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INTRODUCTION
The discovery of melatonin as an antioxidant (1) 
has stimulated a large number of studies related 
to the ability of this molecule to protect lipids, 
proteins and DNA from oxidative damage (2-6). 
Indeed, a literature search in PubMed indicates 
more publications related to the free radical scav-
enging and antioxidative actions of melatonin 
than in any other area of research on this mole-
cule.

A remarkable feature of melatonin is the variety 
of actions it utilizes to reduce oxidative stress, i.
e., the damage resulting from the oxidation of 
molecules by free radicals and related reactants. 
Besides its ability to scavenge the highly toxic hy-
droxyl radical (.OH), melatonin is also effective in 
neutralizing the peroxynitrite anion (ONOO-), 
hydrogen peroxide, the superoxide anion radical 
(O2.-), singlet oxygen as well as other reactants (1, 
2, 7-16).

When melatonin functions as a free radical scav-
enger, it generates other metabolites that are like-
wise capable of detoxifying radical species and/

or their molecular derivatives. These metabolites 
include cyclic 3-hydroxymelatonin, N1-acetyl-
N2-formyl-5-methoxykynuramine (AFMK), and 
N1-acetyl-5-methoxykynuramine (AMK) among 
others (4, 13, 14, 17, 18); the relation of these me-
tabolites is outlined in Figure 1.

Besides radical scavenging, melatonin has indi-
rect antioxidative actions by means of its ability 
to stimulate antioxidative enzymes (19-22). These 
enzymes remove radicals and their precursors, 
thus, reducing the likelihood of oxidative dam-
age. Moreover, melatonin, or its metabolite, 
AMK, inhibits one pro-oxidative enzyme, i.e., in-
ducible nitric oxide synthase (iNOS) (23). Inhibi-
tion of this enzyme reduces the formation of ni-
tric oxide (NO.) which has the capability of cou-
pling with the O2.- to form the ONOO-. Hence, by 
reducing the activity of iNOS melatonin limits 
formation of the ONOO-, a non-radical reactant 
which is equally toxic to .OH.

One aspect of melatonin’s ability to forestall oxi-
dative damage and limit cellular death due to 
free radical-mediated apoptosis seems to have 
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been somewhat overlooked. In 1999, Urata and colleagues re-
ported that melatonin elevated the intracellular levels of an-
other critically important antioxidant, glutathione (GSH), by 
stimulating its synthesis at the level of its rate limiting enzyme 
gamma-glutamylcysteine synthase (now know as glutamyl 
cysteine ligase) (24). This finding did not receive much atten-
tion nor interest although the observation was later confirmed 
by Winiarska et al (25). Recently, however, Sainz and co-work-
ers reported that the incubation of either LNCap or PC3 pros-
tate cells with melatonin almost doubled the already high con-
centrations of GSH and protected the cells from ionizing radia-
tion, a treatment associated with excessive free radical genera-
tion (26). In the same study, depletion of GSH levels by inhibi-
tion of its synthesis greatly increased the vulnerability of these 
cells to radiation-mediated damage and apoptosis. Collective-
ly, the results of this study and of the two other published re-
ports in this field suggest that the ability of melatonin to incre-
mentally change intracellular GSH levels may be a more im-
portant aspect of the indole’s antioxidant activity than origi-
nally envisaged.

Another feature that contributes to melatonin’s efficiency in 
reducing oxidative stress is its ability to curtail electron leak-
age from the complexes of the respiratory chain in the mito-
chondria. As electrons are shunted between the complexes of 

the electron transport chain (ETC), some of them escape and 
interact with nearby oxygen molecules to generate the O2.-. 
Melatonin theoretically works at the level of Complex I and 
Complex III of the ETC to increase the efficiency of electron 
transfer and reduce electron leakage (27-30); this action has 
come to be known as the radical avoidance action of melatonin 
(13, 29).

The combination of the actions of melatonin and its metabo-
lites described herein obviously makes it an optimal molecule 
for resisting damage to critical cellular organelles and mole-
cules that are normally a consequence of free radicals and re-
lated reactants which are persistently generated within cells 
because of their usage of oxygen as the basis of their metabo-
lism. Importantly, melatonin has been shown to function with-
in membranes, mitochondria, cytosol and within the nucleus 
to resist free radical mutilation (31). In doing so, it functions as 
a critical factor in reducing cellular loss due to apoptosis (32). 
As a result, melatonin may have a critical function in limiting 
organ deterioration that accompanies toxin exposure, ionizing 
radiation, prescription drug usage, and the process of aging.

