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Abstract − In this paper we examine the n-completeness of a crossed module and we show that

if X = (W1,W2,∂) is an n-complete crossed module, where Wi = Ai wr Bi is the wreath product

of groups Ai and Bi , then Ai is at most n-complete, for i = 1,2. Moreover, we show that when

X = (W1,W2,∂) is an n-complete crossed module, where Ai is nilpotent and Bi is nilpotent of class

n, for i = 1,2, then if Ai is an abelian group, then it is cyclic of order pi . Also, if Wi =Cp wrC2, where

p is prime with p > 3, i = 1,2, then X = (W1,W2,∂) is not an n-complete crossed module.

Subject Classification (2020): 18D35, 20L05.

1. Introduction

The notion of crossed module is investigated by Whitehead [1]. After him, many mathematicians applied

crossed modules in many directions such as homology and cohomology of groups, algebraic structures, K-

theory, and so on. Actor crossed module of algebroid is defined by Alp in [2]. Actions and automorphisms of

crossed modules is studied by Norrie [3]. Tensor product modulo n of two crossed modules is introduced by

Conduche and Rodriguez-Fernandez [4]. The concepts of q-commutator and q-center of a crossed module

(where q is a non-negative integer) is studied by Doncel-Juarez and Crondjean-Valcarcel [5].

Let X = (T,G ,∂) be a crossed module and X = (T,G ,∂) = γ1(X ), . . . ,γn(X ), . . . be the lower central series of

X = (T,G ,∂). We define the series K1, . . . ,Kn , . . . where Kn consists of the automorphisms of X which induce

the identity on the quotient crossed module X
γn+1(X ) . Now, in this paper, we present the definition of an

n-complete crossed module which is an extension of the definition of a semi-complete crossed module.

2. n-commutator crossed submodule

It is well known that an action of the group G on the group T is a homomorphism G → Aut (T ) or, a map

µ : T ×G → T such that

1. µ(t1t2, x) =µ(t1, x)µ(t2, x),
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2. µ(t , x1x2) =µ(µ(t , x1), x2),

for all t1, t2 ∈ T and x, x1, x2 ∈G .

As usual, we will consider the notation µ(t , x) =x t in continue. Indeed, a crossed module [6] is a 4-tuple

X = (T,G ,µ,∂) or 3-tuple (T,G ,∂), where T and G are groups, µ is an action of T on G , and ∂ : G → T is a

homomorphism. The map ∂ is called the boundary, and it satisfies the following statements:

1. X Mod 1: ∂(t x) = t−1∂(x)t for all x ∈G and t ∈ T .

2. X Mod 2: ∂(y)x = y−1x y for all x, y ∈G .

If T and G are finite groups, then the crossed module is called finite.

Example 2.1. Let G be a group. We denote by RG the crossed module (G ,1,µ,∂), where 1 is the trivial sub-

group of G , and the action µ and the boundary map ∂ are trivial.

Example 2.2. Let G be a group. We denote by DG the crossed module (G ,G ,µ, i d), whereµ is the conjugation

action, and i d : x → x is the trivial map.

From the definition, we immediately conclude that K = Ker ∂ is a central subgroup of G , I = im ∂ is a normal

subgroup of T , and obtain the following exact sequence 1 → K → G → T → C → 1, where C = T
I is the

cokernel of ∂. Specially, for a finite crossed module we have |G||C | = |K ||T | [7]. A morphism φ : X → Y

between two crossed modules X = (T1,G1,µX ,∂X ) and y = (T2,G2,µY ,∂Y ) is a pair (φ1,φ2), where φ1 : T1 →
T2, φ2 : G1 →G2 are group homomorphisms, and the following relations hold:

∂Y ◦φ2 =φ1 ◦∂X , µY ◦ (φ2 ×φ1) =φ2 ◦µX .

This yields the commutativity of the following diagrams:

G1
∂X //

φ2

��

T1

φ1

��
G2

∂Y

// T2

G1 ×T1
µX //

φ2×φ1

��

G1

φ2

��
G2 ×T2 µY

// G2

Definition 2.3. Suppose that (T,G ,∂) is a crossed module and n is a non-negative integer. We define the

notion of n-commutator crossed submodule of (T,G ,∂) as ∂ : Dn
G (T ) →G 6=n G , where Dn

G (T ) is the subgroup

of T generated by the set { x aa−1bn | x ∈G , a,b ∈ T
}

,

and in a general case, if N is a normal subgroup of G , then G 6=n G is the n-commutator subgroup of G and

N , i.e., the subgroup generated by the

{
[x, a]a′n | x ∈G , a, a′ ∈ N

}
.

