramp classes. The 

main difference between ShellNet and PointNet++ is 

that ShellNet applies maximum pooling and then 1D 

convolution to the shells' points, while PointNet++ 

directly employed maximum to all points in the local 

regions. In this way, ShellNet suppresses the dominant 

features, making it challenging to distinguish terrain 

and flat ramp classes.   

 

In contrast to other architectures, except PointConv,  

that consider points individually while extracting 

features, PointCNN calculates features by applying 

discrete convolution to a point and its neighbors. On 

the other hand, PointConv employs continuous 

convolution, and it does not order the points 

canonically. In this way, it preserves the general 
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characteristic of the scene. However, PointCNN 

confuses terrain and flat ramp classes since it only 

considers the transformation matrix learned through 

the X-Conv operator.   

 

V. CONCLUSION AND FUTURE WORKS 

This study aimed to classify walls, ramps, and terrain 

in NIST reference test arenas. To achieve that, 

PointNet, PointNet++, DGCNN, PointCNN, 

Point2Sequence, PointConv, and Shellnet point-based 

deep learning architectures were implemented. The 

tests were conducted using ESOGU RAMPS dataset. 

The test results showed that DGCNN and PointConv 

architectures are capable of classifying all classes. 

Besides, all architectures successfully identified wall 

class. However, it was observed that each architecture 

produce erroneous results depending on its own 

characteristic. Thus, by revealing the positive and 

negative aspects of these architectures, it was aimed to 

create a reference point for researchers who will use 

them for the classification of planar surfaces in NIST 

test reference areas. 

 

For future works, it is planned to classify walls, 

ramps, and terrain with data captured from an 

environment similar to NIST test reference areas in 

Eskisehir Osmangazi University Electrical and 

Electronics Engineering Artificial Intelligence and 

Robotics laboratory. At this point, the idea that is 

using the transfer learning method of the models 

trained with the ESOGU RAMPS dataset obtained 

from the Gazebo simulation environment and a small 

number of training data from the real environment 

comes to the fore. 
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