
Abstract—Electromyography (EMG) signals have been exten-
sively used for identification of finger movements, hand gestures
and physical activities. In the classification of EMG signals, the
performance of the classifier is widely determined by the feature
extraction methods. Thus, plenty of feature extraction methods
based on time, histogram and frequency domain have been
reported in literature. However, these methods have several draw-
backs such as high time complexity, high computation demand
and user supplied parameters. To overcome these deficiencies, in
this work, a new feature extraction method has been proposed to
classify EMG signals taken from two different datasets. While one
of the datasets includes 14 different finger movements, the other
consists of 20 different physical activities. The proposed method
is based on numerical fractional integration of time series EMG
signals with different fractional orders. K Nearest Neighborhood
(KNN) classifier with 8-fold cross validation has been employed
for prediction of EMG signals. The derived fractional features
can give better results than the two commonly used time domain
features, notably, mean absolute value (MAV) and waveform
length (WL) in terms of accuracy. The experimental results are
also supported with statistical analysis.

Index Terms—Fractional integration, feature extraction, EMG,
signal processing.

I. INTRODUCTION

Electromyography (EMG) signals are the measured bioelec-
trical signals that are generated by contraction of skeletal
muscles during neuromuscular activities [1]. EMG signals
have been widely used in broad scope of areas and applications
such as diagnosis of some diseases [2], in the design of
hand prosthesis [3]–[5] and entertainment industry [6]. With
the advances of science, technology and speed of computers,
EMG signals have become more important due to fact that
they make people’s life easier. Although the classification of
hand gestures [1], [7]–[9] is most common in literature, the
classification of finger movements [10], [11], movements of
different body parts and body position [12] has been also
researched.

The signal classification routine mainly consists of three
parts including pre-processing, feature extraction and classi-
fication [6], [13]. In pre-processing step, so as to eliminate
noises and interferences, the signals have been filtered firstly
then, the windowing of datasets has been performed for the
next step. On the other hand, in feature extraction step,
the distinctive information based on time, frequency and/or
time-frequency domains have been extracted. This step is
very crucial owing to fact that it effects the performance of
classifier, primarily. In the last step, the signals are classified

by an appropriate classifier according to some feature sets.
The prevailing classifiers are support vector machines (SVMs),
decision trees (DTs), Naive Bayes (NB), K Nearest Neighbor-
hood (KNN), neural networks (NNs), etc. [14], [15].

In order to classify the EMG signals, plenty of feature
extraction methods have been reported in literature [6], [13],
[15]–[17]. These methods can be split into three categories,
namely, time domain, frequency domain and time-frequency
domain (TFD). Since time domain features are calculated
from the amplitudes of raw EMG data without any additional
transformation, features in this category are fast and simple
to compute. On the other hand, frequency domain features are
usually based on statistical properties of power spectral destiny
or spectrum of the EMG signals. They are usually employed
for the muscle fatigue studies. Although TFD features may
cause a good classification accuracy, they are very complex
and time-consuming to compute. Moreover, they need to
reduce their high dimensions before the classification step.
Feature extraction methods have shown variable performance
for different problems. So, it is very complicated to say
that which feature set is the best for a specific problem.
Additionally, some of the available feature extraction methods
have good classification accuracy but they are usually complex
and high computational cost [16]. Therefore, the discovery
of new accurate feature extraction methods is still ongoing
research. So, the time domain fractional order integration
based feature extractor has been proposed in this work.

Fractional calculus, which considers the differential and
integral expressions of arbitrary order, has been gained increas-
ing interest, recently. It can find applications in engineering,
signal processing, control, biology and modeling [18]. In the
field of signal processing, the fractional order derivative and
integral operators are usually employed for filtering purpose
[19]. By means of fractional derivative, the canceling of
electrocardiogram (ECG) artifacts in surface EMG signals
[20], the detection of P and T waves [21], the detection of
R wave in ECG [22], zero phase filtering for ECG denoising
[23] and heart rate detection [24] have been studied. On the
other hand, by using fractional integral, zero phase filtering
on ECG signal [25] and ECG signal denoising [26] have been
investigated. Except usage of fractional derivative and integral
operators, electroencephalography and EMG signals have been
filtered by fractional order filters [27]–[29]. To the best of
the authors’ knowledge, there is no study about fractional
integration based feature extraction method for EMG signals
in the literature yet.