The n-commutator crossed submodule of (T,G ,∂) is a normal crossed submodule.

Example 2.4. The group G acts on N by conjugation if N is a normal subgroup. The triple (N ,G , i ) is a

crossed module, where i is the inclusions. The n-commutator crossed submodule of (N ,G) equals (G 6=n
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N , G 6=n G , i ). This implies that for any group G , the triple (G ,G , i d) is a crossed module and (G 6=n G , G 6=n

G , i d) is its n-commutator.

Let (T,G ,∂) be a crossed module with trivial center. According to [3], we can obtain a sequence of crossed

modules as follows:

(T,G ,∂), A (T,G ,∂),A (A (T,G ,∂)), . . .

in which each term embeds in its successor. This sequence is called the actor tower of (T,G ,∂).

We say the crossed module (T,G ,∂) is complete if Z (T,G ,∂) = 1 and the canonical morphism < η,γ >:

(T,G ,∂) →A (T,G ,∂) is an isomorphism. Notice that the crossed module (T,G ,∂) is semi complete if < η,γ>
is an epimorphism. Consequently, a semi complete crossed module with trivial center is complete.

3. n-complete crossed modules

A crossed module (T,G ,∂) is said to be n-complete if n is the smallest positive integer such that Kn is sub-

crossed module Inn(T,G ,∂), where Inn(T,G ,∂) is the crossed module of the inner automorphisms of (T,G ,∂).

Proposition 3.1. Let (T,G ,∂) is an n-complete crossed module. Then, T and G are at most n-complete and

nilpotent of class at most n.

Example 3.2. If (G ,G , i ) is an n-complete crossed module, then G is n-complete and nilpotent of class n.

In Proposition 3.3 we give a relation between nilpotent groups and n-complete crossed modules.

Proposition 3.3. If (T,G ,∂) is a crossed module and groups T,G are nilpotent of class at most n, then (T,G ,∂)

is an n-complete crossed module for some m with m ≤ n.

Suppose that (R,K ,∂) is a normal crossed submodule of (T,G ,∂) and (S, H ,∂′) is a crossed module such that

(T /R,G/K ) ∼= (S, H), then we call (T,G) an extension of (R,K ) by (S, H). If there exists a surjective morphism

ψ= (ψ1,ψ2) : (X1, X2) → (T,G), the trivially (X1, X2) is an extension of the crossed module kerφ by (T,G). An

extension ((X1, X2),ψ) by (T,G) is n-central extension if kerψ= (kerψ1,kerψ2) is contained in Z n(X1, X2).

Let (M ,G ,µ) and (N ,G ,ν) be two crossed modules, and consider the pullback

M ×G N
π2 //

π1

��

N

ν

��
M

µ
// G

Then, M×G N = {(a,b) |a ∈ M , b ∈ N , µ(a) = ν(b)}. If we writeα=µπ1 = νπ2, then for c ∈ M×G N , a ∈ M , b ∈
N , we get

π1(c)a = α(c)a = π2(k)a, π1(c)b = α(c)b = π2(c)b.

The tensor product M ⊗q N is defined as the group generated by the symbols a⊗b and {c}, a ∈ M , b ∈ N , c ∈
M ×G N , with the following relations:

1. a ⊗bb′ = (a ⊗b)( b a ⊗b b′).

2. aa′⊗b = ( a a′⊗a b)(a ⊗b).

3. {c}(a ⊗b){c}−1 = α(c)q
a ⊗α(c)q

b.
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4. [{c}, {c ′}] =π1(c)q ⊗π2(c ′)q .

5. {cc ′} = {c}
(∏q−1

i=1 (π1(c)−1 ⊗ (α(c)1−q+i
π2(c ′))i )

)
{c ′}.

6. {(ab a−1, abb−1)} = (a ⊗b)q .

Note that the structure of the tensor product mode q is bifunctorial. Under this conditions there exists an

action of G on M ⊗q N defined as follows:

x (a ⊗b) = x a ⊗ x b, x {c} = { x c}

a ∈ M , b ∈ N , c ∈ M ×G N , x ∈ G . The group M (resp. N ) acts on M ⊗q N through the homomorphism µ

(respectively ν) and if a ∈ M , b ∈ N , c ∈ M ×G N , then

a{c} = (a ⊗π2cq ){c}, b{c} = {c}(π1c−q ⊗b).