Membrane structure
Membranes in cells, i.e., the plasma membrane as well as those 
of subcellular organelles, are similar in structure, i.e., the pho-
pholipid bilayer is universally the basic construct of cellular 
membranes. Phospholipids are amphiphilic molecules with a 
hydrophobic and a hydrophobic portion. The essential physi-
cal forces for organizing biological membranes are the hydro-
phobic interactions between the fatty acyl chains of the lipid 
molecules. These interactions allow the formation of the phos-
pholipid bilayer, with the polar heads facing the surrounding 
aqueous surfaces while the fatty acyl positions form a continu-
ous hydrophobic interior. Each phospholipid layer is referred 
to as a leaflet.

All membranes contain the following lipids: phosphotidylcho-
line, phosphotidylserine, phosphotidylethanolamine, sphin-
gomyelin and phosphotidylinositol. Many membranes also 
contain cholesterol, a molecule particularly abundant in the 
plasma membranes of mammalian cells. Another lipid, cardi-
olipin (diphosphatidylglycerol), is found only in the inner mi-
tochondrial membrane.

Besides lipids, membranes also contain proteins. The ratio of 
proteins to lipids varies widely among membranes from dif-
ferent structures. Thus, the inner mitochondrial membrane is 
roughly 75% protein while the myelin membrane is composed 
of only 18% protein. Examples of proteins in cellular mem-
branes include pores, channels, and receptors for hormones 
and neurotransmitters.

Additionally, carbohydrates are essential constituents of many 
membranes. They are bound either to proteins as components 
of glycoproteins or to lipids as constituents of glycolipids. Car-
bohydrates are particularly abundant in the plasma membrane 
of cells of eukaryotes but they are absent from the inner mito-
chondrial membranes.

Melatonin and membrane lipid peroxidation
Lipids, as compared to most other molecules, are readily dam-
aged by free radicals. As a result, because of their high phos-
pholipid content, cellular membranes are often rendered less 

TABLE 1. Representative reports in which melatonin was found to reduce 

the level of induced lipid peroxidation. There are a very large number of pub-

lications documenting the ability of melatonin to reduce the oxidation of 

membrane lipids in many different species and induced by many different 

means.

Species Means used to Lipid peroxidation Reference
 induce oxidative parameter lowered 
 stress by melatonin 

Human Sepsis in premature Blood MDA (37)
 newborns
Human Asphyxiation Blood MDA (38)
 in newborn
Human Major vascular Blood MDA (39)
 surgery
Rat Kianic acid Brain MDA (40)
Rat Paraquat Respiratory MDA (41)
Rat Excessive exercise Muscle MDA (42)
Rat Phenobarbital Hepatic MDA (43)
Rat Ischemia-reperfusion Hepatic MDA (44)
Rat Carbon tetrachloride Hepatic lipid (45)
 Peroxides
Rat Dinitrobenzene Colon MDA (46)
 sulfonic acid
Rat Streptozocin-induced Brain, liver (47)
 diabetes and renal MDA
Rat Danorubicin or Renal MDA+ (48)
 doxorubicin 4-HDA
Rat Gentamicin Blood MDA (49)
Rat Alendronat Stomach MDA (50)
Rat Pressure Skin and remote (51)
 organ MDA
Rat Diquat Plasma, liver (52)
 Plasma isoprostanes
Mouse Diquat Plasma, liver (53)
 and kidney
 isoprostones
Mouse High-LET Fe56 Cerebellar (54)
 particle irradiation MDA
Dove Latex bead Blood MDA (55)

MDA=malondialdehyde; 4-HDA=4-hydroxylalkenals.
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than optimally functional. This negatively impacts not only 
their physiology but that of the entire cell.