Fractional order integration is the integration of arbitrary
order [30]. Even though there are various fractional order in-
tegral definitions, Caputo and Riemann-Liouville (R-L) types
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are prominent ones [31]. It should be mentioned this point
that these definitions are viable for continues time analog
signals. However, their numerical version are also available in
literature [32], [33]. The numerical version of R-L fractional
integral in [33] is exploited in this work. The well-known
time domain features of EMG signals mean absolute value
(MAV), zero crossing, slope sign changes, waveform length
(WL), Willison amplitude, variance, skewness, kurtosis etc.
have been broadly used [1]. However, a number of valuable
studies have shown that some of these features are redundant
while the features of MAV and WL are usually significant
and distinctive in terms of classification performance [1], [6].
Since the introduced feature extraction method is based on
time-domain, this method has been compared with MAV and
WL features.

Observing the performance of the proposed extraction
method clearly, two different EMG signal datasets are taken
into consideration. One of the datasets has eight channel
fourteen different finger movements [11], while the other
dataset has twenty different physical activities. On the other
hand, to classify the EMG signals, KNN classifier with 8-fold
cross validation has been operated for twenty times.

This work is structured as four sections. In the first section,
the main reason of this work is introduced. In the second
section, feature extraction methods with the proposed one
are considered. In the section three, experimental results are
presented and discussed. In the last section, in the lights of
experimental results, the conclusion and possible future works
are given.

Fig. 1. Finger motions

II. METHOD

In this section, three steps involving pre-processing, feature
extraction and classification are performed, respectively.

A. Datasets

The dataset 1 is provided by Khushaba et al. for safe driving.
During car driving, the distracting motions such as tuning

Fig. 2. Sliding windowing of data

the radio, controlling the windows and answering the phone
endanger drivers’ lives. To tackle this problem, simple finger
motions (FM) can be used to perform the aforementioned
tasks. However, the classification of FM is not that easy.
Fourteen different FM demonstrated in Fig. 1 are recorded
from eight channel EMG apparatus that is connected to driver’s
right arm. The eight subjects are participated in the experience.
On the other hand, the dataset 2 involves three male and
one female subjects. Each subject performed ten normal and
ten aggressive physical activities (PA) during sessions. Eight
channel EMG signals are recorded from right and left arms as
well as legs.

B. Pre-processing

Pre-processing is split into two steps. In the first step,
raw EMG signals are denoised by means of the sixth order
band-pass Butterworth filter with 20 − 450Hz bandwidth.
Therefore, meaningful information is obtained. The second
step is windowing of the filtered signals. To do this, a window
of 128ms wide is sliding on the signals with a time step 25ms
as shown in Fig. 2. Each window of 128ms wide is used for
the feature extraction.
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C. Feature Extraction

High accuracy classification rate is achieved by effective
feature extraction. For dataset 1, a typical signal part of 128ms
window wide corresponds to 512 samples per channel due to
sampling frequency 4kHz. Totally, 4096 samples are available
for eight channel. When whole signal length is considered,
such a high sample can not be directly load the classifier. So
feature extraction is a vital part of whole signal processing
process. On the other hand, for a dataset 2, 331 samples per
channel and totally 2648 samples are available. The features
are numerical data that represents the original signal as good as
possible. In this work, the following feature extraction methods
are exploited owing to fast and easy computation.

1) Mean Absolute Value (MAV): MAV is the mean of
the absolute values of the respective EMG signal amplitude.
For EMG samples xk (k = 1, 2, ...N), the mathematical
expression of MAV is given as

MAV =
1

N

N∑
k=1

|xk| (1)

where N represents the total data points in a window.
2) Waveform Length (WL): WL is the sum of the amplitude

differences between adjacent data points. It is the indicator of
degree of amplitude change. WL is expessed as

WL =

N−1∑
k=1

|xk+1 − xk| (2)

where xk and xk+1 are two adjacent data points of respective
signal and N is the sample size.