Now let (T,G ,∂) and (G ,G , i d) be crossed modules. We can consider the tensor product T ⊗q G , it was first

defined by Brown. In this case T ×G G ∼= T, π1 = i dT , π2 = ∂. Similarly, we consider G ⊗q G . Then, we have

the following crossed modules:

(T ⊗q G ,T,λ), λ(t ⊗ g ) = t g t−1, λ({t }) = t q , t ∈ T, g ∈G ;

(T ⊗q G ,T,λ′), λ′(t ⊗ g ) = [∂(t ), g ], λ′({t }) = ∂(t )q , t ∈ T, g ∈G ;

(G ⊗q G ,G ,ξ), ξ(g ⊗h) = [g ,h], ξ({g }) = g q , g ,h ∈G .

Theorem 3.4. If (T,G ,∂) is an n-complete crossed module, then (T ⊗n G , G ⊗n G , (λ,ε)) is an n-complete

extension by (T,G ,∂).

The restricted standard wreath product W = Awr B of two groups A and B is the splitting extension of the

direct power AB by the group B , with B acting on AB according to the rule, if b ∈ B then f b(x) = f (xb−1) for

all f ∈ AB , x ∈ B. The base group AB is characteristic in W , in all cases, except when A is of order 2, or is a

dihedral group of order 4k +1 and B is of order 2. In the following it is assumed that AB is characteristic in

W. The next theorem is of great importance for the sequel. But first we need the following results from [8].

Proposition 3.5. [8] If α ∈ Aut (A), we define α∗ ∈ Aut (W ) by (b f )α
∗ = b f α

∗
for all b ∈ B , f ∈ F , where

f α
∗
(x) = (

f (x)
)α, for all x ∈ B , then the group A∗ of all such automorphisms is isomorphic to Aut (A).

Proposition 3.6. [8] If β ∈ Aut (B), we define β∗ ∈ Aut (W ) by (b f )β
∗ = bβ f β

∗
for all b ∈ B , f ∈ F , where

f β
∗
(x) = f (xβ

−1
) for all x ∈ B , then the group B∗ of all such automorphisms is isomorphic to Aut (B).

Theorem 3.7. [8]

1. The automorphism group of the wreath product W of two groups A and B can be expressed as a

product, Aut (W ) = K I1B∗, where

• K is the subgroup of Aut (W ) consisting of those automorphisms which leave B element wise

fixed.

• I1 is the subgroup of Aut (W ) consisting of those inner automorphisms corresponding to trans-

formation by elements of the base group F .
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• B∗ is defined as in Proposition 3.5.

2. The group K can be written as A∗H , where

• A∗ is defined as in Proposition 3.6.

• H is the subgroup of Aut (W ) consisting of those automorphisms which leave both B and diag-

onal element wise fixed.

3. The subgroups A∗H I1, H I1B∗, H I1, and I1 are normal in Aut (W ) and Aut (W ) is splitting extension

of A∗H I1 by B∗. Furthermore, A∗ intersects HB∗ trivially.

In the following it is assumed that W1 = A1wr B1 and W2 = A2wr B2 are two standard wreath products of

groups.

Theorem 3.8. If X = (W1,W2,∂) is an n-complete crossed module, then Ai is at most n-complete, for i = 1,2.

Proof.

If (α,β) ∈ Kn(X ), then α ∈ Kn(A1) and f ∈ AB1
1 . Hence, f α

∗
(x) = (

f (x)
)α = f (x)ux for x ∈ B1 and ux ∈

γn+1(A1). If g1 ∈ AB1
1 , g1(x) = ux for all x ∈ B1, then f α

∗
(x) = (

f g1(x)
)

for all x ∈ B1. Therefor, f α
∗ = f g1,

where g1 ∈ γn+1(W1). Since W1 is n-complete, it follows that Kn(W1) ≤ I (W1) and so α∗ ∈ I (W1). But ac-

cording to [9], α∗ ∈ I (W1) if and only if α ∈ I (A1). Hence, Kn(A1) ≤ I (A1). The proof for Kn(A2) ≤ I (A2) is

similar.

Theorem 3.9. If X = (W1,W2,∂) is an n-complete crossed module, then Bi is nilpotent of class at most n, for

i = 1,2.

Proof.