The process of membrane lipid peroxidation is a result of an 
attack upon a lipid by any species that is sufficiently reactive 
to abstract a hydrogen molecule from a methylene (-CH2-) 
group. Fatty acids with no or one double bond are relatively 
more resistant to hydrogen extraction; however, polyunsatu-
rated fatty acids (PUFA) are highly vulnerable. The process of 
initiation of lipid peroxidation is readily achieved by the high-
ly reactive .OH and by the ONOO-. Peroxidation of PUFA 
eventually gives rise of lipid peroxyl radicals (LOO.) which are 
also capable of abstracting a hydrogen from an adjacent fatty 
acid molecule. Thus, the peroxidation of lipids in propagated 
by a molecule formed in the breakdown of lipids; this propa-
gation state ensures that the process becomes a chain reaction. 
Theoretically, if not interrupted, once underway the peroxida-
tion of a single fatty acid could result in the breakdown of all 
the lipids in a cell or in a tissue. Fortunately, the chain reaction 
can be interrupted by peroxyl radical scavengers, i.e., the so-
called chain breaking antioxidants. Vitamin E is an excellent 
chain breaking antioxidant.

The ability of melatonin to limit or prevent the peroxidation of 
membrane lipids has been frequently investigated (33-36). The 
usual indices for estimation of the degree of lipid breakdown 
are the measurements of malondialdehyde and 4-hydroxy-
alkenals (MDA+4-HDA). The biochemical assays for these 
molecules are not particularly sensitive but they are simple 
and widely used. There are a very large number of reports re-
lated to the ability of melatonin to reduce tissue levels of MDA, 
4-HDA or both (Table 1).

From the findings summarized in the table and the literature 
publications it is obvious that melatonin is highly effective in 
reducing the oxidation of membrane lipids. This protective ac-
tion of melatonin is independent of the technique used to esti-
mate levels of damaged lipid products, of the species in which 
melatonin’s efficacy was investigated or the method/toxin 

used to induce lipid peroxidation. Moreover, melatonin has 
this capability in every organ, a fact that documents its ability 
to cross all morphophysiological barriers. When compared to 
vitamin E, considered to be the premier lipid antioxidant, me-
latonin actually was found to be more effective in limiting lipid 
membrane destruction (47).

One particular class of toxic agents generated during lipid per-
oxidation is the isoprostanes. These are prostaglandin-like 
molecules formed during the peroxidation of arachodonic acid 
as well as from eicosapentaenoic (EPA) and docosahexanoic 
(DHA); collectively they are referred to as the F2-isoprostanes. 
These agents are highly useful markers of lipid peroxidation 
and can be measured in tissue, blood and urine. F2-isopros-
tanes are highly stable molecules and are usually quantified 
using gas chromatography/mass spectrometry (GC/MS).

Zhang et al ., (52) and Xu and colleagues (53) used the level of 
isoprostanes to evaluate melatonin’s ability to protect against 
damage to lipids in hepatic cellular membranes following the 
treatment of animals with the bipyridyl herbicide, diquat. This 
highly toxic molecule is widely used throughout the world 
and its ingestion can cause serious damage to lipids and even 
death. When Fischer 344 rats were injected with 40 mg/kg di-

FIGURE 1. Melatonin, when it functions as a scavenger, is metabolized to cyclic 

3-hydroxymelatonin or N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). Like the 

parent molecule, these metabolites are likewise effective free radical scavengers. 

In doing so, cyclic 3-hydroxymelatonin is metabolized to AFMK while AFMK is con-

verted to N1-acetyl-5-methoxykynuramine (AMK). The sequential scavenging of 

radicals by melatonin and its metabolites is referred to as the antioxidant cascade 

of melatonin

FIGURE 2. Hepatic and renal levels of F2-isoprostanes, a sensitive index of lipid 

peroxidation, in mice at 6 hours after an intraperitoneal injection of either saline 

(Control) or the toxic bipyridyl herbicide, diquat. Half of the mice in each group 

were given an intraperitoneal injection of melatonin 30 minutes prior to either the 

saline or diquat injections. F2-isoprostanes were measured using gas chromatog-

raphy/negative chemical ionization mass spectrometry. Data are means ± SEM.
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quat (40mg/kg), a rapid rise in plasma and hepatic isoprotane 
levels were measured with peak values being achieved within 
3 (liver) or 6 hours (plasma), respectively (52). Rats given me-
latonin (20mg/kg) concomitantly with diquat had significant-
ly attenuated rises in hepatic and plasma (Fig. 2) isoprostane 
levels documenting the protective actions of melatonin against 
lipid peroxidation. Evidence that liver function was also par-
tially preserved when melatonin was given to diquat-treated 
animals was documented by the fact that the indole reduced 
the rise in blood alanine aminotransferase (ALT) levels that re-
sulted when hepatic tissue was destroyed by the herbicide.