3) The Proposed Feature Extraction Methods: The pro-
posed new feature extraction methods are based on fractional
integration of arbitrary order. It is known that MAV and WL
depend on integration of the integer order that is a special
case of the fractional order. However, the fractional integration
removes this limitation and provides extra freedom for re-
searchers. The numerical version of R-L fractional integration
is reported in [33] and computed in the interval (0, T ) as

IαxN (h) =
hα

Γ(2 + α)

N∑
n=0

cn,Nxn (3)

Iαx(T ) = IαxN (h) +O(h2) (4)

where α > 0 is fractional order, h = T/N is time step, N is
total data points Γ(.) is Gamma function, xn,N is respective
signal, O(h2) is error term and cn,N is quadrature weights
that is defined as below.

cn,N =


(1 + α)Nα − Nα+1 + (N − 1)α+1 if n = 0

(N − n + 1)α+1 − 2(N − n)α+1 + (N − n − 1)α+1 if 0 < n < N
1 if n = N


(5)

4) Fractional Absolute Value (FAV): FAV is the fractional
integration of the absolute values of EMG signal points.
Fractional integration order range from 0.1 to 1.5. The general
expression of FAV is given below.

FAV = Iα |xk| (6)

If (6) is inserted into (3), the following equation is derived as

FAV =
hα

Γ(2 + α)

N∑
k=0

ck,N |xk| (7)

where xk (k = 0, 1, ...N) is EMG signal amplitude at the kth

point.
5) Fractional Waveform Length (FWL): FWL is the frac-

tional integration of the amplitude differences between adja-
cent data points of EMG signal. Fractional integration order
range from 0.1 to 1.5. The general expression of FWL is given
below.

FWL = Iα |xk+1 − xk| (8)

By inserting (8) into (3), the following equation is derived as

FWL =
hα

Γ(2 + α)

N∑
k=0

ck,N |xk+1 − xk| (9)

III. RESULTS AND DISCUSSIONS

Extensive experiments on two public EMG data sets are
conducted on a PC with an Intel I7 4GHz processor with
16GB of RAM to verify the effectiveness and efficiency of the
proposed methods, including FAV and FWL. The performance
of the proposed methods are investigated for the different frac-
tional orders.The accuracy value, which is obtained by using
KNN classification method, is used as a performance metric
for all simulations conducted in this study. The simulations are
conducted by using two different data sets and are repeated
20 times with 8-cross validation technique for all fractional
orders related to proposed methods and traditional methods
including MAV and WL.

A. Comparison of the classification performance of the pro-
posed method with respect to fractional order

In this section, we show how to select the fractional order
(FO) for EMG data sets in FAV and FWL schemes. Since,
the maximum possible accuracy value of the proposed method
may vary between different fractional order values. For this
reason, the results on each data set for each prosed method
are presented in Fig. 3 and 4 for better visual clarity.

The Fig. 3 and 4 show that the changing accuracy values of
the proposed methods FAV and FWL with respect to fractional
order for the FM and PA data sets, respectively. The accuracy
rates are demonstrated in Fig. 3 for FM dataset where the
average accuracy rates raised from 36.45% to 97.59% with
changing FO = 0.1 to 1.07. FO = 0.1 score the lowest
accuracy rate of 36.45%, while FO = 1.04 and 1.07 produce
the highest accuracy rate of 97.59%. On the other hand in
Fig. 4 we observe the lowest accuracy rate 46.4% with FO =
0.1 and the highest one 97.99% with FO = 1.07 for FAV
method in PA data set. Also, it seen that from the same figure
proposed method FWL has the worst and best performance
for FO = 0.1 and FO = 1.06, respectively.