If L(B1) and L(B2) are the left regular representation of the groups B1, B2 respectively, then for each ele-

ment lb ∈ L(B1), b ∈ B1, there corresponds an automorphism l∗b of W1 defined by (c f )l∗b = c f l∗b for all c ∈ B1 ,

f ∈ A1
B1 , where f l∗b (x) = f (bx) for all x ∈ B1.

If f1 ∈ A1
B1 such that f1(1) = a, f1(x) = 1 for all x ∈ B1, x 6= 1 and b ∈ B1, b 6= 1, then f

l∗b
1 (b−1) = f1(1) = a and

f
l∗b

1 (x) = f1(bx) = 1 for all x 6= b−1.

Moreover, we obtain f
l∗b

1 = f1g , where g (1) = a−1, g (b−1) = a, g (x) = 1 for all x ∈ B , x 6= 1,b−1. Also, by [10]

for the element g ∈ AB1
1 , g = [b−1,ϕ], where ϕ ∈ AB1

1 with ϕ(1) = g (1) and ϕ(x) = 1 for all x 6= 1.

Now, if Xi ∈ B1, we define the element fxi ∈ AB1
1 by fxi (xi ) = a and fxi (d) = 1 for all d ∈ B , d 6= xi , then

( fxi )l∗b = fxi g xi . If b ∈ γn(B1), then l∗b belongs to the group Kn(W1) ≤ I (W1). But b ∈ Z (B1) if and only if

l∗b ∈ I (W1). So, the group B1 is nilpotent of class at most n, and similarly B2 is nilpotent of class at most n.

Theorem 3.10. If X = (W1,W2,∂) is an n-complete crossed module, and Bi is nilpotent of class n, for i = 1,2,

then Ai is directly indecomposable.

Proof.

Suppose that Ai =Ui ×Vi is a non trivial direct decomposition of Ai for i = 1,2. If f ∈ AB1
1 , then f (x) = u1x v1x

for all x ∈ B1, where u1x ∈U1 and v1x ∈V1. If g f ∈ AB1
1 , g f (x) = u1x for all x ∈ B1 and x ∈ γn(B1) ≤ Z (B1), z 6= 1,

then η : W1 → W1 by (b f )η = b f [g f , z] is a map. Since g f h = g f gh and g y
f = g f g for all f ,h ∈ AB1

1 , y ∈ B1, it

follows that η is an outer automorphism of W1 with η ∈ Kn(W1) and is a contradiction.

Theorem 3.11. If X = (W1,W2,∂) is an n-complete crossed module, where Ai is finite nilpotent and Bi is

nilpotent of class n, then Ai is a pi -group, (pi is prime) for i = 1,2.
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Proof.

By Theorem 3.10, the proof is straightforward.

Theorem 3.12. Let X = (W1,W2,∂) is an n-complete crossed module, where Ai is nilpotent and Bi is nilpo-

tent of class n, for i = 1,2. If Ai is abelian group, then it is cyclic of order pi .

Proof.

By Theorem 3.11, Ai is pi -group. But Ai is abelian, and so Ai is cyclic of order pr for some positive in-

teger r . Now, we show that r = 1.

If r is not equal to 1, we choose an element x ∈ γn(B1), x 6= 1 and we define a mapping η : W1 → W1 by

(b f )η = b f [ f , x]p , η is an automorphism of W1 belonging to the group Kn(W1) by [9]. Since r > 1 and η is

an outer automorphism, it follows that W1 is not n-complete. Hence, r = 1, and A2 is cyclic of order pi ,

accordingly.

Corollary 3.13. If X = (W1,W2,∂) is an n-complete crossed module and Ai is finite nilpotent and Bi nilpo-

tent of class n, for i = 1,2, then Ai is cyclic of prime order.

Now, we give examples of non n-complete crossed module. Let W = Awr B be the restricted wreath product

of A by B . The set σ( f ) = {x ∈ B | f (x) 6= 1} is the support of f ∈ AB . Map π : AB → A
A′ given by

π( f ) = ∏
x∈σ( f )

f (x)A′

is well defined and obviously a homomorphism satisfying π( f b) =π( f ) for all b ∈ B.

Proposition 3.14. [10] The derived subgroup W ′ of W is W ′ = B ′M , where M = K erπ.

Theorem 3.15. If Wi =Cp wrC2, where p is prime with p > 3, i = 1,2, then X = (W1,W2,∂) is not n-complete

crossed module.

Proof.