Xu et al., also used melatonin to abrogate hepatic and renal li-
pid peroxidation in mice given diquat. In both tissues as well 
as in the plasma, melatonin reduced isoprotane levels en-
hanced as a consequence of diquat toxicity (53). Moreover, me-
latonin reduced the 24 hour death rate of diquat-treated mice 
from 44% to 9%. This latter finding is important given that 
thousands of deaths occur annually due to the accidental or 
intentional ingestion of diquat and the fact that currently there 
is no known antidote or treatment for individuals suffering 
from the toxicity of this herbicide. The results also document, 
based on the highly sensitive GC/MS assay for isoprostanes, 
that melatonin is a potent protector against lipid peroxida-
tion.

As noted above, lipid peroxidation is a self-propagating proc-
ess since the peroxyl radical, which is generated during the 
breakdown of lipids, is sufficiently reactive that it can damage 
a by-stander lipid. Antioxidants that are capable of preventing 
the propagation of lipid peroxidation by virtue of their ability 
to scavenge the peroxyl radical are known as chain breaking 
antioxidants; the best known is vitamin E. Whether melatonin 
scavenges the peroxyl radical is debated. More likely, mela-
tonin reduces the oxidation of lipids and preserves membrane 
integrity due to its ability to scavenge the radicals or related 
molecules that initiate the process, particularly the .OH and 
the ONOO-.

Melatonin and membrane fluidity
There is general agreement that the peroxidation of lipids in 
membranes makes them more rigid (56, 57). Accumulated free 
radical damage to the molecules constituting membranes is 
used to explain the lower fluidity of cellular membranes in 
aged animals. Changes in the optimal fluidity of membranes 
generally has a negative effect on their function, e.g., mem-
brane-associated enzymes function less efficiently as do mem-
brane receptor-mediated signal transduction processes (58). 
Moreover, changes in the fluidity of cellular membranes have 
been implicated in aging as well as in disease processes (59-
61).

Several methods are available to determine membrane fluidi-
ty, the two most common of which are electron paramagnetic 
resonance spectroscopy and fluorescence spectroscopy. Stud-
ies that have examined the influence of melatonin on mem-
brane fluidity have used exclusively the latter method to esti-
mate the fluid nature of membranes. Antioxidants, e.g., vita-
min E, are generally capable of influencing the fluidity of 
membranes (62).

Given that melatonin is an inhibitor of lipid peroxidation, it 
was assumed that, in doing so, it would also maintain cell 

membranes in a state of optimal fluidity. When this was ex-
perimentally tested, it was in fact found to be the case. Thus, 
when melatonin limited lipid peroxidation in cells it also pre-
vented their membranes from becoming rigid. The first study 
in this area was that of Garcia et al. (63). In this investigation, 
hepatic microsomes were exposed to a combination of FeCl3, 
ADP and NADPH to induce the oxidation of lipids; half of the 
samples were also treated with melatonin. In a dose-response 
manner, melatonin reduced the accumulated levels of MDA+4-
HDA and likewise prevented membrane rigidity, measured 
by fluorescence spectrometry. The association between the bi-
ophysical characteristics of membranes and the number of 
phospholipids that are oxidized is consistent with the pub-
lished literature (64). In this study, melatonin only changed 
membrane fluidity when the microsomes were exposed to oxi-
dative stress; this indicates that the preservation of membrane 
fluidity was very likely due to the free radical scavenging ac-
tions of the indole.

The same group tested the combination of tamoxifen, a syn-
thetic antiestrogen used as a treatment to inhibit breast cancer, 
and melatonin in reducing membrane rigidity and curtailing 
the oxidative breakdown of lipids (65). Again, microsomes 
were exposed to oxidizing agents to induce lipid peroxidation. 
Tamoxifen and melatonin, alone or in combination, reduced 
the oxidation of membrane lipids and resisted the changes in 
membrane fluidity. In combination, the two agents had addi-
tive effects on both parameters. Also, when the drugs were 
combined, they reduced basal membrane rigidity as well as 
further lowering MDA+4-HDA levels.