The results in Fig. 3 and 4 show that the classification accu-
racy of the proposed method for all four cases always yields
the smallest classification performance between FO = 0.1 and
FO = 1.01. The accuracy of proposed method is observed to
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Fig. 3. The changing accuracy values of the proposed methods FAV and FWL with respect to the FO for the FM data set.
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Fig. 4. The changing accuracy values of the proposed methods FAV and FWL with respect to the FO for the PA data set.

increase often monotonically with increasing the FO values
up to a point where its location between FO = 1.01 and
FO = 1.1 and its best performance is attained in this range.
In simulation, we observe that the typical ranges of appropriate
FO parameter do not usually vary dramatically for two EMG
sets and adjusting this parameter to values within the interval
FOε[1.01, 1.1]

To better assess how accuracies change according to each
simulation, we represent results in Fig. 5, 6, 7 and 8 for
the nine best FO values. The results for the FM data set
are presented in Fig. 5 and 6 with red and black color,
along with the result of the conventional methods MAV and
WL with blue color, for comparison. The proposed methods
performance are better than conventional methods. Particularly
proposed methods FAV and FWL exhibit the best classification
performance for FO = 1.04 and FO = 1.09 with red
color, respectively for FM data set. In the other data set PA,
when comparing the proposed methods FAV and FWL to
conventional methods MAV and WL, the proposed methods
FAV with FO = 1.02 and FWL with FO = 1.06 has the best
accuracy for each of these measures.

Some detailed descriptive statistical values, including, max-
imum (max), minimum (min), mean and standard deviation
(std) are illustrated in Table I, II, III and IV for FM data
set with FAV, FWL methods and PA data set with FAV,
FWL methods, respectively. The results for the proposed FAV
(FO = 1.04) at FM data set given in Table I where its accu-

racy rate are higher than conventional method MAV. Regarding
another proposed method FWL (FO = 1.09) at the same data
set, it can be seen from Table II its classification performance
is better than the conventional method WL. In the case of FM
data set, the results are listed in Table III and Table IV where
the best accuracies values are FAV (FO = 1.02) and FWL
(FO = 1.06), respectively.

The proposed feature extraction methods based on fractional
integration are sufficient especially regarding the complexity
of the classification of EMG signals in a practical application.
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Fig. 5. Proposed method FAV performance throughout simulations for FM
data set.
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Fig. 6. Proposed method FWL performance throughout simulations for FM
data set.
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Fig. 7. Proposed method FAV performance throughout simulations for PA
data set.
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Fig. 8. Proposed method FWL performance throughout simulations for PA
data set.

B. Statistical analysis for the proposed method

In line of obtained results from the experimental study
and basic descriptive statistical analysis, it should be note
that proposed method has superior classification performance
than the conventional approaches. However, in this section
we validate obtained results by performing some additional
statistical analysis. Since, we understand whether there is a
sufficient difference between proposed method and conven-
tional method or not. We have performed the Wilcoxon signed-
rank test which is a non-parametric statistical test utilized to
compare two repeated methods to assess whether two method
is diffrent than each other. This test is an alternative to the
paired t-test when the distribution of the differences between
the two samples cannot be assumed to be normally distributed.
A Wilcoxon signed-rank test is a nonparametric test, which
utilized to determine whether two dependent samples are
selected from populations having the same distribution.

The statistical results are listed in Table V and VI for FM

TABLE I
SOME DETAILED DESCRIPTIVE STATISTICAL VALUES, INCLUDING, MAX,

MIN, MEAN AND STD FOR FAV AT FM DATA SET

FM-FAV (1.04)
Method Max Mean Min std
FO: 0.1 36.5354 36.4508 36.3472 0.0537
FO: 0.2 58.09 58.0064 57.9199 0.0506
FO: 0.3 75.3074 75.1853 75.091 0.0478
FO: 0.4 85.573 85.5058 85.4662 0.0281
FO: 0.5 91.1336 91.089 91.0375 0.0252
FO: 0.6 94.0518 94.0054 93.9647 0.0245
FO: 0.7 95.7804 95.7436 95.7092 0.018
FO: 0.8 96.8417 96.7994 96.7738 0.0168
FO: 0.9 97.3904 97.35 97.318 0.0195
FO: 1.01 97.5978 97.545 97.509 0.022
FO: 1.02 97.6068 97.5758 97.5379 0.0203
FO: 1.03 97.6079 97.5733 97.5497 0.0172
FO: 1.04 97.6158 97.5858 97.5514 0.0165
FO: 1.05 97.6 97.5677 97.5379 0.0159
FO: 1.06 97.6045 97.5705 97.5446 0.0138
FO: 1.07 97.6147 97.5853 97.5452 0.0167
FO: 1.08 97.5944 97.571 97.5514 0.0132
FO: 1.09 97.6 97.5703 97.5452 0.0166
FO: 1.1 97.5893 97.5623 97.5333 0.0146
FO: 1.2 97.4876 97.4585 97.439 0.0122
FO: 1.3 97.3011 97.2539 97.2152 0.0254
FO: 1.4 97.027 96.9759 96.9439 0.0206
FO: 1.5 96.6631 96.6393 96.6009 0.0195
MAV 97.6034 97.562 97.5401 0.0177