If W1 = A1wr B1, then W ′
1 = B ′

1M1, where M1 = { f | f ∈ AB1
1 ,π( f ) ∈ A′

1}. But B1 =C2, |M1|||A1||B1| = p2 and so

|M1| = p. W1 is not nilpotent and thus γn(W1) = M1 for all n ∈ Z+, n ≥ 2. If A1 =Cp =< a >, B1 =C2 =< b >,

then f1 = (ap−1, a2), f2 = (a2, ap−1), g1 = (a,1), g2 = (1, a), instill the mapping g1 → f1, g2 → f2 which can

be extended to an automorphism γ of AB1
1 , which commutes with the automorphism of AB1

1 induced by the

element b ∈ B1, since AB1
1 =< f1, f2 >=< g1, g2 > and AB1

1 is elementary abelian of rank 2 and p 6= 3. Thus,

the automorphism γ can be extended to an automorphism of W1, which fixes B1 element wise [8]. On the

other hand, we have
gγ1 = (a,1)γ = (ap−1, a2) = (a,1)(ap−2, a2),

gγ2 = (1, a)γ = (a2, ap−1) = (1, a)(a2, ap−2),

and (ap−2, a2), (a2, ap−2) ∈ M1 = γn(W1), n ≥ 2, so γ ∈ Kn(W1), n ≥ 2 and γ is an outer automorphism. Hence

W1 =Cp wrC2 is not n-complete. Therefore, X = (W1,W2,∂) is not n-complete crossed module.

Theorem 3.16. If Wi = Cp wr Bi , where p is prime with p > 3, i = 1,2, and Bi is nilpotent of class n with

ki = |Bi | ≥ 3, i = 1,2, then X = (W1,W2,∂) is not n-complete crossed module.

Proof.

The group ABi

i is an elementary abelian p-group, since Ai is Ai = Cp =< ai >. The set gxi ∈ ABi

i for all

xi ∈ Bi = {x1, ..., xk j } with gxi (xi ) = ai , gxi (x j ) = 1 , x j 6= xi is a basis of ABi

i . Now, if we consider the mapping
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gxi → fxi = gxi [b1, gxi ] = gxi
2(gxi

−1)b1 for all xi ∈ Bi , where b1 ∈ γn(Bi ), then this mapping is extended to an

automorphism γ of ABi

i , since the set fxi , xi ∈ Bi is a basis of ABi

i . On the other hand, since Cp
∼= Zp and

p > 3, it follows that the determinant of matrix


2 0 · · · 0 −1 0 · · · 0

0 2 · · · −1 0 0 · · · 0
. . .

0 0 · · · −1 0 0 · · · 2


is not zero in Zp , where the element 2 is in the main diagonal and in each row and column we have once

the element −1. But γ can be extended to an automorphism γ of the group Wi , which fixes Bi element

wise, since the automorphism γ of ABi

i commutes with the automorphisms of ABi

i which are induced by

the elements of the group Bi . The automorphism γ is an outer automorphism with γ ∈ Kn(Wi ). So, X =
(W1,W2,∂) is not n-complete crossed module.

Proposition 3.17. [11] The wreath product W = C2wr B is not n-complete, where B is finite abelian with

m = |B | ≥ 4 and m is an odd number.

Theorem 3.18. If Wi = C2wr Bi , where Bi is finite abelian with mi = |Bi | ≥ 4, i = 1,2 , and mi is an odd

number, then X = (W1,W2,∂) is not n-complete crossed module.

Proof.

By Proposition 3.17, the proof is straightforward.

We have assumed up to this point that subgroup AB is characteristic in W = Awr B. Now, we investigate the

case of W in which A is a special dihedral group and B is of order 2. At this case AB is not characteristic in

W. We recall that Dm is Dm =< a,b | am = 1,b2 = 1,(ab)2 = 1 > .

Theorem 3.19. [11] The standard wreath product W = Dn wrC2 is semi complete if and only if n = 3.

Theorem 3.20. Let W = Dm wrC2, where m = 2k +1, k ∈ N , and C2 is the cyclic group of order 2. Then, the

crossed module X = (W,W, i ) is n-complete if and only if m = 3.

Proof.

In this case, we know that for the lower central series of the group Dm , is γk+1(Dm) =< a2k >, for all k =
1,2, .... Since m is an odd number, it follows that

γ2(Dm) = γ3(Dm) = ·· · = γk (Dm) = γk+1(Dm) = ·· · .

If the crossed module (W,W, i ) is n-complete, then by Theorem 3.8, the group Dm is at most n-complete.

This means that Dm is semi complete [12], and this is true if and only if m = 3.
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