Ionizing radiation, due to the fact that it induces free radical 
generation, mutilates all major molecules in cells. Hepatic 
membranes recovered from the liver of rats subjected to whole 
body ionizing radiation exhibited increased rigidity while the 
DNA of the hepatic cells had elevated levels of 8-hydroxy-2-
deoxyguanosine, a product that results from free radical dam-
age to the genome. Both the elevated membrane rigidity as 
well as the quantity of damaged DNA was reduced when me-
latonin had been administered prior to the exposure of the rats 
to the ionizing radiation (66). Since membranes are not exclu-
sively composed of lipids but also contain proteins, damage to 
these molecules could have accounted, at least in part, to the 
elevated rigidity of the membranes after ionizing radiation ex-
posure. Melatonin is also known to prevent free radical dam-
age to proteins (67).

Cholesterol is a major determinant of the fluidity of some 
membranes. Cholesterol, because of its hydrophobicity, does 
not form a sheet structure on its own; rather cholesterol inter-
calates among the phospholipids that make up membranes. 
The polar hydroxyl group of the cholesterol molecule is nor-
mally in contact with the aqueous solution in the vicinity of the 
polar heads of the phospholipids while the steroid ring inter-
acts with and immobilizes the fatty acyl chains of the phos-
pholipids. In general, elevated concentrations of cholesterol in 
membranes tend to make them less fluid (more rigid).

That melatonin might actually position itself within the cell 
membrane was suggested by Ceraulo and co-workers (68). Us-
ing lecithin reverse micelles, they deduced that in the presence 
of domains from apolar organic solvent to surfactant to water, 
melatonin would locate in the micellar phase with a preferen-
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tial location in the surfactant polar head group domain. In this 
position, the authors surmised that melatonin could readily 
scavenge radicals in both the aqueous as well as the lipid phas-
es. These findings suggest that melatonin shares both hy-
drophilic and lypophilic characteristics (69) and that it may 
have some positional advantages as a radical scavenger.

Physiological implications
The plasma membrane surrounds the cytoplasm and provides 
a physical barrier that separates molecules within the cell from 
the extracellular environment. Given that the intracellular mi-
lieu is markedly different from that outside the cell, it is obvi-
ously important that the integrity and optimal physiology of 
the plasma membrane of any cell is critical to its survival. Be-
sides serving as a barrier that is selectively permeable and ca-
pable of influencing what enters or exists the cell, the plasma 
membrane has a role in anchoring the internal cytoskeleton 
which provides shape to the cell as well as supplying attach-
ments to the extracellular matrix (for most cells) assisting them 
in the formation of a discrete tissue/organ (70).

The movement of constituents across the plasma membrane 
can be either passive, i.e., requiring no energy expenditure by 
the cell, or active where the cell must use energy to move the 
solute. This movement of substances also allows the mem-
brane to maintain the cell membrane potential.

Besides serving a barrier function, embedded in the bilayered 
lipid plasma membrane are a variety of proteins which aid 
cells in communicating with one another. Moreover, protein 
receptors are found throughout the membranes of all cells and 
function in the reception of information from signaling mole-
cules in the extracellular environment. Finally, there are sur-
face proteins on the outside of the plasma membrane that 
identify the cell to other cells and solutes. These features allow 
for cell-to-cell communication.

The deterioration of the plasma membrane due to the oxida-
tion of its lipid and protein constituents has devastating conse-
quences on the function and survival of cells. The destructive 
effects of these oxidative processes are readily apparent when 
cells containing oxidatively damaged molecules in their plas-
ma membrane are visualized using phase contrast (32) or fluo-
rescence microscopy (70). Excessive damage to the plasma 
membrane, which is invariably accompanied by destruction of 
internal organellar membranes as well, leads to implosion of 
the cell via apoptosis or necrosis.

Clearly, anything that damages the cell membrane compro-
mises the physiology and survival of the cell (71, 72). This 
damage changes the dynamics of channels, pores and recep-
tors; it renders the cell less efficient in transducing messages 
received from the outside and changes the transport of sub-
stances through the membrane. Thus, oxidation in the cell 
membrane makes the cell function suboptimally, making it 
vulnerable to being killed by molecules it may otherwise be 
capable of resisting.