and PA data sets. It can be seen that from Table V there is no
statistical significance between the proposed method FAV with
FO = 1.04 and its variants, including, FAV with FO = 1.02,
1.03, 1.06, 1.07, 1.08 and 1.09 in FM data set. On the other
hand in favor of FAV with 1.04 we observe statistical sig-
nificance between FAV with 1.04 and conventional technique
MAV. In case of FWL with FO = 1.09, we observe nearly
same results.

TABLE II
SOME DETAILED DESCRIPTIVE STATISTICAL VALUES, INCLUDING, MAX,

MIN, MEAN AND STD FOR FWL AT FM DATA SET

FM-FWL (1.09)
Method Max Mean Min std
FO: 0.1 33.4426 33.3686 33.2521 0.0466
FO: 0.2 56.2048 56.115 56.042 0.0524
FO: 0.3 74.9435 74.8614 74.7836 0.0478
FO: 0.4 86.1737 86.1159 86.0432 0.0345
FO: 0.5 92.2061 92.1516 92.088 0.0325
FO: 0.6 95.1091 95.0726 95.0429 0.018
FO: 0.7 96.6936 96.6652 96.6354 0.0167
FO: 0.8 97.5627 97.5358 97.5113 0.0177
FO: 0.9 98.0431 98.0253 98.0024 0.0111
FO: 1.01 98.251 98.2305 98.1951 0.0134
FO: 1.02 98.2663 98.2447 98.2188 0.0126
FO: 1.03 98.277 98.2506 98.2177 0.0126
FO: 1.04 98.2866 98.267 98.2465 0.0105
FO: 1.05 98.2804 98.2627 98.2352 0.0146
FO: 1.06 98.3064 98.2715 98.2442 0.0159
FO: 1.07 98.303 98.2735 98.2499 0.0124
FO: 1.08 98.2951 98.2695 98.225 0.0144
FO: 1.09 98.2957 98.2756 98.2527 0.0125
FO: 1.1 98.2979 98.2676 98.2363 0.0163
FO: 1.2 98.2177 98.1942 98.1736 0.014
FO: 1.3 98.0736 98.0508 98.0182 0.0147
FO: 1.4 97.8447 97.8217 97.7922 0.0168
FO: 1.5 97.6368 97.5984 97.5712 0.0171
WL 98.2538 98.2235 98.1922 0.0144
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TABLE III
SOME DETAILED DESCRIPTIVE STATISTICAL VALUES, INCLUDING, MAX,

MIN, MEAN AND STD FOR FAV AT PA DATA SET

PA-FAV (1.02)
Method Max Mean Min std
FO: 0.1 46.7181 46.4002 46.1878 0.1173
FO: 0.2 60.6382 60.4873 60.3522 0.0852
FO: 0.3 72.568 72.3661 72.1866 0.1107
FO: 0.4 82.0397 81.9231 81.7627 0.0739
FO: 0.5 89.1637 89.0464 88.9015 0.0709
FO: 0.6 93.6627 93.5897 93.4601 0.0504
FO: 0.7 96.1982 96.13 96.0343 0.0447
FO: 0.8 97.387 97.3277 97.2231 0.0448
FO: 0.9 97.8488 97.794 97.7386 0.0327
FO: 1.01 98.0395 97.9759 97.8786 0.0424
FO: 1.02 98.0693 97.9892 97.8965 0.0378
FO: 1.03 98.0514 97.9585 97.8846 0.0386
FO: 1.04 98.0663 97.9799 97.9173 0.044
FO: 1.05 98.0216 97.9485 97.8607 0.0513
FO: 1.06 98.0187 97.9531 97.8399 0.0443
FO: 1.07 98.0246 97.9445 97.8935 0.0338
FO: 1.08 98.0157 97.955 97.8756 0.0366
FO: 1.09 98.0157 97.9533 97.8965 0.0335
FO: 1.1 97.9829 97.899 97.8429 0.0354
FO: 1.2 97.8607 97.7825 97.7058 0.0457
FO: 1.3 97.7088 97.6352 97.5807 0.0309
FO: 1.4 97.5092 97.4506 97.393 0.0273
FO: 1.5 97.1665 97.0683 96.9848 0.0523
MAV 98.0395 97.985 97.9114 0.0299

In case of PA data set, we observed statistically significant
results among the different FO values. However, there is no
significance between proposed method FAV with FO = 1.02
and MAV methods. The possible reason of the this result is that
conventional MAV has FO = 1, which is near to FO = 1.02.
Besides, in favor of the proposed method FWL with FO =
1.06 it seen that there is statistically significance between FWL
and conventional WL.

TABLE IV
SOME DETAILED DESCRIPTIVE STATISTICAL VALUES, INCLUDING, MAX,

MIN, MEAN AND STD FOR WL AT PA DATA SET

PA-FWL (1.06)
Method Max Mean Min std
FO: 0.1 44.9692 44.7651 44.5491 0.11
FO: 0.2 60.0185 59.7835 59.6043 0.1097
FO: 0.3 71.9632 71.7854 71.5639 0.0987
FO: 0.4 81.0863 80.9338 80.7675 0.1012
FO: 0.5 87.8795 87.7855 87.6263 0.0713
FO: 0.6 91.9048 91.8278 91.6515 0.0597
FO: 0.7 94.78 94.6557 94.5297 0.0602
FO: 0.8 96.4634 96.3914 96.2935 0.0455
FO: 0.9 97.2768 97.1978 97.1189 0.0472
FO: 1.01 97.539 97.4528 97.3959 0.0389
FO: 1.02 97.5449 97.4624 97.4049 0.0376
FO: 1.03 97.5241 97.4485 97.4049 0.0365
FO: 1.04 97.5151 97.4488 97.3721 0.0393
FO: 1.05 97.53 97.4585 97.3423 0.0454
FO: 1.06 97.5866 97.4774 97.3691 0.0513
FO: 1.07 97.5539 97.4418 97.3572 0.0419
FO: 1.08 97.4972 97.4448 97.3572 0.0329
FO: 1.09 97.5836 97.4676 97.3781 0.0517
FO: 1.1 97.5568 97.4317 97.3572 0.056
FO: 1.2 97.381 97.3164 97.2321 0.0441
FO: 1.3 97.2261 97.1478 97.0861 0.0372
FO: 1.4 96.8894 96.8062 96.7256 0.039
FO: 1.5 96.517 96.4379 96.2995 0.0588
WL 97.4496 97.4065 97.3155 0.0294

TABLE V
STATISTICAL RESULTS FOR THE FM DATA SET

Finger Movement Data Set
MAV-FO: 1.04 WL-FO: 1.09

Method p-val Sig. Method p-val Sig.
FO: 0.1 0 FO: 1.04 FO: 0.1 0 FO: 1.09
FO: 0.2 0 FO: 1.04 FO: 0.2 0 FO: 1.09
FO: 0.3 0 FO: 1.04 FO: 0.3 0 FO: 1.09
FO: 0.4 0 FO: 1.04 FO: 0.4 0 FO: 1.09
FO: 0.5 0 FO: 1.04 FO: 0.5 0 FO: 1.09
FO: 0.6 0 FO: 1.04 FO: 0.6 0 FO: 1.09
FO: 0.7 0 FO: 1.04 FO: 0.7 0 FO: 1.09
FO: 0.8 0 FO: 1.04 FO: 0.8 0 FO: 1.09
FO: 0.9 0 FO: 1.04 FO: 0.9 0 FO: 1.09
FO: 1.01 0 FO: 1.04 FO: 1.01 0 FO: 1.09
FO: 1.02 0.1367 Nan FO: 1.02 0 FO: 1.09
FO: 1.03 0.0166 Nan FO: 1.03 0 FO: 1.09
FO: 1.05 0.0025 FO: 1.04 FO: 1.04 0.0274 FO: 1.09
FO: 1.06 0.0055 Nan FO: 1.05 0.0123 FO: 1.09
FO: 1.07 0.8924 Nan FO: 1.06 0.4247 Nan
FO: 1.08 0.0055 Nan FO: 1.07 0.4648 Nan
FO: 1.09 0.0055 Nan FO: 1.08 0.2183 Nan
FO: 1.1 0.0001 FO: 1.04 FO: 1.1 0.1554 Nan
FO: 1.2 0 FO: 1.04 FO: 1.2 0 FO: 1.09
FO: 1.3 0 FO: 1.04 FO: 1.3 0 FO: 1.09
FO: 1.4 0 FO: 1.04 FO: 1.4 0 FO: 1.09
FO: 1.5 0 FO: 1.04 FO: 1.5 0 FO: 1.09
MAV 0.0003 FO: 1.04 WL 0 FO: 1.09