Besides reducing cellular changes that occur due to the peroxi-
dation of lipids within membranes, melatonin may also have 
some direct effects on membrane channel function. High-volt-
age activated calcium channels (HVACC) and intracellular 
free Ca2+ concentrations were investigated in dorsal root gan-

glion neurons using whole cell patch clamping and fluores-
cence imaging techniques (73). Melatonin was found to inhibit 
HVACC in a dose-dependent manner. Thus, melatonin inhib-
ited the entrance of Ca2+ into the cell which was dependent on 
extracellular Ca2+ levels.

Alterations in cellular calcium homeostasis and smooth mus-
cle contractility are consequences of acute cholecystitis. This 
combination of effects leads to severe gallbladder dysfunction, 
a condition for which there is no current effective treatment. 
Gomez-Pinilla and co-workers investigated the potential ben-
eficial actions of melatonin on these processes in gallbladder 
smooth muscle tissue obtained from the guinea pig (74). The 
efficacy of melatonin was tested under two different experi-
mental conditions, one in which the common bile duct had 
been ligated for two days and a second in which the duct had 
been initially ligated and then deligated for two days. Both 
these conditions were associated with inflammatory responses 
in the gallbladder. 

Under these conditions, the inflammation-mediated malfunc-
tion of Ca2+ responses to cholecystokinin or caffeine were re-
versed by melatonin treatment; the indole also reduced the 
detrimental effects of AC on Ca2+ influx through both L-type 
and capacitative Ca2+ channels and, moreover, it preserved the 
pharmacological phenotype of the channels. Inflammation of 
the gallbladder was also associated with elevated oxidative 
stress in this tissue as evidenced by the elevated MDA levels 
and depressed GSH concentrations; both these changes were 
likewise reversed by melatonin. Additionally, melatonin low-
ered cyclooxygenase-2 (COX-2) levels in the inflamed gall-
bladder. The authors concluded, and the results support this 
conclusion, that melatonin lowers the degree of oxidative 
damage and reduces inflammation which presumably leads to 
an improvement of Ca2+ channel physiology. In glial cells 
stimulated with the excitotoxin, glutamate, melatonin protect-
ed the cells from oxidative stress and also Ca2+ influx and re-
duced cell death (75).

Melatonin’s effect on K1+ current in rat cerebellar granule cells 
has also been investigated (76). Using a conventional patch-
clamp technique two types of K1+ current, both a transient out-
ward current and a delayed rectifier K1+ current were record-
ed. A 78% increase in the delayed rectifier current was record-
ed upon the application of melatonin; the increase was revers-
ible and presented no desensitization upon the repeated ap-
plication of melatonin. Since the effect of melatonin on the K1+ 
current could be duplicated by adding the melatonin receptor 
agonist, iodomelatonin, the authors concluded the effect was 
receptor-mediated (77).

The results of Hou et al (78) contrast with those of Huan et al 
(76). The former workers examined the effect of melatonin on 
the delayed rectifier K1+ current in CA1 pyramidal neurons in 
hippocampal slices using the patch clamp technique. In a con-
centration dependent manner, melatonin caused a reduction 
in the K1+ current, a response that was not blocked by luzin-
dole, an antagonist of the two best known membrane mela-
tonin receptors, the MTI and MT2 receptor. Hou et al believed, 
as a consequence of their findings, that melatonin influences 
K1+ currents via its interaction with intracellular indole-related 
domains on potassium channels (78). The differences between 
the effects of melatonin on K1+ currents in cerebellar granule 
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cells and pyramidal cells of the hippocampus currently remain 
unexplained.

Using cultured cerebellar granule cells, Lax performed a de-
tailed examination of the effects of melatonin on nicotine-
evoked currents (79). With a combination of eletrophysiologi-
cal and Ca2+-imaging methodologies, he identified some gran-
ule cells in which nicotine caused both intracellular Ca2+ tran-
sients and inward whole-cell currents. Judging from their 
sensitivity to nicotine and the time constant of the current de-
cay, it was surmised that the responses were mediated by the 
neuronal acetylcholine receptor. With the use of melatonin 
levels as low as 1 pM, Lax showed that the indole attenuated 
the amplitude dose-dependently but was without influence on 
the receptor’s apparent affinity or on the current’s rise or de-
cay time (79). The inhibitory effect of melatonin was sup-
pressed by luzindole, a competitive MT1 and MT2 melatonin 
receptor antagonist. Given that melatonin’s actions were me-
diated by physiologically relevant concentrations of the indole, 
this author feels the evidence provides a means by which the 
circadian rhythm of circulating melatonin may be operative in 
modulating cholinergic activity, at least on cerebellar granule 
neurons.

The influence of melatonin on the water channel aquaporin-1 
(AQP-1) was examined in a model of spinal cord injury by Ne-
sic et al (80). AQP-1 is particularly abundant in the small diam-
eter sensory neurons of the dorsal horn of the spinal cord. 
Contusion injury of the spinal cord of rats was found to be as-
sociated with a four to five-fold elevation in the number of 
AQP-1 channels at the level of thoracic cord injury with de-
layed increases in pore levels eventually being observed in the 
cervical and lumbar cord. Melatonin reduced the AQP-1 in-
creases in the injured spinal cord thereby limiting neuronal 
and astrocyte swelling. The inhibition of the rises in the water 
pore following injury to the spinal cord was associated with a 
significant decrease in mechanical allodynia, i.e., pain related 

to mechanical stimulation. The implication of these findings is 
that by reducing AQP-1, melatonin prevents cellular swelling 
and pain associated with injury to the spinal cord.

Obviously, much needs to be learned regarding the effects of 
melatonin on the physiology of the plasma membrane of cells. 
Due to its ability to reduce oxidative damage in this structure, 
it is virtually certain that melatonin at least secondarily influ-
ences the function of cell membranes and, therefore, the integ-
rity of cells. Additionally, however, melatonin may have direct 
receptor-mediated or receptor-independent actions on chan-
nels and pores in the cell membrane. The evidence in this field 
is clearly sparse and an area is ripe for investigation.

Concluding remarks
Intact and optimally functional plasma membranes of cells are 
critical for them to efficiently carry out their prescribed func-
tions. By virtue of melatonin’s ability to function as a direct 
free radical scavenger and indirect antioxidant, it is a major 
molecule in protecting membrane constituents from oxidative 
mutilation. In doing so, melatonin also optimizes the physiol-
ogy of membrane receptors, channels and pores as well as 
maintaining the shape of the cell. Secondly, melatonin is re-
ported to have some direct effects on channels and pores with-
in all membranes. Although this latter field is not yet well ex-
ploited, it seems likely that research in this area will flourish 
within the next decade.

In general, melatonin functions in all parts of all cells and im-
proves physiological infrastructure. As a result, it enhances 
cell function and optimizes the ability of cells to survive in a 
hostile environment. Among many apparent functions that 
melatonin has, it seems likely that its ability to preserve the 
morphological and functional aspects of the cell membrane 
may be among its most important actions.

Melatonin ve hücresel membranların patofizyolojisi

ÖZET: Bu derlemede melatoninin hücre membranlarının fizyolojisindeki katkısı değerlendirildi. 1993’den itibaren bu 
konuda mevcut literatürleri kapsamaktadır. Melatonin gerek tek hücrelilerde gerekse çok hücrelilerde bulunan çeşit-
li önemli fonksiyonları olan, yaygın dağılım gösteren bir indolamindir. Serbest radikal hasarına karşı lipidler üzerin-
deki koruyucu etkisi ile melatonin hücre membranlarının morfolojik ve fonksiyonel bütünlüğünün korunmasında çok 
önemlidir. Bu etkisiyle melatonin membranlardaki okside lipid miktarını azaltarak membranın optimal akışkanlığını 
korur; rijid hale gelmesini önler. Bu etki hücre membranlarındaki proteinlerin (reseptörler, kanallar ve porlar gibi) 
fonksiyonları için çok önemlidir ve hücrenin normal fizyolojisinin korunmasına katkıda bulunur. Melatoninin sözü 
edilen indirekt etkisine ilave olarak, bulgular bu indolaminin membran kanalları üzerinde direkt etkisiyle iyon gradi-
yentinin ve akımının uygun olarak sürdürülmesini sağladığını göstermiştir. Melatoninin membranın kanal ve por fonk-
siyonlarına etkileri deneysel olarak incelenmesi gereken bir alandır.

ANAHTAR KELİMELER: Melatonin, hücre membranları, lipid peroksidasyon, membran kanalları, membrane porları, 
hücre membrane reseptörleri
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