TABLE VI
STATISTICAL RESULTS FOR THE PA DATA SET

Physical Action Data Set
MAV-FO: 1.02 WL-FO: 1.06

Method p-val Sig. Method p-val Sig.
FO: 0.1 0 FO: 1.02 FO: 0.1 0 FO: 1.06
FO: 0.2 0 FO: 1.02 FO: 0.2 0 FO: 1.06
FO: 0.3 0 FO: 1.02 FO: 0.3 0 FO: 1.06
FO: 0.4 0 FO: 1.02 FO: 0.4 0 FO: 1.06
FO: 0.5 0 FO: 1.02 FO: 0.5 0 FO: 1.06
FO: 0.6 0 FO: 1.02 FO: 0.6 0 FO: 1.06
FO: 0.7 0 FO: 1.02 FO: 0.7 0 FO: 1.06
FO: 0.8 0 FO: 1.02 FO: 0.8 0 FO: 1.06
FO: 0.9 0 FO: 1.02 FO: 0.9 0 FO: 1.06
FO: 1.01 0.3716 Nan FO: 1.01 0.1134
FO: 1.03 0.0065 FO: 1.02 FO: 1.02 0.2232
FO: 1.04 0.2729 Nan FO: 1.03 0.0396 FO: 1.06
FO: 1.05 0.0094 FO: 1.02 FO: 1.04 0.0719 FO: 1.06
FO: 1.06 0.0105 FO: 1.02 FO: 1.05 0.2182
FO: 1.07 0.0004 FO: 1.02 FO: 1.07 0.0122 FO: 1.06
FO: 1.08 0.0065 FO: 1.02 FO: 1.08 0.0127 FO: 1.06
FO: 1.09 0.0053 FO: 1.02 FO: 1.09 0.3864
FO: 1.1 0 FO: 1.02 FO: 1.1 0.0109 FO: 1.06
FO: 1.2 0 FO: 1.02 FO: 1.2 0 FO: 1.06
FO: 1.3 0 FO: 1.02 FO: 1.3 0 FO: 1.06
FO: 1.4 0 FO: 1.02 FO: 1.4 0 FO: 1.06
FO: 1.5 0 FO: 1.02 FO: 1.5 0 FO: 1.06
MAV 0.6649 Nan WL 0 FO: 1.06

In general, we can say that proposed method is statistically
sufficient than the conventional methods. However proposed
methods produce close results according to same FO values
ranging 1.02 and 1.09.

IV. CONCLUSION

We proposed a new technique based on fractional integra-
tion to enhance the performance of a EMG feature extractors,
including MAV and WL. The obtained results show that new
MAV and WL, renamed as FAV and FWL, respectively can
be used as sufficient feature extraction method. This method

137

user
Typewritten text
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 10, No. 2, April 2022                                             	

user
Typewritten text
Copyright © BAJECE                                                                ISSN: 2147-284X                                                     http://dergipark.gov.tr/bajece       

user
Typewritten text
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------



can be applied any feature extractor based on integration for
further researches. Only limitation of the proposed method
is that it is depend on an user supplied parameter fractional
order. In order to solve this problem we performed number of
simulations, which lead how to choose this value. On the other
hand, the fractional derivative based feaure extraction method
may be a candidate for the future studies.
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